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I. INTRODUCTION

The commissioning of polarized proton beams with energies from 100 to 250 GeV at
the Relativistic Heavy Ion Collider (RHIC) [1] has started a new stage in physics of spin-
dependent collisions. In particular, measurement of spin-dependent parton distribution func-
tions (PDFs) will be the top priority in the experiments with longitudinal polarization. So
far, these spin-dependent counterparts of the unpolarized PDFs were constrained only by
the lepton-nucleon deep inelastic scattering (DIS) data [2-10], which concentrates at rel-
atively small momentum transfers (Q? ~ 1 GeV?). In contrast, RHIC will explore the
spin-dependent PDFs in a much larger range of Q% and using a variety of spin-dependent
particle reactions, including production of Drell-Yan lepton pairs and resonant production
of W* and Z° bosons [11].

Vector boson production (VBP) with polarized hadron beams, which proceeds through
annihilation of a quark and antiquark at the Born level, is the most natural candidate to
probe spin-dependent quark polarizations [12-14]. Furthermore, in pp collisions the Born
level cross sections are sensitive to the distributions of sea quarks. In this sense, VBP
complements production of jets, pions, and heavy quark flavors, which primarily probe the
gluon distribution. No wonder that extensive bibliography is dedicated to spin-dependent
production of Drell-Yan pairs [15-28] and massive electroweak bosons [26, 29-36].

The production of W* bosons presents a particularly interesting opportunity to learn
about the quark spin structure due to the maximal violation of space-reflection parity in the
qqW coupling and non-trivial mixing of the quark flavors through the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [37, 38]. While the former feature allows non-vanishing single-
spin cross section asymmetries (which are simpler than the parity-conserving double-spin
asymmetries), the latter feature facilitates the study of the flavor dependence of the sea
quark PDFs. The issue of flavor symmetry breaking in the polarized quark sea was brought
in the limelight recently by the results on semi-inclusive hadroproduction in spin-dependent
DIS by HERMES Collaboration [39]. In that measurement, the issues of higher-order and
higher-twist corrections are an important consideration due to small values of Q%. At the
same time, W boson production at RHIC has a potential to pin down the quark sea flavor
structure at large Q?, i.e., at energies where perturbative quantum chromodynamics (PQCD)

is truly valid.



The original method [11, 40| for the measurement of polarized PDFs in W boson pro-
duction at RHIC relies on the reconstruction of the spin-dependent distribution do/dy over
the rapidity y of the W bosons. The method is based on the observation that the Born
level single-spin asymmetry of do/dy is described by a simple theoretical expression, which
further reduces to the ratio Ag(x)/q(z) of the polarized and unpolarized PDFs when the
absolute value of y is large. Unfortunately, the application of this method is obstructed
by specifics of the detection of the W* bosons at RHIC. Since neither of RHIC detectors
controls the energy balance in particle reactions, the energy and momentum of the neutrino
in the decay are completely unknown, so that the information about the momentum of the
W boson is incomplete. As a result, the determination of the rapidity y of the W boson
from the observation of just one charged lepton is generally impossible.

It can be shown that the ambiguity in the reconstruction of y reduces to the uncertainty
in the knowledge of the transverse momentum ¢r of the W boson [11]. If ¢y were known
exactly, the rapidity y of the W boson can be derived (up to a two-fold ambiguity) from
the measured rapidity y, and transverse momentum pr, of the charged lepton (see the
accompanying paper [41] for more details on this reconstruction method). For instance, if
all W bosons were produced through the Born process gqg — W, the transverse momentum gr
would be zero, and the correct solution for y can be chosen statistically for the leptons with
large absolute values of the lepton rapidity yy, i.e., escaping near the beam pipe direction.

In reality, the W* bosons carry a non-zero transverse momentum due to QCD radiation,
with the most probable magnitude in the unpolarized case of about 2 GeV. Most of the
W* bosons obtain a non-zero gy through the radiation of soft and collinear partons, which
cannot be approximated by finite-order perturbative calculations. Since the power series in
the strong coupling as does not converge in the small-g7 region, summation of dominant
logarithmic terms through all orders of this series is needed. This all-order summation can
be realized with the help of the methods that were studied in a substantial detail [42-
58| in the unpolarized case. Note, however, that the properties of the multiple parton
radiation depend on the spin of the initial hadrons. The spin dependence of the collinear
radiation off the external parton lines can be seen from an explicit calculation. An additional
spin dependence can be contributed by the unknown nonperturbative dynamics of strong
interactions at large distances. Thus, conclusions about the nature of the multiple parton

radiation in the polarized hadronic collisions cannot be inferred from the unpolarized case,



and an additional study is required to estimate the spin dependence of such radiation under
the RHIC conditions.

The main goal of this paper is to provide a theoretical framework for such a study. We
present a complete formalism for resummation in VBP with the proton beams of an arbitrary
longitudinal polarization. Furthermore, we explicitly account for the decay of the vector
bosons into the observed leptons, which is important because of the complicated geometry of
RHIC detectors. The results are derived at a one-loop level of PQCD, and the summation of
large logarithms is performed with the help of the impact parameter resummation technique
[47]. The detailed discussion of this lepton-level resummation formalism in the unpolarized
case can be found in Ref. [50]. The theoretical results are presented for arbitrary couplings
of the vector boson, which makes the results of this paper also applicable to lepton pair
production mediated by photons or Z° bosons. Qur eventual product is a numerical program
for Monte-Carlo integration of fully differential resummed cross sections in the presence
of experimental cuts. In the accompanying paper [41]|, we present numerical results for
the single-spin asymmetries in W boson production and estimate the sensitivity of these
asymmetries to different models of polarized PDFs.

To review the already available literature, we note that the finite-order asymmetries of
order O(ag) in the Drell-Yan process are currently available for distributions in full lepton
pair momentum [19], invariant mass [22], and rapidity [23]. Analogous distributions for W
boson production were published in Refs. [30, 35, 36]. Recently, the O(a%) fully differential
distributions of the Drell-Yan pairs were obtained in Ref. [27]. Furthermore, Refs.[19, 30|
presented the O(as) resummed single- and double-spin cross sections in the narrow width
approximation, and the O(ag) Sudakov factor was explicitly demonstrated to be independent
from the polarization of the proton beams. Note that most of the above publications (with
the exception of the forward-backward asymmetry in Ref. [35] and polar angle distribution
of the Drell-Yan leptons in the lab frame in Ref. [28]) discuss the behavior of the whole
lepton pair, rather than the distributions of the individual leptons.

In this paper, we go beyond the previous results in several aspects. First, we present the
fully differential finite-order and resummed cross sections for the decaying electroweak vector
bosons, i.e., we completely account for the spin correlations between the hadronic subsystem
and leptonic final state. In other words, the cross sections in this work are fully differential

in the individual lepton momenta, rather than in the momentum of the lepton pair. These



cross sections are implemented in a Monte-Carlo integration program. Such lepton-level
analysis requires calculation of several additional angular structure functions, which do not
contribute in the narrow width approximation. Furthermore, the ¢r resummation is needed
not only for the parity-conserving angular function 1+4cos? #, which contributes to the boson-
level cross section, but also for the parity-violating angular function 2 cos 6, which affects the
angular distributions of the decay products. The calculation for the parity-violating term
2 cos § is substantially more complex, because it involves a large number of v5 matrices (and
Levi-Civita tensors) coming from both spin projection operators and axial couplings of the
electroweak Lagrangian. In contrast, the parity-conserving term 1 + cos?# depends on s
matrices and Levi-Civita tensors from the spin projection operators only.

