
Simple File System (SFS) Format

Version SFS-V00.01

The SFS is a simple file system format optimized for writing and for low overhead.. The

advantages of this format are:

• Event navigation is possible using simple content-independent file system like

functions.

• Very low overhead. No loss due to block size granularity

• Entire valid file system can be created by appending content

On the other hand, random access directory navigation is rather slow because there is no

built-in indexing or directory hierarchy. For a 500MB file system containing files with

5k bytes this represents an initial search overhead of ~1-2 sec (~100,000 seeks).

SFS Structure

The structure of a SFS file is as follows

VolumeSpec

Head

File1 File1 Binary Data

File2 File2 Binary Data

... ...

Tail

VolumeSpec: This is simply a 12 byte character string representing filesystem version.

For example: “SFS V00.01”

Head: This is a short header record. The byte order only applies to the time

field of this record.

type = “HEAD”

byte_order = 0x04030201

time

File: The File records are a variable length record containing information

about a file.

type = “FILE”

byte_order = 0x04030201

Sz

head_sz attr reserved

name....

name (continued)....

 “byte_order” corresponds only to this header. The endiness of the data

is undefined by SFS

 “sz” corresponds to the datafile size. This may be any number, but the

file itself will be padded to take up a multiple of 4 bytes

 “head_sz” this must be a multiple of 4

 “attr”

 SFS_ATTR_INVALID: file deleted

 SFS_ATTR_PUSHDIR: push current path to path stack

 SFS_ATTR_POPDIR: pop current path from path stack

 SFS_ATTR_NOCD: this record doesn’t reset the basedir

 “name” the name of the file.

Tail: The tail record has the same format as the “HEAD” record, but

type=”TAIL”. This record is not needed, but can be present to represent

that the file was properly closed.

SFS Filename Convention

Because the SFS file simply contains a list of file descriptors and binary data, paths may

be thought of as adhoc creations of the SFS reader code. However the following

conventions are applied so that one can reconstruct a normal directory structure from a

SFS file.

/xxx/xxx/yyy /xxx/xxx/ is the “directory part”

yyy is the “file” part

/xxx absolute path

xxx or

xxx/xxx

path is relative to the directory part of

the previous entry

xxx/ Directory

0 length Zero length files are used to push/pop

the current base path from a stack. The

files attr field should be set to

SFS_ATTR_PUSHDIR or

SFS_ATTR_POPDIR

Because there need be no explicit directory entries, a directory is defined to exist if it is

part of any existing file’s path.

It is perfectly legal to have a “directory” which also contains data.

