

Iouri Belikov

Outline

- TPC simulations
- Kalman filter: Advantages and shortcomings
- Cluster finding
- Track finding

CERN/BNL

- Definition of the tracking efficiency
- Present results & problems

TPC simulations (Marek Kowalski & Marian Ivanov)

Geometrical features:

- $R_{in}/R_{out} \approx 87/252 \text{ cm}, \ L \approx 250 \text{ cm}$
- sector opening angle 20°
- pad shapes 75×40 and 100×60 mm²

Phyisical processes:

- all GEANT processes
- diffusion
- gas gain fluctuations
- $E \times B$ effect
- responses in time and pad directions
- noise
- crosstalk

CERN/BNL

Kalman filter: Advantages and shortcomings

Advantages:

- simultaneous track recognition and reconstruction
- matrices not more than 5×5
- natural way to take into account multiple scattering
- possibility to take into account mean energy losses (fluctuations as well ?)
- e cient way to match tracks between di erent detectors

CERN/BNL

Shortcomings:

- track "seeds" have to be provided
- clusters have to be reconstructed before tracking
- "local" nature of the method (what if there are many clusters inside the "road" ?)
- sensitivity to p.d.f. of measured space points

Iouri Belikov

(CERN)

CERN

Cluster finding

Occupancy: $10 \div 40 \%$

- search for groups of adjacent digits with signals above the zero suppression level (preclusters)
- for each precluster search for all its local maxima
- cut all the local maxima at the level of the nearest saddle point
- calculate center of gravity for each group of these cut digits (clusters)
- errors are assumed to be proportional to clusters' dispersions

CERN/BNL

CERN

Track finding

Track parametrisation:

CERN/BNL

"State vector":

where $\eta \equiv C x_0$

$$y(x) = y_0 - \frac{1}{C} \overline{1 - (Cx - \eta)^2}$$
$$z(x) = z_0 - \frac{\tan \lambda}{C} \sin^{-1}(Cx - \eta)$$

Seed finding:

- for each pair (x_1, y_1, z_1) (x_2, y_2, z_2) and primary vertex $(x_v, y_v, z_v) \Rightarrow$ initial approximation of the "state vector".
- for each (y_1, z_1) (y_2, z_2) and the diameter of the beam pipe \Rightarrow initial approximation of the covariance matrix.

 $\mathbf{x}^T = (y, z, C, \tan \lambda, \eta),$

Track propagation and assignment of clusters are done in a standard way. Multiple scattering and mean energy losses are taken into account during the track propagation.

Iouri Belikov

Joint ALICE-STAR Meeting (8 April, 2000)

Definition of the tracking efficiency

"Found good" track:

- number of assigned clusters larger than 40 % of the total number of pad rows
- not more than 10 % of clusters are assigned incorrectly
- at least half of the innermost 10 % of clusters assigned correctly

"Generated good" track:

- at least one digit on at least 40 % of pad rows
- at least one digit on the pad rows chosen for the seed-finding procedure

$$\epsilon_{\text{good}} = \frac{N_{\text{found good}}}{N_{\text{generated good}}}$$

$$\epsilon_{\text{fake}} = \frac{N_{\text{found fake}}}{N_{\text{generated good}}}$$
Iouri Belikov
Joint ALICE-STAR Meeting (8 April, 2000)

"Found fake" track:

• a track with the su cient number, but incorrect assignment, of clusters

Present results & problems

$dN_{\rm ch}/dy$	$\epsilon_{\rm good}(\epsilon_{\rm fake})$, %	$p_{ m t}/p_{ m t}$ (5 GeV/c), %	dE/dx (max. digit), %		
1500	98 (0)	1.6 (5.1)	7.8 (7.0)		
8500	93 (3)	2.0 (8.5, 4.5*)	17.3 (9.0)		
* if the primary vertex is included in fit					

Computing resources per one simulated TPC event $(dN_{ch}/dy = 8300)$

	CPU time, h**	RAM, Mb	Disk space, Mb
hit generation	8.0	400	2500 (200 ?)
digitization	13.5	750	400
reconstruction	0.5	550	5

** on 25 SpecINT95 machine