It is well known that special care is needed to deal with the ~5 matrices in n # 4
dimensions. In order to tackle this issue efficiently, we have evaluated the n-dimensional cross
sections using the dimensional reduction method [59-61]. We then converted our results to
the conventional M S factorization scheme, which utilizes dimensional regularization [62, 63].
From our calculation, we have found that the spin-dependent resummed cross-sections in
[19, 30] could not be used with the existing parametrizations of the polarized PDFs in the M 'S
scheme, due to the different factorization scheme used in those papers. In addition, Ref.[30]
has used an unconventional normalization for the n-dimensional single-spin cross section in
the g channel. The present work has paid a special attention to rectify those inconsistencies
and obtain the hard cross sections compatible with the existing phenomenological PDF
parametrizations in the MS scheme.

The paper has the following structure. In Section I, we introduce the notations for the
kinematical variables and spin-dependent cross sections. Section III discusses the regular-
ization of cross section singularities by continuation of observables to n # 4 dimensions, as
well as the treatment of the v5 matrices. In Section IV, we present in detail the O(as)
finite-order and resummed cross sections. Section V contains the summary of our results
and conclusions. The appendix contains the expressions for all structure functions that

contribute to the lepton-level O(ag) cross sections.



Figure 1: Notations for the momenta and helicities of the participating particles.

II. NOTATIONS
A. Kinematical variables

We discuss inclusive production of a lepton pair A(pa)+ B(ps) = V*(¢)+ X — l1(l1) +
ly(13) + X mediated by a virtual vector boson V. Our notations for the particle momenta
and helicities in this process are shown in Fig. 1.

The momentum ¢* of V' can be conveniently parametrized by the invariant mass @),
rapidity y, and transverse momentum gr of the vector boson in the laboratory frame. We

have

Q* = ¢"qu; (1)
L. g4

= —In—; 2

y =g (2)

9 = —q ¢, (3)

where ¢, is the component of the momentum ¢* that is orthogonal (in the relativistic sense)

to the momenta p; and pj:

w_ o (parq9 . (pB-9)
W= "B T T ) A (4)

For any vector n*, the “plus” and “minus” components are defined as ny = (n° 4 n?) /V2.



It will be useful to introduce the hadronic and partonic Mandelstam invariants, defined

by

s = (pa+pB)%; (5)
t = (pa—q)% (6)
u = (pp—q)% (7)
5= (pa+m)% (8)
U= (pa— )% (9)
U= (pp—q)". (10)

A caret denotes quantities at the parton level. They are defined in terms of the parton
momenta p? = £,py, p) = &ply, where €, and & are the light-cone momentum fractions,
which satisfy the constraints z4 < ¢, < 1,25 < & < 1, with 24 5 = Qe*¥/\/s. Throughout
the discussion, all hadron masses are neglected.

Our discussion will use two coordinate frames. The first frame is the laboratory frame, or
the center-of-mass frame of the initial proton beams. The second frame is a special rest frame
of the produced vector boson (Collins-Soper frame [64]), in which the axis Oz bisects the
angle between the vectors p4 and —ppg, where pa are pg are the initial hadrons” momenta
in this frame. The coordinate transformation from the lab frame to the Collins-Soper frame
involves a boost in the direction of motion of V and a rotation around the Oy axis (see
Appendix A in [50] for the explicit coordinate transformation matrix). The components of

the momenta p’; and p in the Collins-Soper frame are

wo q qx4qrt q
o =5 (G g0+ -

where M7 is the transverse mass of the vector boson, Mr = 1/Q? + ¢%. The momenta [

and [ of the final-state leptons in this frame are

I = %(1,sin@cosc,o,sin&sintp,cos&), (12)
5 = ¢ 1,—sinf in 6 si 0

2 = 5 (1, —sinfcosp, —sinfsing, —cosd |. (13)

Instead of using I} and Ij directly, it is convenient to operate with their linear combina-

tions,

11— (Q,o,o,o) (14)



and
=0 =105=0Q (0, sin @ cos @, sin @ sin @, cos 9). (15)

While ¢* describes the motion of the lepton pair as a whole, I}, specifies the motion of the
individual leptons in the decay of the vector boson. To separate the dynamics of vector
boson production from the dynamics of vector boson decay, we decompose the lepton-level
cross section in a sum over the functions A,(8, ¢) of the angles # and ¢ in the Collins-Soper

frame:

do !

d07dydgtd D T(Q% Y, q1) A0, ). (16)

In this equation, d) = dcos 8 dp denotes an element of the solid angle in the Collins-Soper
frame. *T(Q% y, ¢) is the structure function corresponding to the angular function A4,(, ¢).
For an arbitrary chirality of the electroweak couplings, VBP at O(as) receives contributions

from six angular functions A,(6, p):"

Ay =14cos’0; Ay = =(1 —3cos’0);

1
2
1
Ay =sin26cosp; Ay = 5 sin? f cos 2¢;

Az =2cosf; Ay =sinbcosep. (17)

The angular function A_1(0, ) is also sometimes denoted as Lo(6,¢) (see, for instance,
Ref. [50]). It will be shown below that the structure functions ~*7, °T, T, and *T are
generated by the vector part of the electroweak current. On the other hand, the structure
functions 37" and *T" are generated by the axial part of the electroweak current. This feature
leads to the following important consequence. When the cross section is integrated over the
complete solid angle © of the lepton decay (as, e.g., in the calculation of a boson-level cross
section), all angular functions except A_; are integrated out. The resulting cross section
is sensitive only to the vector part of the electroweak current, so that, for instance, the W
boson cross section can be straightforwardly derived from the Drell-Yan pair cross section.

On the other hand, if one is interested in the angular distributions of the final-state leptons,

L At O(a%), there will be additional contributions to the longitudinally polarized cross section, which are
proportional to sin 26 sin ¢ and sin® 26 sin ¢ [65]. These contributions lead to non-vanishing single-spin
asymmetries at gp # 0 in the lepton distributions in the parity-conserving case [65-67]. Such contributions,

however, do not appear at the order O(ag) discussed here.



the axial part of the electroweak current cannot be ignored. In that case, additional care
is needed in the calculation of the parity-violating structure functions *T" and *T', which
are affected by the ~5 matrices from both the spin projection operators and electroweak

couplings.

