
Page 1 of 5

NIOS Mini-Script Language
V1.0 - 2/23/06
(jml@bnl.gov)

I. User Level Language Specification

The Mini-Script Language is a simple list processor designed primarily to set and read
ALTRO parameters. It has the following commands:

 set: Used to set ALTRO registers or Mini-script registers
 read: Read ALTRO/Mini-script registers
 flush: Flush’s the NIOS read buffer to DDL
 etrg: Issue emulated triggers
 trg: Place RDO in running mode, to wait for real events to be issued
 peek: Peek a memory location in the NIOS address space
 poke: Poke a memory location in the NIOS address space

In addition, the language can easily extended to parse the existing DDL commands

The Mini-Script language understands the following registers. Each register has a series
of arguments. Individual registers and even individual arguments within registers may
be read only or write only, but the Mini-Script does not distinguish between this. If one
attempts to write a RO register the command will fail silently.

Mini-script Registers -
Register Parameters Meaning
run_number value run number (Used when issuing triggers)

Altro Registers –
Register Parameters Meaning
k1...k3, l1...l3 value Tail suppression filter params
vfped vpd first baseline: variable ped value (RO)
 fpd first baseline: fixed pedestal offset value (RW)
zsthr offset zero suppression: offset added before zs
 zs_thr zs threshold
bcthr thr_hi second baseline: window for active filter
 thr_lo
trcfg acq_start Adjust T0 and number of timebins
 acq_end
dpcfg zs_on enable zero suppression
 zs_pre number of presamples not suppressed
 zs_post number of postsamples not suppressed
 zs_glitch zerosuppression mode (table 2.7 in user manual)

Page 2 of 5

 bc2_on enable baseline 2
 bc2_post postsamples excluded from baseline 2
 bc2_pre presamples excluded from baseline 2
 bc1_pol polarity of acd bits
 bc1_mode baseline 1 mode (table 2.6 in user manual)
dpcf2 pwsv power save mode
 flt_en enable tail suppression filter
 nbut number of buffers in data memory
 ptrg number of pretrigger samples
pmadd pma pedestal memory address
erstr err error status register (RO)
adevl adevl
trcnt trgcnt

SET commands:

 set register arg1 arg2 arg3 ...

The argument list depends upon the specific register being set. Each argument is an
integer which may be expressed either as a decimal number or as a hex number using the
standard “c” format (0xnn). The valid register / argument lists follow.

Currently, all set commands are implemented as broadcast’s to all ALTRO’s and all
channels. One can not set a register value for a specific ALTRO/channel.

READ commands:

 read register

No argument list is currently accepted. (I will modify this later to allow specifying the
altro/channel to read). The current behavior is to read every ALTRO. For registers that
are set by channel, each channel is read.

FLUSH command:

 flush

This command flushes the output buffer. Output from the mini-script programs are
written to a memory buffer on the NIOS. Data is shipped via DDL to the LINUX
process as a LOG event under three conditions. First, if the NIOS buffer is filled.
Second, if this command is received. Third, some error conditions may cause an implicit
read buffer flush.

Page 3 of 5

ETRG/TRG commands:

 etrg n (emulated triggers)
 trg n (real triggers)

This command issues n events to the ALTRO’s. And waits for the events to (either)
finish processing or for processing to stop through some other channel. n is a 20 bit
number, so limit the number of triggers to 1 million. Issuing these commands with n=0
results in a run that continues until being stopped through some other channel.

At the NIOS level, these commands start a run tagged by the run number, so typically,
from the Mini-script you would issue two commands, for example:

 set run_number 5000
 trg 0

which would have the effect of starting run #5000 to run until stopped on some other
channel. This paradigm could easily be extended to add other parameters, such as
timeout’s etc...

PEEK command:

 peek addr

Peek a memory location in the NIOS address space

POKE command:

 poke addr value

Poke a memory location in the NIOS address space.

II. Extensibility for DDL commands

The Mini-Script language is designed to easily parse & build additional commands.
These commands must be defined in mscript.C in the following format

struct CommandSpec {
 char *spec;
 int id;
};

CommandSpec ddlCmds[] =
 {

Page 4 of 5

 { "dummy1", 1 },
 { "dummy2 a:5 b:5 c:9", 2 },
 { NULL, 0 },
 };

Each line defines a command. The first word in the spec string defines the command
name, while the additional lines encode the commands parameters, and the number of
bits allocated to each parameter. The id field, encodes the DDL opcode.

The construction of the parameter bit field handled by assuming that the total number of
data bits is 20 + 32*n, where n is an integer. To construct the payload, first the size is
calculated in bits, and this is used to calculate the number of words used for the
command. The command values are then packed into the data words, with the rightmost
parameter appearing in the least significant bits of the final data word.
If the number of bits is larger than 20, one should total the number of bits in all
commands to be 20 + 32*n bits long. To do this, the parameter name “uu” can be used as
a spacer. It is ignored while parsing commands. For example, the poke command is
specified:

 poke uu:20 addr:32 val:32

but it is used:

 poke addr val

III. Mini-Script Opcode specification

Each command is represented by 1 or more 32 bit data words. The length of the
command is determined by the command specification. For a given command, the length
is always fixed. If a command takes up multiple words, every word after the first is
made up from payload, which is specified by the “spec” definition of the command. The
opcode can have two formats depending on value of bit 31.

If Bit 31 is set, the command is treated as a Mini-script command

31 30 29 25 24 20 19 0
1 B Mini-Opcode Register Payload

Here, B is the “broadcast” flag, which is currently unused. The register value is used
only by the set & read commands. If the mini-opcode is SET/READ then the register is
interpreted as the ALTRO register. If the mini-opcode is SETL/READL, then the
register is interpreted as a Mini-Script register.

Page 5 of 5

If Bit 31 is not set, the command is treated as a DDL-script command

31 30 25 24 19 18 0
0 DDL Opcode unused Payload

The opcode & register values are defined in /RTS/include/DAQ1000/mscript.h

IV. Possible Future Extensions

The Mini-Script language will probably need to be extended in the future. Features that
make sense are:

• Address specific altro’s / channels for set commands, in particular for dealing
with error conditions.

• Address specific altro/channels for read commands for more efficiency.
• Parse sector/RDO level addressing for the LINUX DDL control program to use to

route the Mini-script data.
• Accept commands in the format: set register PARAM=value

o other parameters might be set according to defaults
o other parameters might be set by an implicit read before the set.

