
ASIC-VRAM interface requirements (SVT version) June 29, 1998 1

ASIC-VRAM interface requirements
(SVT version)

M.J. LeVine
June 29, 1998
Version 1.4

file: daq.star.bnl.gov:~levine/DAQ_IMPLEMENTATION/A-V-SVT.mif

1.0  Background

There are two versions of this document, one for the SVT receiver cards, and one for the
SVT receiver cards. They differ only in the number of pads , in the number of timebins per
pad, and in the number of cluster pointer pairs to be read out for each pad.

There are 6 ASICs on a mezzanine card.  These ASICs are organized in 2 banks; each
bank feeds 4 512KB VRAMs. This structure suggests 2 controllers which can be virtually
independent of one another.

The output data port of the ASIC is 8 bits wide, with 2 control signals, V_ACK and
V_REQ which form the handshake with the controller (see ASIC specification).  There are
2 modes in which the ASIC generates data via its sequential output port:

1. During acquisition each ASIC outputs one 8-bit ADC value every 154 nsec. There is a
16-deep FIFO at the output to provide some elasticity. However, the VRAM controller
is obliged to accept one data byte from each ASIC every 140 nsec, on average. If this is
not observed, incoming data will be lost.

2. Following acquisition (signalled by END_ACQ), the controller must empty the cluster
RAM on the ASIC via the same output port. The cluster RAM outputs 4K 2-byte point-
ers using the same port and the same handshake signals. Here, there is no fixed time
budget, since the data are stored on the ASIC. However, the data must be dealt with as
quickly as possible, since this is a performance issue.

1.1  Modes of operation

During acquisition of an event, ADC data flow through the ASIC to the VRAM (see1.2
below).  At the completion of acquisition, each ASIC asserts its  END_ACQ signal.  When
all ASICS associated with a controller have asserted END_ACQ, the controller should
enter cluster dump mode (see1.3), during which it transfers the cluster pointers, stored
internally on each ASIC, to the VRAMs. It changes the mode of operation of the ASICs
by pulsing  CL_DUMP to each of them.

The VRAM is large enough to accomodate several events (12). Before acquisition begins
for any event, the i960 must signal the controller which event buffer is to be used for the



ASIC-VRAM interface requirements (SVT version) June 29, 1998 2

next event. This is done via a register in the controller.  This buffer number is used during
both ADC acquisition and cluster dump to set the appropriate address bits.

The VRAM selected for the mezzanine board is the IBM 025161, which is a 512kB part
which consists of two 256kB VRAMs with separate byte enables on the random access
side, but with asingle 16-bit sequential port..  This adds a small constraint on the sequenc-
ing of data into the VRAM: two values must be present on adjacent ASICs before the data
can be clocked into the VRAM 2-byte-wide port.

The IBM025160 has two byte enables,LCE andUCE. In this application they are used to
select one-half of a VRAM’s memory.  Both bytes are to be wired together to the same
byte lane on the i960 bus, and as a result,LCE andUCE must never be asserted at the
same time!

1.2  ADC acquisition mode

The data arrive from each ASIC in a time order which corresponds to the ADC byte for
every SVT pad for one time sample, followed by every SVT pad for the next time sample,
etc.  From the i960 point of view, this order is not acceptable. In order to make the data
ordering more appropriate for the code running on the i960, two steps have been taken:

1. Data from each ASIC is sequenced into thesame VRAM, then a dummy entry is
entered into this same VRAM, until 64 ADC values have been entered for all 3 ASICs
(plus the dummy ASIC). Then the data steam is sequenced to the 2nd VRAM, etc. All
of the ADC values corresponding to a single timebin are then found in a single byte
lane of the VRAM. This then makes a sequence of 4 ADC values corresponding to
adjacent time samples for a given pad appear to the i960 as part of a 4-byte object.

2. The ADC values are stored in the VRAM array in a sequence where the most rapidly
varying index is ASIC number [0..3], with the next most rapidly varying index being
the pad number.  The i960 code would like to see packed arrays of all the data corre-
sponding to a single ASIC. In order to accomplish this, the address lines asserted by the
i960 are scrambled before they are presented to the VRAM.

The sequence required is given below.  In the following tables, the notationASIC A |
ASIC B means that ASIC A provides the lower 8 bits and ASIC B provides the upper 8
bits of the 16-bit SAM input. The notationdummy means that the contents of the upper 8
bits is meaningless.