B. Polarized cross sections

We now introduce the special notations that will allow us to write the cross sections for
arbitrary proton polarizations in a compact form. Let the polarized protons A and B have
helicities h4 and hp, respectively. The allowed values are +1 for the right-handed helicities
and —1 for the left-handed helicities. The cross section for this combination of the helicities

haks  For brevity, the superscripts of o"4"8 will only show the signs of the

is denoted as o
helicities; that is, otV *! = gtt, gtVhs = o1h5  etc.
The following combinations of the helicity cross sections will be called “the cross sections

that are unpolarized (U) or polarized (P) on the side of the proton A™

O-(UJLB) = 0—+hB_|_0-_hB

: (18)

Php) — o, (19)

0'( = 0

Similarly, “the cross sections that are unpolarized (polarized) on the side of the of the proton

B” are
ohal) = ghat 4 Gha= (20)
and
ohaP) = ghat _ gha= (21)
respectively.
Next, we introduce the unpolarized, single-spin, and double-spin cross sections o("'),
oPU) and oPP).
T 1
wuy _ * hahg.
o =7 Z o AB: (22)
hahp=*1
1
(PU) — * hahp.
o =7 Z hyoAB, (23)
hahp=+1
1
(pP) _ L hah
a = 4 Z hAhBO' ANB (24)
hahp=*1



The normalization factor 1/4 in (22-24) corresponds to the number of the allowed helicity

combinations for the initial-state massless hadrons. The single-spin cross-section (V)

in Eq. (23) corresponds to the polarized beam A and unpolarized beam B. The fourth

independent linear combination of the helicity cross-sections, the single-spin cross-section

oU:P) can be obtained from the single-spin cross-section o) by interchanging the indices

of the proton beams, A «+» B. At O(as), the single-spin cross section (23) is non-zero only

if VBP violates parity with respect to the spatial reflection. In other popular (but less

uniform) notations, ¢("'V), ¢(PU) "and ¢(PP) are denoted as o, Ao, and Apro, respectively.

Hence, the conventional single- and double-spin asymmetries are constructed as

#(PU)
AL = O—(U,U)’ (25)
| 5 (P.P)
LL — O'(U’U)7 (26)

where the definition for the single-spin asymmetry Ay does not include an additional minus
sign. This choice leads to the negative values of Ay for the left-handed interactions of
fermions at the Born level, and it is the same as the definition in Refs. [35, 36].

The QCD factorization expresses the hadron-level cross sections UZ%}LB in terms of the

h hb(

“hard” parton-level cross sections 77" (pr) and parton distribution functions:

ohge = Z > /dfa / 465" (05 fo s (Eos ) oo (G i) (27)

- hayhb
a,b= G u s d yeun

Here fi,/n, (&, pr) denotes a helicity-dependent parton distribution function (PDF), i.e
the probability of finding a parton a with the momentum p# = £,p/; and helicity &, in a

hahb(

hadron A with the momentum p’; and helicity k4. The parton-level cross section & UF) is

separated from the PDFs f, /5, (&1, ) at a factorization scale pr, which in our calculation
is assumed to coincide with the QCD renormalization scale.

Since the strong interactions conserve parity, only two linear combinations of the helicity-
dependent PDFs fi,/n, (&, pr) are independent. These combinations will be called the
unpolarized and polarized PDFs, respectively:

PN Cwnr) = Fapalaornir) + Fopp(Carir) = Fry(Earir) + = (Earpir), (28)
fsz)(fa”uF) = f+/+(£a7MF) - f—/+(£a7/~LF) = _f+/—(§a7/~LF) + f—/—(faaﬁLF)- (29)

In common notations, a(ﬂ(fa,,uF) = fuya(&a, pir), and fsi)l(fa,gp) = Afuja(&a, pir). When

written in terms of the unpolarized and polarized cross sections, the factorization formula

10



Table I: The couplings of the electroweak vector bosons V' to the fermions. The left couplings
are fr,, g1, and the right couplings are fr, gr; see Eqgs. (31) and (32) for their definition. ¢ is the
electroweak coupling, agas (1) is the running fine structure constant, and s,, = sin 8,, (¢, = cos8,,)

is the sine (cosine) of the weak mixing angle. Q¢ is the fractional charge of the fermions (Q, = 2/3,

Qqs = —-1/3,Q, =0, Q.- = —1). T5 is the eigenvalue of the weak isospin for the fermion
(Ty =Ty =1/2,T¢ =T§ = —1/2).

4 fr. 91 IR, 9r

v S Arapm (i) % imapm ()

W g/(2v?2) 0

7% (T3 = Qysi)/(2cw)  —gQys,/(2¢w)

(27) sums only over the types of the partons and not over their helicities:

1 1
A = Y [ [ dea T ) £ 6o S ) (30)
- 70 0
ab=G, u, d ,...

where H 4, Hg denote unpolarized or polarized quantities:
HA,B = U, P.

Eq. (30) already illustrates the usefulness of the indices U and P: in one equation, it covers
the factorized representations for all three cases of the unpolarized, single-spin, and double-
spin cross sections. In the following parts of the paper, many expressions will be presented

in this compact and uniform notation.

C. Constant overall factors

The results in this paper cover production of virtual photons, W, and Z bosons. We
use the on-shell scheme and improved Born approximation to parametrize the electroweak
parameters in the considered processes. Let fr, fr and g1, gr be the chiral couplings entering
the leptonic vertex £1£,V and quark vertex ¢;q;V, respectively. Here the quark flavor indices

are j = u,d, s,...and k = u, d, s, ... . The corresponding interaction Lagrangians are expressed

11



as

Lo sy = i, <fL(1 — ) + fr(1 +75)>7 (31)

and

Lonr = (1= 26) + gnl1 +9) Vi (32
respectively. The matrix V;z defines the flavor structure of the ¢;q;V" vertex and is given by

CKM matrix elements for W,
V=V, = , (33)
§ir for ~* 729

The values of the leptonic chiral couplings fr, fr and quark chiral couplings g1, gr to ~*,
W#, and Z° bosons are specified in Table I. They are expressed in terms of the running fine

structure constant aga(p), weak coupling g, and sine of the weak angle sin 6y, calculated

as

gt = WML G (34)
and

sin? Oy = 1 — M2, /M2 (35)

from the input values of the Fermi constant Gz, W boson mass My, and Z° boson mass
Myz. The nice feature about this parametrization of the electroweak couplings is that the
higher-order electroweak radiative corrections in VBP are reduced.

Various constant factors in front of the cross sections will be absorbed in the hadronic

normalization constants ijb and leptonic normalization constants O'ét:

2 -
of = - (gh £ h) Vol ab=Gouad do... (36)
. _ 1 Q'

9% = 392 (Q2 — M2)2 + T2Q* /M2 (/7 £ /7). (37)

In these equations, N, = 3 is the number of colors, My and I'y denote the mass and width of
the vector boson. The indices a and b denote all possible active parton flavors, including the
gluons. When both a and b correspond to the quarks or antiquarks (a,b = u, u, d, d,...),
the matrix element V,; is given by Eq. (33). If one of the indices in V,; corresponds to the

12
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Figure 2: Partonic subprocesses contributing to vector boson production.

gluons, we implicitly assume summation over the quarks or antiquarks on the side of the

gluon:

Vial* = Z Viel®,  Varl® = Z Viel?,  ete. (38)
k=u,d,... j=u,d,...

Unless explicitly stated otherwise, the subscripts 7 and k run over the quark and antiquark

;and k = u,d,...). They should be distinguished from the

flavors, respectively (j = u,d, ...

indices @ and b, which can take the value of any parton flavor (a,b = G, u, u,d,d,...).

