Hit Efficiencies

Andrew Rose Wayne State

- Hit Efficiencies Introduction and Definitions
 Eta, Phi, Pt distributions
 - Association Maker on MC Data
- Matched Tracks: reconstructed tracks with >3 hits in common with a MC Track
- Common Hits: hits matched between Detector hits and MC hit collections
- MC Hits: Hits on Matched MC Track

Common Hit Distributions

TPT-EGR PP STI PP

TPT-EGR Central

STI Central

- Common Hits/ MC Hits
 - No Cut
 - •-.5< η <.5
 - hit>24
 - •-.5< η <.5, hit>24

Last Padrow on Track

First Padrow on Track

Missed Hits

Missed Hits = MC Hits
 Common Hits (lower is better)

Profile Plot is deceptive; not gaussian distribution.

Better to plot an "efficiency" for finding MC Hits....

 Common / MC Hits vs. Pt & Eta

Fit Point Definition Difference

TPT-EGR does not use every hit associated with the track for the final fit. STI uses **all** hits found in the track fit. Cuts on 'Fit Points' will behave differently for ITTF & TPT-EGR.

Fit, Possible, MC and Common

Hit Contamination

Hits not from the Matched MC Track:
 Fit Points – Common Hits

Conclusions

- Similar qualitative performance to TPT-EGR, systematically lower efficiency (NOT TUNED!)
- Higher rate of hit loss