ASIC-VRAM interface requirements (SVT version) June 29, 1998 3

1.3  CPP data

The cluster pointers emerge from the ASIC exit FIFO as 2 pairs of bytes, corresponding to
the beginning and end pointers, each of which emerges as the low byte followed by the
high byte.  These, too, must be assembled into the VRAM array so that a longword on the
i960 bus appears as the sequence {begin low, begin high, end low, end high.} In addition,
the memory lines need to be scrambled as for the ADC data so that all of the pointers for a
given ASIC appear to be a compact array to the i960. Note that the scrambling of i960

TABLE 1. ADC data sample sequence

pad
number timebin sequence source destination

0

0

0

1

ASIC A | ASIC B

ASIC C | dummy

VRAM 1

1 2

3

ASIC A | ASIC B

ASIC C | dummy

VRAM 1

. . .

255 510

511

ASIC A | ASIC B

ASIC C | dummy

VRAM 1

0

1

512

513

ASIC A | ASIC B

ASIC C | dummy

VRAM 2

1 514

515

ASIC A | ASIC B

ASIC C | dummy

VRAM 2

. . .

255 1022

1023

ASIC A | ASIC B

ASIC C | dummy

VRAM 2

0

2

1024

1025

ASIC A | ASIC B

ASIC C | dummy

VRAM 3

1 1026

1027

ASIC A | ASIC B

ASIC C | dummy

VRAM 3

. . .

255 1534

1535

ASIC A | ASIC B

ASIC C | dummy

VRAM 3

TABLE 2. CPP data sample sequence

sequence
pad

number
cluster
number data source destination

1 0 0 ASIC A begin LOW|ASIC B begin LOW VRAM 1

2 0 0

0

ASIC A begin HIGH | ASIC B begin HIGH

ASIC C begin LOW  | dummy

VRAM 2

VRAM 1



ASIC-VRAM interface requirements (SVT version) June 29, 1998 4

3 0 0

0

ASIC A end LOW | ASIC B end LOW

ASIC C begin HIGH | dummy

VRAM 3

VRAM 2

4 0 0

0

ASIC A end HIGH | ASIC B end HIGH

ASIC C end LOW | dummy

VRAM 4

VRAM 3

5 0 1

0

ASIC A begin LOW | ASIC B begin LOW

ASIC C end HIGH | dummy

VRAM 1

VRAM 4

6 0 1

1

ASIC A begin HIGH | ASIC B begin HIGH

ASIC C begin LOW  | dummy

VRAM 2

VRAM 1

7 0 1

1

ASIC A end LOW | ASIC B end LOW

ASIC C begin HIGH | dummy

VRAM 3

VRAM 2

8 0 1

1

ASIC A end HIGH | ASIC B end HIGH

ASIC C end LOW | dummy

VRAM 4

VRAM 3

9 0 2

1

ASIC A begin LOW | ASIC B begin LOW

ASIC C end HIGH | dummy

VRAM 1

VRAM 4

10 0 2

1

ASIC A begin HIGH | ASIC B begin HIGH

ASIC C begin LOW  | dummy

VRAM 2

VRAM 1

11 0 2

1

ASIC A end LOW | ASIC B end LOW

ASIC C begin HIGH | dummy

VRAM 3

VRAM 2

12 0 2

1

ASIC A end HIGH | ASIC B end HIGH

ASIC C end LOW | dummy

VRAM 4

VRAM 3

. . . . . .

125 0 7

6

ASIC A begin LOW | ASIC B begin LOW

ASIC C end HIGH | dummy

VRAM 1

VRAM 4

126 0 7

6

ASIC A begin HIGH | ASIC B begin HIGH

ASIC C begin LOW  | dummy

VRAM 2

VRAM 1

127 0 7

6

ASIC A end LOW | ASIC B end LOW

ASIC C begin HIGH | dummy

VRAM 3

VRAM 2

128 0 7

6

ASIC A end HIGH | ASIC B end HIGH

ASIC C end LOW | dummy

VRAM 4

VRAM 3

. . . . . .

8161 255

254

0

7

ASIC A begin LOW | ASIC B begin LOW

ASIC C end HIGH | dummy

VRAM 1

VRAM 4

. . . . . .