IIT. REGULARIZATION OF SINGULARITIES: GENERAL PROCEDURE

The complete set of Feynman diagrams contributing at order O(as) is shown in Fig. 2.
The calculation involves cancellation of ultraviolet singularities in the sum of all virtual
diagrams (Figs. 2b-2d), cancellation of soft singularities in the sum of virtual and real emis-
sion corrections (Figs. 2b-2h), and factorization of collinear singularities in real emission
corrections (Figs. 2e-2h). Those singularities should be first exposed by intermediate regu-
larization, which can be achieved by continuation to n = 4 — 2¢ dimensions. In our case,
this approach involves the necessity to define v5 matrices in n # 4 dimensions. As is well
known, such continuation cannot be mathematically consistent and preserve symmetries of

the classical Lagrangian at the same time. For instance, dimensional regularization (DREG)

13



[62, 68, 69] assumes that the 45 matrix in n > 4 dimensions is a purely four-dimensional

object satisfying the following commutation relations:

{557} = 0, if 1 <45 [y5,74] = 0, if p > 4.

Since the conventional MS scheme utilizes dimensional regularization, we will sometimes
refer to this scheme also as the “DREG factorization scheme”. The DREG choice is math-
ematically consistent [63]. At the same time, it requires to treat vector components in the
(n — 4)-dimensional subspace differently from vector components in the four-dimensional
subspace. The proliferation of extra (n —4)-dimensional terms considerably complicates the
algebra and, more importantly, leads to the violation of chiral symmetry [70] and supersym-
metry [71, 72]. In spin-dependent QCD, this implies non-conservation of the quark helicity
in the process of gluon radiation. Those symmetries have to be restored order by order by
introducing additional counterterms. At order O(as), a well-known example of this feature
is provided by an additional renormalization of the one-loop virtual QCD corrections needed
to restore the Ward identity for the axial electroweak current [70]. Another relevant exam-
ple is given below in the discussion of Eq. (57), where an additional finite renormalization
is performed in DREG in the part associated with the quark-gluon splitting in n # 4 di-
mensions. In both cases, the additional renormalization restores conservation of helicity in
the processes with radiation of soft or collinear partons, which is otherwise violated by the
evanescent (n — 4)-dimensional terms appearing in the DREG calculation.

On the other hand, alternative approaches sacrifice certain features of the full theory, such
as the cyclic permutability in Dirac traces [73] in the anticommuting 5 scheme [74, 75]; or
they are mathematically inconsistent at higher orders of the perturbative expansion. In a
popular alternative to DREG, dimensional reduction (DRED) [59-61], the spinor indices are
kept in four dimensions, while particle momenta are declared to have n < 4 components.
By first evaluating the Dirac traces in four dimensions and then evaluating loop integrals
in n dimensions, one explicitly preserves the quark helicity in the QCD vertex. Since the
DRED method treats all spin components on the same footing, it is also algebraically simpler
than the DREG approach. Nonetheless, contradictions in the DRED framework are present
in the diagrams with more than two loops [76, 77]. These contradictions, which reflect
inconsistency in the decomposition of the 4-dimensional momentum space into 4-dimensional

subspace (associated with the spin indices) and (4 — n)-dimensional subspace (associated
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with the momentum indices), do not occur at lower orders of the perturbative expansion.
Hence, it is justified to use the DRED method at the one-loop order of PQCD.

Due to the large number of 45 matrices to be handled, and to avoid entirely the issue
of additional symmetry-enforcing renormalizations in the DREG scheme, we have chosen
to perform the current one-loop calculation in the DRED framework. In particular, soft or
collinear radiative corrections in DRED automatically preserve the chirality structure of the
electroweak vertex, so that such corrections do not affect the angular distributions of the
leptons observed at the Born level (cf. further discussion in section IV). Once the DRED
results are available, they can be transformed to the MS (DREG) factorization scheme
to make them compatible with the existing phenomenological PDF parametrizations. The
detailed description of this transformation can be found in Refs. [22, 35, 60, 61, 78|, and
we refer the reader to those papers for more information. In the following, we will outline
only those aspects of this method that are relevant to the derivation of the resummed cross
sections.

We start by calculating the parton-level cross sections

A

a'd’

dQ?dydqg2dQ ~ 45 (47 )

S[E+1+a— QY Hul™. (39)
In this equation, the (purely four-dimensional) leptonic tensor L* is given by

L = 4{ 72+ 2] (=™ + q*a" — Uylty) +i [12 — 3] e%aumﬁ}, (40)

and the hadronic tensor H,, includes squared matrix elements corresponding to the Feynman
diagrams in Fig. 2. We first evaluate the Dirac traces with the help of the package TRACER
[79] and keeping all particle spins in four dimensions. The projections on the unpolarized
(U) and polarized (P) initial parton states are realized by inserting an appropriate spin

projection operator

1 1
P;U) = 5[, or P;P) =57 (41)

on each incoming quark leg, and

o 1 o ] 3/' /8/ + P " o 0 o
pA) _ 5 {_g e Qw}j or PLAP) — = BV i s (42)

on each incoming gluon leg.

15



We then contract the resulting four-dimensional tensors with n-dimensional particle mo-
menta, neglecting the mismatch between the four- and n-dimensional indices. We find that
the individual virtual diagrams (Figs. 2b-2d) contain ultraviolet singularities, which, how-
ever, cancel in the sum of all virtual diagrams. Furthermore, the real emission contributions
contain the singularities when the unobserved final-state parton is soft or collinear to one
of the incoming hadrons. In the soft and collinear limits the transverse momentum gy ap-
proaches zero. The soft singularities (appearing as the poles proportional to 1/e* and 1/¢)
cancel in the sum of all O(ag) diagrams. The remaining task is to factorize the collinear
singularities according to the factorization scheme that was used to define the hadron-level
PDFs.

It can be shown that the choice of the 5 prescription affects only functions Cglb)(f, b, )
(where H = U or P) in the resummed cross section (see the detailed discussion of these
functions in the next section). The C-functions contain (n — 4)-dimensional parts of the
n-dimensional splitting functions, which are different in the DRED and DREG schemes.
An O(as) n-dimensional splitting function P;ﬁ)n(f) can be calculated in the same way as
the conventional four-dimensional splitting function P;%)(f), except that it also retains the

terms of order O(e). Hence, it contains an additional finite part 5P(%)’6(§), which vanishes

a

as n — 4:

PUI () = PUIE +ePU)e(6); (43)
. H)n H
lim P (¢) = PL(). (44)

The four-dimensional splitting functions Pa(ﬁ)(f) needed for our calculations are

e = —or (F15) (45)
+

1-£
PUAE) = 5 (€ +(1-¢) (46)

in the unpolarized case [80-82], and

e = or (TE5) = o, (47)
+

P
PU(E) = 261 (48)
in the spin-dependent case [82, 83]. In the unfactorized parton-level cross section (39), the

functions P;ﬁ)’n(f), which are implicitly contained in the hadronic tensor H,,, are multiplied
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by the collinear poles 1/¢, i.e., they appear in the terms

asl (#yn as 1 ) as (H)e
_Z5 2 plH), —__2°p — =PV (). 49
271_ c a/b (f) 27_[_ c a/b (5) 27_[_ a/b (f) ( )

