A HELIX PARAMETRIZATION

A Helix Parametrization

The trgjectory of a charged particle in a static uniform magnetic field with B = (0,0, B,) isahdix. In
principle five & parameters are needed to define such a helix. From the various possible parametrizations
we describe here the version which is well suited for the geometry of a collider experiment and therefore
used for the implementation of the StHelix class.

This parametrization describes the helix in Cartesian coordinates, where z, y and z are expressed as func-
tions of the track length s.

1
x(s) = xo+ E[cos(d)o + h sk cos\) — cos D] (1)
y(s) = wyo+ l[Sin(<I>g + h sk cosA) — sin @] 2)
K
z(s) = zp+ssinA (3)

where here and in the following:

s isthe path length along the helix

Zo, Yo, zo I1Sthestarting pointat s = sqg =0

A isthedip angle

k isthecurvature i.e. k = 1/R

B isthe z component of the homogeneous magnetic field (B = (0,0, B.))
q ischarge of the particle in units of positron charge

h isthe sense of rotation of the projected helix in the zy-plane,
i.e. h = —sign(¢B) = +1

® is the azimuth angle of the starting point (in cylindrical coordinates) with respect to the helix axis
(q)() =v— h7l'/2)

¥ isthearctan(dy/dx)s—o, i.€. the azimuthal angle of the track direction at the starting point.

The meaning of the different parametersisvisualizedin Fig. A.L.

A.1 Calculation of the particle momentum

The circlefit in the zy-plane gives the center of thefitted circle (« ., y.) and the curvature x = 1/R while
the linear fit gives zo and tan A. The phase of the helix (see Fig. A.1) is defined as follows:

$y = arctan <M> 4)

Ty — T¢

8see A .8 for adetailed discussion on the number of parameters needed.
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Figure A.1: Helix parametrization
Thereference point (¢, yo) isthen calculated as follows:
P
To = Tt 0 5)
K
sin ¢
Yo = Yot — (6)
and the helix parameters can be evaluated as:
T = &+ hr/2 (7
pL = cqB/k ©)
p, = pLtan) 9

p o= [P+ (10)

where x isthe curvaturein [m~'], B the value of the magnetic field in [Tesld], ¢ the speed of light in [m/ng]
(~ 0.3) and p_ and p. arethetransverse and longitudinal momentumin [GeV/c].
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A.2 Distant measure

Theminimal squared distance M ; between a helix and a point ¢ with position (x;, y;, ;) iS given by

M, = MOV 4P (12)
M; = (zi—2(s)* + (i —y(5)* + (21 — 2(8))? (12)
(13)

In literature one finds the following approach to solve this problem analytically by neglecting A/ i(z) inthe
derivatives.

Ty
dM; 7 _ 0 (14)
ds

Thisformulacan only serveto derive an approximation for the real distance. For large dip anglesthe errors
become large depending also on the actual helix parameters. The advantage is that s’ can be calculated
analytically:

1 (yi — yo) cos Py — (x; — o) sin Py
= i 15
¥ hmcosa oAn <1//<; + (z; — o) cos Pg + (y; — yo) sin @y (19

Note, that this formula can not be used to derive the distance of closest approach to a point. In order to
derive the distance of closest approach the following equation has to be solved:

dM;

=0 (16)

which can be written as

P h A) — P
2 (.’L’Z — Ty — c03(®o + hski cos A) — cos 0) sin(® + hsk cos ) hcos A —
K

sin(®g + hsk cos A) — sin @
2 (yi—yo— -

2 (z; — 20— ssin\)sin A =0 7

) cos(®g + hskcos\) hcos A —

Theroot of eq. 17 can easily befound with the Newton or regula falsi method with s’ from eqg. 15 as starting
value. For the Newton method the second derivative is needed as well.

d2M;
ds?