8192 255 7

7

ASIC A end HIGH | ASIC B end HIGH

ASIC C end LOW | dummy

VRAM 4

VRAM 3

8193 255 7 ASIC C end HIGH | dummy VRAM 4

TABLE 2. CPP data sample sequence

sequence
pad

number
cluster
number data source destination



ASIC-VRAM interface requirements (SVT version) June 29, 1998 5

address lines is not identical for ADC and CPP data; address lines A[21..20] are used to
distinguish between the ADC and CPP accesses.

Looking at Table 2, sequence number 1 and 8193 are unlike the remainder of the steps;
they represent startup and shutdown stages of the process.  The remainder of the table is
just a repetition of steps 9-12 (shaded in the table).

Performance is an issue for the CPP transfer.  But each of the objects shown in Table 2
which form a 16-bit quantity is available simultaneously.  So each sequence in the table
can in principle be performed in the 25 nsec required to access the next item in the ASIC’s
CPP stream.  If necessary, pipelining of this sequence should be utilized to achieve this
speed.

For the ADC data (A[21..20] < 3) the  i960 address lines have the following meaning:

• buffer number (0 -11): A[21..18]

• ASIC (0-5): A[17..15]

• pad number (0-255): A[14..7]

• timebin (0-127): A[6..2],  BE[3..0]

At the VRAM, these functions have been mapped differently to the VRAM byte enables
and address bits:

• buffer number (0-11): VA[17..14]

A
S

IC
 C

A
S

IC
 B

A
S

IC
 A

A
S

IC
 F

A
S

IC
 E

A
S

IC
 D

VRAM VRAM VRAM VRAM

VRAM 1
VRAM 3

VRAM 2
VRAM 4

VRAM 1
VRAM 3

VRAM 2
VRAM 4

16 16 16 16



ASIC-VRAM interface requirements (SVT version) June 29, 1998 6

• ASIC (0-5): VA[0], LCE, UCE

• pad number (0-255): VA[8..1]

• timebin (0-127): VA[13..9],LCE, UCE

Specifically, the VRAM byte enablesfor the ADC data are given by:

LCE 1 = !(BE0 &  !A17 & !A15) left controller
UCE 1 = !(BE0 &  !A17 &  A15)
LCE 2 = !(BE1 &  !A17 & !A15)
UCE 2 = !(BE1 &  !A17 &  A15)
LCE 3 = !(BE2 &  !A17 & !A15)
UCE 3 = !(BE2 &  !A17 &  A15)
LCE 4 = !(BE3 &  !A17 & !A15)
UCE 4 = !(BE3 &  !A17 &  A15)

LCE 1 = !(BE0 &  A17 & !A15) right controller
UCE 1 = !(BE0 &  A17 &  A15)
LCE 2 = !(BE1 &  A17 & !A15)
UCE 2 = !(BE1 &  A17 &  A15)
LCE 3 = !(BE2 &  A17 & !A15)
UCE 3 = !(BE2 &  A17 &  A15)
LCE 4 = !(BE3 &  A17 & !A15)
UCE 4 = !(BE3 &  A17 &  A15)

The VRAM address linesfor the ADC data are related to the i960 address lines as fol-
lows:

VA[0] = A[16]
VA[8..1] = A[14..7]
VA[13..9] = A[6..2]
VA[17..14] = A[21..18]

For the CPP data (A[21..20] = 3), the i960 address lines have the following meaning:

• buffer number (0-11): A[19..16]

• ASIC number (0-5): A[15..13]

• pad number (0-255): A[12..5]

• cluster number (0-7): A[4..2]

The VRAM byte enablesfor the CPP data are given by:

LCE 1 = !(BE0 & !A15 & !A13) left controller
UCE 1 = !(BE0 & !A15 &  A13)
LCE 2 = !(BE1 & !A15 & !A13)
UCE 2 = !(BE1 & !A15 &  A13)
LCE 3 = !(BE2 & !A15 & !A13)
UCE 3 = !(BE2 & !A15 &  A13)



ASIC-VRAM interface requirements (SVT version) June 29, 1998 7

LCE 4 = !(BE3 & !A15 & !A13)
UCE 4 = !(BE3 & !A15 &  A13)

LCE 1 = !(BE0 & A15 & !A13) right controller
UCE 1 = !(BE0 & A15 &  A13)
LCE 2 = !(BE1 & A15 & !A13)
UCE 2 = !(BE1 & A15 &  A13)
LCE 3 = !(BE2 & A15 & !A13)
UCE 3 = !(BE2 & A15 &  A13)
LCE 4 = !(BE3 & A15 & !A13)
UCE 4 = !(BE3 & A15 &  A13)

The VRAM address linesfor the CPP data are related to the i960 address lines as fol-
lows:

VA[0] = A[14]
VA[5..1] = A[6..2]
VA[11..6] = A[12..7]
VA[15..12] = A[19..16]

2.0 Functional requirements

The following paragraphs roughly describe the areas which have to be covered by this
design.