The first piece on the right-hand side of Eq. (49) is an O(as) contribution to the parton-level
distribution function fi%)(f, e). Hence, in accordance with the factorization theorem (30) for
the case when A = d’, and B =¥, it is factorized out of the parton-level cross section &,
to obtain the hard section &,m». On the other hand, the second piece in Eq. (49) remains
in the hard part. As a result, the terms Pa%)’a(.f) are included in the O(as/m) coefficients
Ca(fb)[l](f, bu) of the C-functions, as

(H)[1] o 1 m. (H) pb
eie by = %{—fq/q (© - Pyem(5)

19 72 =34y
— Cpé(l —¢)|—= — —+1n?
Cro 5){16 4 ( boCs ﬂ} (50)
and
1 . pby B -
C;@[l](f’b#) = —§Pq(f2 (&) — Pq(fIG)(f) ln<a); 1, =u,u,d,d,.... (51)

The meaning of the constants C4, Cy, and by is discussed in the next section.
Since in the DRED scheme the particle spins are exactly four-dimensional, the (n — 4)-

dimensional parts P{fﬁ)’a(f) of the DRED splitting functions identically vanish:

DRED: PUD“(¢) = 0. (52)

Therefore, in the DRED scheme the C-functions (50) and (51) reduce to

b
DRED: Cf0U(¢, b) = 5ij{_P<H)(§) m(g—)

a/q 0
19 ﬂ_Q 6_3/401
— Cpé(1 =€) | = — — + In? } 53
Pl 5){16 4 n( boCy ﬂ o
pby _ g
chte ) = —PU@ () i = add, (54)

In the DREG scheme, the (n —4)-dimensional parts of the unpolarized [84] and polarized

[85] splitting functions are given by

DREG: PU)*(¢6) = Cr [—(1—§)+%5(1—§)], (55)
PUIe(¢) = € ¢, (56)
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PU)*(¢) = O [3(1 — &)+ %5(1 — &)+ Za(f)}

- cr |-1- 9+ pa -] = PG (57)
PUa(e) = € 1. (58)

In the quark-initiated polarized splitting function P{J(Z)’E(f) (see Eq. (57)), an additional
finite renormalization term z.(§{) = —4CFr(1 — £) was included to restore the quark helicity
conservation in the quark-gluon vertex, in accordance with the existing definition in the

DREG scheme [86-88]. With the help of Eqgs. (50) and (51), the C-functions in the DREG

scheme are found to be
DREG: €)1, by = €)0(¢, byr) =
Cr b

(0]

93 w2 e,
_ CF5(1—§){E_Z—I-1H ( boCs )}}, (59)
1 b
ot by = %5(1 — &) - P m(%‘_o), (60)
and
1 1 b
Cla (€. bu) = 5(1-6) —P;fg(g)m(g‘_o), (61)

To summarize this part, the difference between the DRED and DREG factorization
schemes is contained entirely in the functions Ci%)(f, b, 1) of the resummed cross section. The
form of the scheme-dependent terms in the C-functions is determined by the n-dimensional
splitting functions in each factorization scheme. Hence, to transform the results from the
DRED scheme to the DREG scheme, one simply finds where the DRED (n —4)-dimensional
functions Pa%)’e(f) would appear in the C-functions if they were not identically zero. One

then inserts at those places the DREG functions P;ﬁ)’s(f) given in Eqgs. (55)-(58).
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IV. CROSS SECTIONS

A. Finite-order results

Let us now explicitly present the VBP cross sections, starting from the lowest order (LO)

hadron-level cross section (Fig. 2a):

dgﬁgiAﬂB) Lo, (Ha,Hp) (Ha) (Hg)
dQ*dyd*qrdQ LO - ;5 (qT)jZ; k_z Gﬂ“ (07¢)fj/A (IA"LLF)f’;/B (2B, 1F)

+ (& k‘)} (62)

As discussed in Section II, H4 and Hp can take one of the two values (U or P) corresponding
to the cross section that is unpolarized (or polarized) on the side of the respective initial-state
hadron. The index j runs over the active quark flavors, while k runs over the active antiquark
flavors. The functions G;gA’HB)(Q, ¢) in Eq. (62) are composed of the normalization factors

oif, infc from Eqgs. (36), (37) and angular functions A_1(60,¢) and A3(0,¢) from Eq. (17):

GE%]’U)(G,@) = JjaﬁA_l(H,Lp) + ejfcaé_aﬁAg(Q,go),
G§£7U)(9’ @) = —6]-150'2_0'],_];[4_1(9,99) — O'Z_O';;Ag((g, ©),
PP UU
GE00,0) = ~GT70, ). (63)

The flavor-space tensor ¢;; determines the change of the sign under the interchange of quarks

and antiquarks:

Note that the parity-violating angular function Az = cos § does not contribute if V' couples
to the fermions through the vector current, i.e., if 0, = O = 0. From the last equation (63),
we see that the double-spin parton-level cross section is equal to the unpolarized cross section
with the minus sign. This equality is a direct consequence of the chirality conservation in
the electroweak couplings (31) and (32).

Next, consider the O(ag) virtual corrections shown in Figs. 2b-2d. In n = 4 — 2¢ dimen-
sions, the contribution of the virtual corrections is given by the LO cross section scaled by
a function ®(ag,¢):
dUgP]IgA7HB) B dUﬁ{]IgA’HB)

Ay e d®| =) Ggray aiqran | "

O(ag),virtual
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where

drpg 1 2 3
o Cr— - — = 2844, ]). 66
s =0e5 () g (52 -v+s) o
The finite part of ®(«g,e) depends on the prescription for the 45 matrices in n # 4 dimen-

sions. In the DRED scheme ¢, = 1, while in the DREG scheme 4, = 0.

The remaining contributions are from the O(as) real emission processes shown in Figs. 2e-
2h. The real emission cross section can be expressed in terms of the PDFs fiﬁf)(fa,pp),

angular functions A,(, ¢), and parton-level structure functions *7T,,( H 4, Hg, 3,1, u):

daﬁﬁf H5) as dfb Csu(3) ~a
494 _ )55 +T+17 — O
dQ?*dy dg3dQ o 2m2s Z / 0 s (F+i+i—0Q)
O(ag),real a,b=Gu,u,d
X a/A (‘fav/“LF)fb/B £b7ILLF Z gpilf o) PT (HAvHBagaaa) AP((g?S‘Q) (67)
p=—1

In Eq. (67), gég?’HB) are the spin-dependent combinations of the constant factors Jf and

o defined in Egs. (36) and (37):

wuy _ ey ) oFod, for p=—1,0,1,2
gl)vflb - gp,ab — o
T¢ Oap for p=3,4;
+ - f— .
piy ) ooy for p=-1,0,1,2;
g/(),ab ) — _ 4 (68)
Op Oap for p = 3,4

Csu(3) is a color group factor, which is equal to Cr = (N? — 1)/(2N,) = 4/3 in the annihi-
lation subprocess q¢ — GV and Tr = 1/2 in Compton scattering subprocess (6) G—q V.
The structure functions ?Ty,(Ha, HB,g,aﬂ) in the unpolarized case (Hy = Hg = U) can
be found in Ref [50]. Our new result is the calculation of these functions in the polarized
case (Hy = P and/or Hg = P). The explicit expressions for these functions are given in
the appendix.