=0 (18)
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whichis

2 (sin(®o + hsk cos ) h? cos® X +
( cos(®g + hsk cos A) — cos 'I>0>
2 i — Lo — o

cos(®g + hsk cos \)h?k cos® A +
2 (cos(®g + hskcos\))? h? cos® A +

sin(®g + hsk cos \) — sin @g
2 \yi—yo— -

sin(®q + hsk cos A\)h?k cos® A +
2 sin®A=0 (19)

A.3 Distance of closest approach between two helices

The closest distance between two helices H, and H, is a problem which again can be solved analytically
only in 2 dimensions, i.e., in the xy-plane. The solution in 3 dimensions cannot even be solved by standard
numerical methods (as the Newton method) but requires more sophisticated method since we have to find
2 unknown parameters s; and ss in

dQM(Sl, 82)

= 2
d81 dSQ 0 ( O)

where M isthe distance between thetwo helicesat s, and s».

Figure A.2: Two intersecting helices in the xy-plane
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In thexy-plane:
Given two helices with radii R, and R, and centers in the xy-plane o, = (z.1,y.1) and o2 = (2.2, yc2)
we have to find vector @ as depicted in Fig.A.3. The angle « can be calculated as:

Ri + |/ - R3
21
cosa = R (21)

where isthe vector between the two centers. The absolute coordinates of one intersection point (measured
from o1) can be obtained by calculating vector @ and adding o .

x; = e+ Ri[(Te2 — 1) cosa — (Yoo — yer) sina]/|7; (22)

Yi = Yo+ Ril(ze2 — zer)sina + (Ye2 — yer) cosa] /|; (23)
If cos a isexactly 1 we have only one solution. For the case cos a < 1 we get two valid intersection points
(xi,y:) and (z,y;) wherethe latter is simply given by:

zj = T+ Ri[(ze2 — o) cosa + (Ye2 — yer) sina]/|rl; (24)

Yi = Yer + Ri[(Wez = Ye1) cosa — (zer — xc1) sina] /|7 (25)

In the case cos a > 1 the circles do not intersect. Then the distance of closest approach is simply given by
theintersection of aline between the two centers and the two helices. For helix H, we get:

T = T+ Ri(wee —2a)/|7; (26)
= Ye1r + Ri(Yer — Yer)/17; (27)

In 3dimensions:
Usually an iteration method is applied which uses the intersection points in the xy-plane as start values.

Carehasto betaken if both helices have different dip angle A sincethe start valuesthen significantly deviate
from the actual solution.

A.4 Intersection with acylinder (p=const)

In order to obtain the path length s at which the helix intersects with a cylinder of given radius p we have
to solve the following equation:

P’ =x(s)? +y(s) (28)
Using eg. 1 and 2 we obtain the two analytic solutionsfor s; and ss:
sijp = — (®o+ 2 arctan [(2yo k — 2 sin @ £ [—Ii2 (—4p2 +4yo® —2p K T~ (29)
2 p2/<a2yg2 + 23:02/<;2y02 + p4/<;2 + 2otk + y04/<;2 —420°k cos Do+
4 20% cos® By — 4102 cos® By—
4yodk sin @y + 4 p’k zo cos By + 4 p*kyo sin @y — 402K yo sin Bo—
4yo’k 2o cos By + 8z cos Py sin @0)]1/2) /
(—=p°K® + 2+ 20°K> + 2 cos By + yo K’ —

220k — 220k cos By — 2y k sin ®o)]) h k! (cos A) T
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A.5 Intersection with aplane

's=0

Figure A.3: Intersection of a helix with aplane
Any plane can be described by its normal vector 77 (orientation) and an arbitrary point in this plane 7
(position). The vector p'which describes the intersection point must fulfil:
p-i=0. (30)
Hence:
(@—7)-i=0. (31)

whered isgivenby @ = (x(s'), y(s'), z(s")) as described in eg. 1-3. In order to obtain the path length s’
where the helix intersects with the plane the following equation has to be solved:

z(s)n, +y(s)ny +z(s)n. — - = (32)
A4+ngcosS +nysinS + knyssinA = 0 (33)
where:
A = k(67 —7-7)—ngcos Py — nysin Py (39
S = hskcosA+ Py (35

