ASIC-VRAM interface requirements
(TPC version)

M.J. LeVine
May 8, 1997
Version 1.5
file: daqg.star.bnl.gov:~levine/DAQ_IMPLEMENTATION/A-V-TPC.mif

1.0 Background

There are two versions of this document, one for the TPC receiver cards, and one for the
SVT receiver cards. They differ only in the number of pads (TPC) or anodes (SVT), in the
number of timebins per pad/anode, and in the number of cluster pointer pairs to be read
out for each pad/anode.

There are 6 ASICs on a mezzanine card. These ASICs are organized in 2 banks; each
bank feeds 4 512KB VRAMSs. This structure suggests 2 controllers which can be virtually
independent of one another.

The output data port of the ASIC is 8 bits wide, with 2 control signals, V_ACK and
V_REQ which form the handshake with the controller (see ASIC specification). There are
2 modes in which the ASIC generates data via its sequential output port:

1. During acquisition each ASIC outputs one 8-bit ADC value every 154 nsec. There is a
16-deep FIFO at the output to provide some elasticity. However, the VRAM controller
is obliged to accept one data byte from each ASIC every 140 nsec, on average. If this is
not observed, incoming data will be lost.

2. Following acquisition (signalled by END_ACQ), the controller must empty the cluster
RAM on the ASIC via the same output port. The cluster RAM outputs 4K 2-byte point-
ers using the same port and the same handshake signals. Here, there is no fixed time
budget, since the data are stored on the ASIC. However, the data must be dealt with as
quickly as possible, since this is a performance issue.

1.1 Modes of operation

During acquisition of an event, ADC data flow through the ASIC to the VRAM1(&e
below). Atthe completion of acquisition, each ASIC asserts its END_ACQ signal. When
all ASICS associated with a controller have asserted END_ACQ, the controller should
enter cluster dump mode (sk8), during which it transfers the cluster pointers, stored
internally on each ASIC, to the VRAMSs. It changes the mode of operation of the ASICs
by pulsing CL_DUMP to each of them.

ASIC-VRAM interface requirements (TPC version) May 8, 1997 1

The VRAM is large enough to accomodate several events (12). Before acquisition begins
for any event, the 1960 must signal the controller which event buffer is to be used for the
next event. This is done via a register in the controller. This buffer number is used during
both ADC acquisition and cluster dump to set the appropriate address bits.

The VRAM selected for the mezzanine board is the IBM 025161, which is a 512kB part
which consists of two 256kB VRAMs with separate byte enables on the random access
side, but with aingle 16-bit sequential port This adds a small constraint on the sequenc-
ing of data into the VRAM: two values must be present on adjacent ASICs before the data
can be clocked into the VRAM 2-byte-wide port.

The IBM025160 has two byte enable€E andUCE. In this application they are used to
select one-half of a VRAM’'s memory. Both bytes are to be wired together to the same
byte lane on the i960 bus, and as a rekdE andUCE mustnever be asserted at the
same time

1.2 ADC acquisition mode

The data arrive from each ASIC in a time order which corresponds to the ADC byte for
every TPC pad for one time sample, followed by every TPC pad for the next time sample,
etc. From the 1960 point of view, this order is not acceptable. In order to make the data
ordering appropriate for the code running on the 1960, two steps have been taken:

1. Data from each ASIC is sequenced intoghmeVRAM, then a dummy entry is
entered into this same VRAM, until 64 ADC values have been entered for all 3 ASICs
(plus the dummy ASIC). Then the data stream is sequenced to the 2nd VRAM, etc. All
of the ADC values corresponding to a single timebin are then found in a single byte
lane of the VRAM. This then makes a sequence of 4 ADC values corresponding to
adjacent time samples for a given pad appear to the i960 as part of a 4-byte object.

2. The ADC values are stored in the VRAM array in a sequence where the most rapidly
varying index is ASIC number [0..3], with the next most rapidly varying index being
the pad number. The 1960 code would like to see packed arrays of all the data corre-
sponding to a single ASIC. In order to accomplish this, the address lines asserted by the
1960 are scrambled before they are presented to the VRAM.

The sequence required is given below. In the following tables, the noASIGhA |

ASIC B means that ASIC A provides the lower 8 bits and ASIC B provides the upper 8
bits of the 16-bit SAM input. The notaticdlummy means that the contents of the upper 8
bits is meaningless.

ASIC-VRAM interface requirements (TPC version) May 8, 1997 2

TABLE 1. ADC data sample sequence

nur:sger timebin sequence source destination

0 0 ASIC A|ASICB VRAM 1
1 ASIC C | dummy

1 2 ASIC A| ASICB VRAM 1
0 3 ASIC C | dummy

63 126 ASIC A|ASICB VRAM 1
127 ASIC C | dummy

0 128 ASICA|ASICB VRAM 2
129 ASIC C | dummy

1 130 ASIC A|ASICB VRAM 2
1 131 ASIC C | dummy

63 254 ASIC A|ASICB VRAM 2
255 ASIC C | dummy

0 256 ASIC A|ASICB VRAM 3
257 ASIC C | dummy

1 258 ASICA|ASICB VRAM 3
2 259 ASIC C | dummy

63 382 ASICA|ASICB VRAM 3
383 ASIC C | dummy

1.3 CPP data

The cluster pointers emerge from the ASIC’s exit FIFO as 2 pairs of bytes, corresponding

to the beginning and end pointers, each of which emerges as the low byte followed by the
high byte. These, too, must be assembled into the VRAM array so that a longword on the
1960 bus appears as the sequence {begin low, begin high, end low, end high.} In addition,

the memory lines need to be scrambled as for the ADC data so that all of the pointers for a
given ASIC appear to be a compact array to the i960. Note that the scrambling of 1960