2.1  Initialization

The VRAM persistent mask register must be initialized.  See IBM documentaiton for
other requirements.

2.2  Refresh

Refresh for the VRAM must be provided.

2.3  Arbitration

There are three requesters for the VRAM random-access cycle:

• transfer from the SAM to the VRAM memory

• refresh cycles

• i960 bus accesses

Arbitration must be provided with priority in the order listed.



ASIC-VRAM interface requirements (SVT version) June 29, 1998 8

2.4  Filling from ASIC

Data must be assembled from the various ASIC sequential ports to the SAM port of the
VRAMs.  When a SAM is full, its contents must be transferred to the appropriate row of
the VRAM before the next ASIC data are serviced.

Data must be entered in the sequence shown in Tables 1 and 2.

2.5  i960 bus access

Addresses presented by the i960 bus master (either i960 or PLX) need to be scrambled in
one of two ways as described above.

For performance reasons, burst mode must be accomodated on the i960 bus for processor
accesses.  Burst mode does not have to be provided for the PLX bridge. Thus a maximum
of 4 longword accesses must be accomodated.

This is complicated by the address scrambling necessary for the ADC and CPP data. The
scrambling results in 4 successive words in i960 address space not being contiguous in the
VRAM.

Taking the case of the ADC data, 4 consecutive longwords on the i960 bus have
A[3..2]=00,01,10,11.  But these addesses result in VA[8..7]=00,01,...  Note that  these
accesses still fall within a row of the same byte of the same VRAM chip,  so that burst
access can be accomodated with reasonable efficiency.

For the case of the CPP data, successive cluster words as seen from the i960 bus corre-
spond to VRAM address bits VA[2..1]. Again, these fall within a row, and can be accessed
without extra delay.

3.0  Other requirements

A signal will be generated on the receiver card which will abort the event currently being
acquired. This signal will directly clear the ASICs. It must also be used by the ASIC-
VRAM interface to clear all counters to their state prior to the arrival of a new event.



ASIC-VRAM interface requirements (SVT version) June 29, 1998 9

i960 view of the ADC data

buffer                     ASIC                    pad number      timebin

A [21... 18 ]           A[17..15]                  A[14... 7]         A[6...2]

ASIC        pad number timebinbuffer

ADC data seen from the VRAMs

VA[17..14] VA[13..9] VA[8..1] VA[0], LCE, UCE

i960 view of the CPP data

A [18...15 ]

CPP data seen from the VRAMs

VA[15..12] VA[11..4] VA[0] LCE, UCE

buffer ASIC pad cluster no begin, end

buffer ASICpad cluster no begin, end

 A[11..4] A[3..1]  BE[3..0]A[14..12]

VA[3..1]



ASIC-VRAM interface requirements (SVT version) June 29, 1998 10

ADC buffer 1

ADC buffer 2

ADC buffer 3

ADC buffer 4

ADC buffer 5

ADC buffer 6

ADC buffer 7

ADC buffer 8

ADC buffer 10

ADC buffer 11

ADC buffer 9

ADC buffer 12

ADC CPP data

CPP buffer 1

CPP buffer 2

CPP buffer 3

CPP buffer 4

CPP buffer 5

CPP buffer 6

CPP buffer 7

CPP buffer 8

CPP buffer 9

CPP buffer 10

CPP buffer 11

CPP buffer 12

base

base + 0x40000

base + 0x80000

base + 0xC0000

base + 0x100000

base + 0x140000

base + 0x180000

base + 0x1C0000

base + 0x200000

base + 0x240000

base + 0x280000

base + 0x2C0000

base + 0x8000000

0x8000000

0x8010000

0x8020000

0x8030000

0x8040000

0x8050000

0x8060000

0x8070000

0x8080000

0x8090000

0x80A0000

0x80B0000

layout of buffers in i960 address space