For any polarization of the proton beams, the structure functions ~'7,;(H 4, HB,Q,%\,Q)
and *T,5(H 4, Hg,5,1, u) have a singularity at ¢r = 0, which corresponds to the emission of
soft or collinear real partons. The leading-logarithmic part of the O(ag) finite-order cross
section (asymptotic piece) at small, but non-zero ¢r (0 < gr € Q) is

ngJIBAHB) las 1 (Ha,Hp)
dQ2dy dgZdQ S rog 2 2 \GTT0w)

O(as),q7—0 T j=ud,.. k=u,d,...




X

{[P'(ZA) @ fg(LHA)](:EAv MF)f;SIB )(Q;Bv MF)
+ fﬁj><xA,anf;M @ 1) (@, pnr)

— (CFln + OF)]C]/A)(l'Aa,LLF)fk/B (B, 1r)

QZ
+UH@} (69)

Here the functions G;IT;IA’HB) (0,¢) are the same as in Eq. (63), and P;%A)(f) are the one-loop
splitting functions in Egs. (45)-(48). The convolution of two functions f,/(z) and gs.() is

defined by

fapp @ gpyel(z) = Z / —fa /b gb/c (£). (70)

b=Gu,i,d,d,.
This definition includes summation over the repeating parton index b.

In accordance with the Kinoshita-Lee-Nauenberg theorem, the soft singularity, which
appears in the cross section (69) at gr = 0, is canceled when this cross section is added to
the O(as) virtual contribution (65). Furthermore, the collinear singularities are absorbed
in the parton distributions. The complete small-gr cross section (including both real and

virtual corrections) is given by

1o 1o
dQ%dy dg2d$) dQ%dy dg2d$)
Q v air O(as),qr—0 realdvirt. Q v O(as),ar—0 +.qar
1 Ha,H H Hp
‘|‘g52 (qT) {Gg‘kA B)(97S‘9) [f;/AA)(anﬂF)flg/B )(:EB?/’[’F)
_|_% { (Ha ® f _ ('LL_F> P(HA) ®f(HA):| (TA ,LLF)f( )(CUB NF)
T J/a af Q ila alA LAy k/B >
7]
155 sy [P @ g~ n (5)Pk/b ® fir }(xB,uF)H

+UHM} (71)

Here the “+” prescription with respect to qr (pointed in the direction of the azimuthal angle

@) is defined as

/wmmmwmﬂ&nzAMMAWMMﬂ—ﬂMAmwm%. (72

It acts on the asymptotic piece (69).

21



(Ha),[1]

The functions Ca/p are the finite residuals from the cancellation of soft singularities

and factorization of collinear singularities. In the DREG scheme they are

2

DREG: ¢{,)M(¢) = M) = 6,Cr [%(1 — &) - (2 - %) 3(1 —6)} ; (73)
) = S0 - 6 (74)

1 . _
cz(;j();[l](g) = 5(1 _5)7 )= u7u7d7 9

)
~—

-3

X
SN—

In the DRED scheme, these functions are

1 1 7w
DRED: c%)[ ](f) = cZ(.Z)[ ](f) = —0;;Cr [Z — Z} 51 =¢); (76)
g (€)= eijg (€)= 0. (77)

It can be seen from Eqgs. (69) and (71) that the dependence on the the lepton decay angles
f and ¢ in the small-gr limit is contained entirely in the overall factor G (Ha, HB)(G, ®), which
is exactly the same as in the leading-order cross section (62). Such factorization of the
dependence on # and ¢ from the hadronic dynamics reflects preservation of the chirality
structure of the electroweak vertex as gy — 0, i.e., the Born-level angular distributions of
the leptons are not affected by the soft or collinear parton radiation. This feature, in its

turn, automatically follows from the use of the DRED scheme in our calculation.

B. Resummation of large logarithms

The O(ag) cross section (71) is given in terms of generalized functions and can be used
to predict the integrated rate. For instance, the integrated rate over the region 0 < ¢3 < PZ

(where Pr is small enough for the approximation (69) to be valid) is

/ dq% - ézk{Gﬁ’;’A’H”w,w
i
K1 — ( Cp In? g_j _ §OF1n %)) 10 g 1) [ (5, 1)
_%1 <P2> ({Pj/a ®fa }(anNF)fé/B)(:I:B,,LLF)
‘|‘f;ﬁA)(l’A7/~LF) {Pk/b ®fb }(l’B’MF)>

(8
+?S<{ (Hal ®fa/A }(fA,MF)féfI;)(xB,MF)‘F
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I o) [ & 500 o) )| + G (78)

However, Eq. (71) cannot be used yet on its own to describe the distribution over ¢r. To
obtain a meaningful distribution in the small-gr region, we proceed further and identify
Eq. (71) as an O(ag) part in the perturbative expansion of the small-gr resummed cross

section [47], given by

earb WA by 0) + VEATD(Q gy, Q). (79)

do&%A’HB) _ l / b
dQ?*dydq3.dQ s ) (2m)?

In Eq. (79), the first term on the right-hand side dominates when ¢y — 0. It is expressed
as a Fourier-Bessel transform of a form factor W (Ha.Hz) (@, b,y,9) in the space of the impact

parameter b (conjugate to qr):

Wi @by )= >N {Gﬁ’;’ D (0, ) exp (~STAH)(Q by, C1, ()

J=u,d,... k=1u,d,...
01 03 Ol 03
e 1] G 0 8 et S

+(j k)]. (80)

Here Cy and C; are constants of order unity that determine the momentum scales sepa-
rating the exponential soft factor e=® from the convolutions {Ci%) ® féﬁl)} (2,b,C1/Cy, p).
The constant C3 specifies the factorization scale p, which separates the function
Ci%)(x,b, C1/Cy, ;o = C3/b) from the PDF fiil)(x,,u = (U3/b) in the convolution [C(%) ®
féﬁ)} (2,b,C1/Cy,pp = C5/b). For definiteness, the form factor WHA Hp) (@,b,y,Q) in
Eq. (80) is written in its common (and, perhaps, the simplest) form proposed in Ref. [47].
Namely, the perturbative parts of /Wl(lgA’HB)(Q, b,y, Q) are evaluated at a variable

b
by=——— (81)
where the parameter b,, is of order 1 GeV™!. The variable b, 1is introduced

to separate short- and long-distance dynamics in WHA Hz) (@,b,y,). Furthermore,
/W/}(XZA’HB)(Q, b,y, ) is normalized to the Born-level hard contribution (included in the nor-
malization factor G;IfjA’HB)(H,go)), while higher-order corrections to the hard part are ab-

sorbed in the functions [C® f] and e~°. Recently discussed alternatives to this representation

can be found in Refs. [55, 56, 89, 90].
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In this representation, the soft (Sudakov) factor SU4H8) (b Q. y) consists of the pertur-
bative part Sp(Q,b, Cy,Cy) and the nonperturbative part S](VP;A’HB)(Q, b,y):

SEH(Q,b,y) = Sp(Qbe, C1, C) + SELD(Q,b,y), (82)

where

C’SQ2 dﬁQ 022Q2

Sp(Q,b,Cy,C) :/ 2 <A<as(ﬁ),01> In =23 —|—B<oz5(ﬁ),01,02>>. (83)

cz2/pz M

The functions A and B in Sp can be calculated in perturbation theory, as

.A(ozs(ﬂ),cl) = f: (ﬁ)mf([m](cl)7 (84)

e\ w
B(as(ﬁ), C, 02) - mi:l (O‘iﬁ)yB[m](Ol, ). (85)
The coefficients in these expansions are known up to order O(a%). Explicitly, they are

