
STAR

Event data storage and management in STAR

V. Perevoztchikov
Brookhaven National Laboratory,USA

Victor Perevoztchikov, BNL ALICE/STARSTAR

Introduction

 The Solenoidal Tracker At RHIC (STAR) is a large acceptance collider
detector. STAR is designed to measure the momentum and identify several
thousands of particles per event. About 300 Terabytes of data will be
generated each year. To handle it, sophisticated data structure was
developed. The main features are:

u All the persistent data is organized as a set of named components;
u All data objects are persistent. No separation between transient and

persistent data structures;
u Persistence is based on ROOT I/O;
u Automatic schema evolution is implemented. It was developed on

the base of non automatic ROOT schema evolution ;
u The system is working.

Victor Perevoztchikov, BNL ALICE/STARSTAR

STAR I/O components

 The STAR event is large and complex. Different parts of it are created in
different processing stages. To ease management and increase storage
flexibility we decided to split the event into more simple parts - named

components
u Each component lives in a separate file;
u Each offline stage reads existing components and creates new ones,

without modifying or extending old files;
u The size of a full event in STAR is very big (~15-20MB) .

Separation of components allows to keep at least 50 events in one
file, with the 1GB limit per a file;

u It is easy to add a new offline stage, without reorganization of
existing data;

u It is easy to reprocess events from any stage;Any application can
read only needed files;

u The most frequently used files/components can reside on disks, the
others on tape.

Victor Perevoztchikov, BNL ALICE/STARSTAR

STAR I/O components (continued)

u One component consists of a set of keyed records. These keys are
based on Run/Event numbers. This allows to construct one full
event, reading several files in parallel.

u Records, in turn, contain a tree of named datasets;
u The tree structure is not predefined. Addition or removal the tree

does not affect the behaviour of modules which do not use them.
All components are born equal. But some of them are more equal than
others. They contain only one record per file.

u hist component - contains named tree of histograms, filled by
different modules during processing;

u runco component - contains named tree of Run/Control
parameters used in reconstruction;

u tagdb component - contains named tree of physical tags, defined
in different modules. This component is used to fill the STAR
TagDB

Victor Perevoztchikov, BNL ALICE/STARSTAR

STAR I/O components (continued)

u A group of files/components with the same set of events organizes a
“family” of files.

u Each file, in addition to its component, keeps information about the
all other components existing at that time. Thus, the last file in
production chain keeps information about the all produced
components and files.

u It is enough to open any file and select needed component names.
All the needed files from the ''family'' will be opened automatically.

Such component organization looks rather complicated, but for a huge
event size and a complex processing chain, it allows to split complex event
into relatively simple parts to simplify management.
In an environment of larger numbers of smaller events a simpler approach
could be appropriate.

Victor Perevoztchikov, BNL ALICE/STARSTAR

ROOT I/O in STAR

ROOT I/O was chosen as the main mechanism of persistence in
STAR. The main power of ROOT I/O is :

u No artificial separation between transient and persistent data model.
u User is free to develop complex data objects without concern for the

I/O implementation, and -- importantly -- without building
dependence on the used I/O scheme;

u Automatic creation of a streamer method for user defined classes,
which provides persistence of the object;

u For special, more complicated, objects, user still can write this
streamer method himself.

Victor Perevoztchikov, BNL ALICE/STARSTAR

STAR I/O classes

The component organization of STAR I/O is supported by STAR I/O
classes: StTree,StBranch, StIOEvent and StFile (no relation to ROOT
TTree and Tbranch classes).
 StTree - container of components;
 StBranch - representation of STAR I/O component;
 StIOEvent - ROOT I/O connection;
 StFile - container of files.
These classes perform I/O, add, fill, update of files/components
They are heavily based on ROOT environment and work well.
However when user modifies the definition of his class and ROOT rewrites
the corresponding streamer method, then previously written data becomes
inaccessible. ROOT does not yet support automatic schema evolution.
Schema evolution aside, ROOT I/O is completely sufficient for us.

Victor Perevoztchikov, BNL ALICE/STARSTAR

Automatic Schema evolution

Complete schema evolution is an unachievable goal, but schema evolution
with some limitations is possible. The limitations must be reasonable.
There are two solutions:
u Reading the old formatted data into memory and then the new

application deals with the old data;
uReading and converting the old format into the new one and then the

new application deals with the new format.

The first approach was used in ZEBRA. ZEBRA can read any ZEBRA file
and it is the problem of the application to work with the old format. This
approach is completely impossible in C++. There is no way to create an
old C++ object when the new one is declared.
So, we must somehow convert the old data into the new format.

Victor Perevoztchikov, BNL ALICE/STARSTAR

Automatic Schema evolution(continued)

To achieve this, we have modified the ROOT disk format by splitting the
whole task of writing into numerous, but simple ''atomic'' subtasks.

uEach object is written separately. All its members are written close to
each other;

uPointers to object are not followed immediately. Writing of these objects
is delayed. This allows to skip unknown or unneeded object;

uMember which is a C++ class is written as a separate object;
uStreamer of an object is splited by "atomic" actions. An action is

applied to one member. Each action described by:
l Numeric code related to the kind of action. For example:
§ member of fundamental type;
§ pointer to fundamental type;
§ C++ object;
§ pointer to C++ object.
§ Etc...

Victor Perevoztchikov, BNL ALICE/STARSTAR

Automatic Schema evolution(continued)

uThe description of these ''atomic'' actions is stored into the file together
with data. It is not the description of written classes; it is the
description of streamers, the description of how the objects were
written.

When the output format is formalized in such a way, we can compare the
streamer descriptions of old and new data.
Reading:
uRead the streamer descriptions of old classes;
uGot an old object. If class is known, create it. If not, skip object;
uGot an old ''atom''. If we have the new ''atom'' of the same kind, type

and name, fill it. If not, skip it.
Some members of the new object could not be filled. It is the responsibility
of the class designer to provide default filling of them.
After conversion, an application should deal, with not filled members. But
this is a problem of application schema evolution. I/O schema evolution
is solved.
%

Victor Perevoztchikov, BNL ALICE/STARSTAR

Conclusions

u STAR I/O based on component approach and ROOT I/O was
implemented. It is has been working for one year;

uROOT I/O was modified and automatic schema evolution implemented.
It is in testing stage now. Performance:

l The same file size as for standard ROOT;
l The same speed as standard ROOT I/O.

 Current status:
uComponents and ROOT I/O has been working for one year;
uCodes of modified ROOT I/O and automatic schema evolution are ready

and will be tested in real production.