Theroot of eg. 33 can now easily be determined by a suitable numerical method (Newton).
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A.6 Limitations

The only non-numerical limitations of this parametrization are:

—T/2< A < w2 (36)
k > 0 (37)

A7 CaseB =0

For the special case B = 0 the trajectory becomes a straight line, i.e. K = 0 and R = oc. Care must
be taken in the numerical calculation of the parametrization because of the singularity ineq. 1 and 2. The
correct formis:

xz(s) = mo— shcos\sin @ (38)
y(s) = wyo+ shcosAcosPg (39
z(s) = zp+ssinA (40)

Important: For B = 0 the sense of rotation isill defined. All what mattersisthat o = ¥ — hr /2 isdone
correctly, i.e. with the same arbitrary h. In the following we assume h = +1 for convenience.

Eq. 15 then reads as:

1 .
s = o5\ [(yi — yo) cos g — (z; — xp) sin Do) (42)

Eq. 17 can now be solved analytically;

dMidca
_0 42
4 (42)
gives:
5% = cosAcos ®o(y; — yo) —

cos Asin ®¢(z; — xp) +
sin A(z; — 2o) (43)

The solution for the intersection with a cylinder (eg. 29) now reads:

s1/2 = [z cosA sin®y — yo cos A cos Bg £ (44
[~ cos® A (220 cos ®gyo sin®y — p° + (45)
Yo — Yo cos” @y + xj cos® @g)] 1/2} cos® A (46)

The same holds for the intersection of a helix with a plane where in case of zero curvature eq. 33 can be
solved analytically.
, F-i—3a-n

= 47
s —ng cos Asin g + ny cos Acos @g + 1 sin A (“7)




A.8 Why arethereonly 5independent helix parameters? A HELIX PARAMETRIZATION

A.8 Why arethereonly 5independent helix parameter s?
Imagine an arbitrary helix sitting in 3D space. What is required to completely specify it ?

1. theline coinciding with the axis - if its oriented in any arbitrary direction, then this requires 4 param-
eters, or 2 direction angles (theta and phi in usual spherical coordinates) plus 2 more coordinates to
locate the line in a plane perpendicular to this direction.

For the special case in STAR we aways fix the direction parallel to the z-axis so this reduces the
number of this subset of parametersfrom 4 to 2.

So these are the (x,y) coordinates of the center of the circular projection onto the x-y plane.
2. Thenwe must give the radius of the circular projection - 1 more param,
3. Next we must specify the pitch and the handedness. - 2 more params.

4. Finaly, we haveto give a phase angle or some single number that tells us where thisthing is actually
sitting w.r.t. some given plane. For STAR this could be the phase angle at the point where the helix
intersects the x-y plane. - 1 more parameter.

So, in generd there are 7 continuously varying parameters plus a handedness switch. For the specia case
STAR uses there are then 5 independent parameters plus the left handed/right handed switch. So yes, 6
parameters are required. But for track fitting purposes only 5 are relevant. The handedness of the particle’s
trgjectory will be determined by the sign of B, x charge (using the actual charge) and the sign of the z-
component of momentum (using the actual p, momentum value). However, in genera the charge sign
and p. direction are not known, based on track fitting alone. These signs must be assumed using some
selection criteria, usualy that the particle is moving “outward and away” from the general area of the
beam. These two signs are not independent of each other but must be chosen to give a path consistent
with the handedness that the space point positions require. So thereis one algebraic sign that is ambiguous
and that we have to choose. Having done this there remain 5 independent fitting parameters. In our track
parametrization we put the choice of algebraic sign into the both that of the charge and the tanl parameter,
consistently we hope.

So to summarize, there are 6 parameters, oneis asign selected by some criteria, the remaining 5 are varied
to fit the space points. The track parameter error matrix is then 5 x 5 symmetric, and thus includes 15
distinct quantities.

Text from Lanny Ray written during an email exchange on this very topic.