Al = Cp, (86)
AP = Cp K% E g) N, - %NF — Boln (g—i” : (87)
B — 9C1n (e;zgfl> (88)
BA — OF{OF (%2 - % - 34(3)) N (%WZ - % + ;g(g)>

1 17 67 7T2 5 Czbo
Np|——n*+— )= |N.|—=—-—+)—=Ng|l
* F( 18" +24> { “(18 6) 9 F} n( C )
+ In? b—o —1n?C —§lnC (89)
0 C 275 2| ¢

In these equations, N is the number of active quark flavors, 8o = (11N, — 2Ng) /6, ((3) ~
1.202 is the Riemann zeta function, and by = 2¢77% is a function of the Euler constant vz =
0.577. In the present work, we have re-derived the coefficients A, Bl and they agree with
the earlier published results [19, 30]. The coefficient A% for the spin-dependent collisions was
discussed earlier in [19]; since it comes from the leading-logarithmic contributions generated

by the soft gluons, it is expected to be independent of spin.?

2 The spin independence of soft contributions is evident from the Feynman rules for the soft eikonal ap-

proximation; see, for instance, Ref. [45].
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We have also determined the coefficient B in Eq. (89) by employing the method of
Refs. [89-91] and order-by-order independence of the full form factor W}(XgA’HB) from the
choice of the scales (/b and C3Q. By utilizing the independence on €y and s, we find

b b? 2
BA =B 4 3, (AL” In? (Fi) + BMn ¢, — AN n? cg) — AP ( %€2> , (90)
1

where the subscript ”¢” denotes the coefficients in Eqs. (86)-(89) evaluated for the “canonical”

variables C; = by and C, = 1:

3
"41[21] = CF7 B([cl] = _§CF7 (91)
67 w2 5
Bl = CpN. (= — — | N.— =CgN 2
AP = N, (5 - ) V- S, 92
and

2 3 11 193 3 1 17

To derive the last expression, we use the generalization of the relationship from [89, 90/, i.e.,

2, [l 2
+ V OFTF
gl — 74 T8 Yag , 94
: Tl (94)

This equation relates the canonical value of the coefficient Bl to the finite contribution
Vyi/4 = Cp(n? — 8)/4 from the O(as) virtual correction ®(as,e) and coefficients 'yg], ’yg]
of the §(1 — z) terms in the two-loop gq splitting functions on the sides of the hadrons A
and B, respectively. Due to the helicity conservation in the quark-gluon vertex for massless

quarks, the §(1 — x) terms are the same in the unpolarized and polarized case, so that
2 2
2o (3T poen. (S M Caes)) - Lo (L4 ) 05
2 == 0 (3= Toc) + o, (5 + - 300 ) - g0ene (5425 )09
Hence, similarly to AP, the coefficient Bl in Eq. (83) is also independent of the spin of the
incoming quarks.

Alternatively, the spin independence of the coefficient B? can be shown in the anticom-
muting v5 or the DRED schemes by analyzing the spin structure of the O(a%) cut diagrams
with the radiation of one or two gluons. The coefficient B is generated by the diagrams
that reduce to the Born level diagram in the limit when the unobserved radiated partons
are soft. All such cut diagrams have only one closed fermion line and can be reduced to

the corresponding unpolarized diagram (up to an overall sign) by commutation of the ~s
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matrices from the fermion spin projectors along the fermion line. Therefore, they lead to
the same expression for B as in the unpolarized case.> To summarize, our study confirms
the spin independence of all Sudakov coefficients in Eqs. (86)-(89), which agree with their
values known from the unpolarized calculations [47, 48, 92, 93].
Similarly to the perturbative Sudakov factor, the functions C (f b, 1) can be calculated
order by order in PQCD:
(&b, ) Zc/b <M>m H=U,P. (96)

™

The coefficients CU)l™ are known up to order O(as). The lowest-order coefficients are

trivial:
c;;gw] _ cg/fgw _ cg;gy] 0w (08

All non-zero O(as) coefficients in the DRED and DREG schemes are given by Eqgs. (53),(54),
and (59)-(61). As discussed in Section III, the coefficients C](Z)[l](f,b/l) depend on the
prescription for continuation of the v5 matrix to n # 4 dimensions, and this dependence
is entirely determined by the form of the n-dimensional splitting functions P;Z)’E(f) in the
DRED and DREG schemes given in Eqgs. (52) and (55)-(58). The above equations explicitly
demonstrate the factorization of the collinear contributions associated with the hadron A
from the collinear contributions associated with the hadron B. That is, the C-function
associated with the hadron A depends only on the polarization of A and does not depend
on the polarization of the hadron B; and vice versa. Such factorization completely agrees
with the general structure of the resummed cross section, in which the part associated with
the collinear radiation along the beam A is independent from the collinear radiation along
the beam B.

Our results for the functions CZ.(/UC;(E, b, 1) and CZ.(/PC;(S, b, 1) differ from the corresponding

expressions in the earlier publications [19] and [30]. Firstly, in accordance with the factor-

ization of collinear contributions, our expression for the unpolarized function Ci(/lg(f,b,,u)

3 We thank W. Vogelsang for pointing out the alternative proof of the spin independence of the coeffi-
cient Bl
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is the same in the unpolarized and single-spin processes. On the other hand, Ref. [30] has
found CZ(/[](;[I](E, b, ;1) in single-spin W boson production to be

1 b
Cla™E ) g, 10 = 7~ FPua©(5): (99)

so that the above factorization does not hold.* This difference may be caused by the choice
of the normalization of the ¢")GW) cross section in Ref. [30]. Namely, the same result as
in Eq. (99) would be obtained if the ¢!")G(") cross section in n = 4 — 2 dimensions were
averaged over two polarizations of the initial gluon and not over 2(1 — ¢) polarizations, as
it is required for an unpolarized initial-state gluon in the M S scheme.

Secondly, Refs. [19, 30] have used a different factorization scheme for the polarized
gluon-initiated functions CZ.(/]DCg(f,b,M). In that scheme, CZ/G (f,b,u) is identically zero for

the “canonical” scale u = by/b:

e (e, by = —Pe (L), (100)

Refs. [19, 30]
so that Cz(fé[l](f, bu) =0 if u = by/b. To obtain such C—function, the O(as) quark distribu-
tion in the gluon has to be

o 1
fq(f‘)?(f’”)‘ﬁefs. [19,30] 2;: ( Pq(/f;(f) 1= 5) +0(a3), (101)

which is different from f /G(f, ) = —(Ozs/QTf‘E)P( (€) + O(a%) in the M S scheme. While

7/G
this definition is not contradictory, it is not the same as the convention of the M S scheme
[86-88]. Consequently, the functions Cl(yg[l](f,bu) and Clgfcg[l](f,bp) found in Refs. [19, 30|
cannot be combined with the M—S parton distributions. Instead, a calculation in the M S
scheme must use the functions C (f bu) presented in Eqs. (59)-(61).

The remaining part of the form—factor Wf(lgA Hxz) (@,b,y,9) to be discussed is the nonper-
turbative Sudakov function Syp(b, Q) (see Eq. (82)), which determines the behavior of this
form factor at b > 1 GeV™'. While at the present stage it is not possible to calculate this
nonperturbative function from the first principles, its phenomenological parametrization can

be found from the global analysis of VBP data. At the time of writing of this paper, the

latest parametrization of Syp(b, @) in the b, approach in the unpolarized case is available in

4 Note that Refs. [19, 30] expand in the series of (as/27), so that the O(as) coefficients in those papers

are two times larger than the O(ag/7) coefficients presented here.
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Ref. [58]. Finally, we comment on the finite term, Y(Q, gr,y,Q), in Eq. (79). It is given by
the difference between the O(as) finite-order cross section and its singular part (asymptotic
piece) that is already included in the W term:

dofatin) dofatn)

) o = _99uB" " 4B : 102
AB (Q7QT7y7 ) dQQdydq%dQ o) dQ?dy dq%dﬂ ) ( 0 )
ag

O(as),qr—0

The O(as) perturbative cross section for non-zero ¢r is given in Eq. (67), while the asymp-
totic piece is given in Eq. (69). This term is regular and, in fact, vanishes as ¢r — 0, so
that the distribution (79) in the small-g7 region is approximated well by the W term. At
gr 2 @, the cross section (79) reduces to the finite-order cross section (67), up to higher-

order corrections.

V. SUMMARY

In this paper, we presented fully differential distributions for production and decay of
electroweak bosons (7*, W%, Z°) in the collisions of proton beams of arbitrary longitudinal
polarizations. One of our new results is the complete set of spin-dependent structure func-
tions of order O(ag) for the angular distributions of leptons from the vector boson decay.
This finite-order cross section is combined with the all-order sum of leading logarithms in
the small transverse momentum region using the Collins-Soper-Sterman (impact parameter)
resummation method [47]. The perturbative coefficients are presented at the one-loop level,
with the perturbative Sudakov factor presented at the two-loop level. For the first time, we
have explicitly demonstrated the universality of QCD factorization in the perturbative part
of the spin-dependent resummed cross section. Namely, the soft factor is independent of
spin, while the form of the “b-dependent PDFs” [C,/y @ fi/4](, b, 1) is entirely determined
by the type and polarization of the corresponding initial-state hadron, and it is independent
from the type and polarization of the other initial-state hadron. We have also demonstrated
the spin independence of the O(a%) coefficient B(?) based on the method of Refs. [89, 90],
and, alternatively, on the analysis of the spin structure of O(a%) Feynman diagrams. The
spin-dependent cross sections were presented in the dimensional regularization [62, 63] and
dimensional reduction [59] schemes.

The effects of soft parton radiation and vector boson decay considered here must be

understood well in order to correctly describe production of Drell-Yan pairs and massive
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electroweak bosons at the Relativistic Heavy Ion Collider. In the accompanying paper [41],
we use these results to study measurements of sea quark parton distributions in weak boson

production with longitudinally polarized proton beams.
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APPENDIX: THE STRUCTURE FUNCTIONS FOR THE FINITE-ORDER
CROSS SECTION

~

This appendix collects explicit expressions for the structure functions *T,,(H4, Hp, 3,1, 1)
that enter the O(ag) real emission cross section in Eq. (67). Egs. (104-110) show the
independent structure functions *7T,;, *T¢,, , and, in the case of the single-spin cross section,
’T,c. The end of the appendix includes the rules to derive the rest of nonzero structure

functions. As a convenient notation, the mathematical expressions will contain the functions

Tyi(a,b), defined as

rue = (@ -0+ (@ -)°) (103

The independent structure functions in the unpolarized cross section are as follows [50].

In the ¢ (p,)q¥)(py) subprocess,

- T-I—(aa%\)
1Tq§ = 2 )
dr
T—I—(ﬂv%\)
OTqri = 2Tqrj = T%v
v QT(@D)
99 M2 9
qr T
ST - Q T+(a7 t)
99 M 2 Y
T dqr
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T_(a,1)
ap 97\ 104
s MT(]T ( )

In the G (p, )¢ (py) subprocess,

T.(3,9)7

_1T _ =
c a5 S
T (—3,a)1
OTGq = 2CZqu = M% =
~ ~2 T
g _ _QT-@D+(Q )]
! qr M3 s
s _ Q@ Tu(@8) ~20(Q* D)
q MT q% 3\7
T.(3,3) +2(Q*-35)51
AT, = -1\ -~ 105
Gq MTqT g ( )

Next, the independent structure functions in the single-spin cross section are as follows.

In the ¢'F)(p,)g¥) (py) subprocess,

_ T+(a7 t)
qufj - 2 )
qr
T+(a7 t)
OTQQ - Qqu = M% )
IT B _QT— ({Z?%\)
" qgr Mi
ST B Q T+(a7 t)
9 MT q% ’
T_(a,1)
ap = _ol=lhl) 106
99 MTqT ( )

T.(1,9) @
—quG +(2 )7\7
ar S
T, (1, —%) @
0 2 +1%
TqG = TqG - M% ?7
S oL X () R )
q qr M% 3\7
vy _ @ TEH 2@ -9
q MT q% 3\7
105 + 20"~ 537
4TqG - _9 +( 7S)+ (Q S)Si' (107)
Mrqr s
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In the G®)(p,)g'Y) (py)subprocess,

T (3,37
“ip o VT2
c qp 8
T (@,-3)7
0 27 9
Ty = “Tgy = _T%?
g QT@D - (@ w2
Y oqr M3 s
v QT3 £ (@ )T
q MT q% 3\7
T (3,3) - 25(Q* — 9) T
Te, = 2 ’ —. 108
“i Mrqr s (108)

Finally, the independent structure functions in the double-spin cross section are as follows.

In the ¢ (p,)g") (py) subprocess,

_ T+(a7 t)
1qui = T3
ar
T, (3,1
OT - 2T o +\ Wy 7
99 99 ]\4,121
IT o _QT— (ﬂ, t)
99 M2 )
qr T
3T o Q T+(a7 t)
9 MT q% I
T_(a,1)
i, = —2—17 109
99 MTqT ( )

In the GP)(p,)g'") (py) subprocess,

T_(5,q0) 1
_ITGq — %7\7
qr S
T_(—3,u) t
0 2 )
Tie = Ty = _T%?
g~ QT-@D (@ —a)P]
! qr M3 5
g, QT(@.9)+2(Q -]
q MT q% 3\7
T_(u,s) — 25(@2 —3) t
Moo = =2 ’ —. 110
“i Mrqr s (110)

All other non-zero structure functions can be obtained from Eqs. (104-110) by applying

the following transformation rules:
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p=-1,01,2 p =34

pTciq = iquri priq = :Fquri
Tie = Ty "Tia = F'Tia
"Taq = +'Tg, "Tas = F'1a,

The upper sign in these rules should be used to obtain the structure functions in the
unpolarized and double-spin cross sections. The lower sign should be used to obtain the
structure functions in the single-spin cross section. An additional rule should be applied to
the unpolarized and double-spin cross sections in order to relate the structure functions in

the gG and Gg subprocesses:
p=-—1,0,2,4 p=13

~ ~

Tia = pTGq(a < ) Tia = _pTGq(a < )
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