TABLE 2. CPP data sample sequence

pad cluster
sequence | number | number data source destination
1 0 0 ASIC A begin LOW|ASIC B begin LOW VRAM 1
2 0 0 ASIC A begin HIGH | ASIC B begin HIGH VRAM 2
0 ASIC C begin LOW | dummy VRAM 1

ASIC-VRAM interface requirements (TPC version) May 8, 1997 3

TABLE 2. CPP data sample sequence

pad cluster
sequence | number | number data source destination

3 0 0 ASIC A end LOW | ASIC B end LOW VRAM 3
0 ASIC C begin HIGH | dummy VRAM 2
4 0 0 ASIC A end HIGH | ASIC B end HIGH VRAM 4
0 ASIC C end LOW | dummy VRAM 3
5 0 1 ASIC A begin LOW | ASIC B begin LOW| VRAM 1
0 ASIC C end HIGH | dummy VRAM 4
6 0 1 ASIC A begin HIGH | ASIC B begin HIGH VRAM 2
1 ASIC C begin LOW | dummy VRAM 1
7 0 1 ASIC A end LOW | ASIC B end LOW VRAM 3
1 ASIC C begin HIGH | dummy VRAM 2
8 0 1 ASIC A end HIGH | ASIC B end HIGH VRAM 4
1 ASIC C end LOW | dummy VRAM 3
9 0 2 ASIC A begin LOW | ASIC B begin LOW| VRAM 1
1 ASIC C end HIGH | dummy VRAM 4
10 0 2 ASIC A begin HIGH | ASIC B begin HIGH VRAM 2
1 ASIC C begin LOW | dummy VRAM 1
11 0 2 ASIC A end LOW | ASIC B end LOW VRAM 3
1 ASIC C begin HIGH | dummy VRAM 2
12 0 2 ASIC A end HIGH | ASIC B end HIGH VRAM 4
1 ASIC C end LOW | dummy VRAM 3
125 0 31 ASIC A begin LOW | ASIC B begin LOW| VRAM 1
30 ASIC C end HIGH | dummy VRAM 4
126 0 31 ASIC A begin HIGH | ASIC B begin HIGH VRAM 2
30 ASIC C begin LOW | dummy VRAM 1
127 0 31 ASIC A end LOW | ASIC B end LOW VRAM 3
30 ASIC C begin HIGH | dummy VRAM 2
128 0 31 ASIC A end HIGH | ASIC B end HIGH VRAM 4
30 ASIC C end LOW | dummy VRAM 3
8065 63 0 ASIC A begin LOW | ASIC B begin LOW| VRAM 1
62 31 ASIC C end HIGH | dummy VRAM 4
8192 63 31 ASIC A end HIGH | ASIC B end HIGH VRAM 4
31 ASIC C end LOW | dummy VRAM 3

8193 63 31 ASIC C end HIGH | dummy VRAM 4

ASIC-VRAM interface requirements (TPC version) May 8, 1997

address lines is not identical for ADC and CPP data; address lines A[21..20] are used to
distinguish between the ADC and CPP accesses (see below).

Looking at Table 2, sequence number 1 and 8193 are unlike the remainder of the steps;
they represent startup and shutdown stages of the process. The remainder of the table is
just a repetition of steps 9-12 (shaded in the table).

Performance is an issue for the CPP transfer. But each of the objects shown in Table 2
which form a 16-bit quantity is available simultaneously. So each sequence in the table
can in principle be performed in the 25 nsec required to access the next item in the ASIC’s
CPP stream. If necessary, pipelining of this sequence should be utilized to achieve this
speed.

The ASIC design guarantees that, following the first CPP byte, all successive CPP data
will be available at intervals of 22 nsec. If these data are required at intervals longer than
22 nsec/byte, it is not necessary to wait on the V_REQ signal.

ASIC D
ASIC E
ASIC F

AN 1A S 24

16 16 16 16
VRAM VRAM VRAM VRAM
| < | 1 <

VRAM 1 VRAM 2 VRAM 1 VRAM 2
VRAM 3 VRAM 4 VRAM 3 VRAM 4

= ,sica
——
4—— ASICB
——
<_<_ ASIC C

For the ADC data (A[21..20] < 3) the 1960 address lines have the following meaning:
* buffer number (0 -11): A[21..18]

» ASIC (0-5): A[17..15]
e pad number (0-63): A[14..9]
 timebin (0-511): A[8..2], BE[3..0]

ASIC-VRAM interface requirements (TPC version) May 8, 1997 5

At the VRAM, these functions have been mapped differently to the VRAM byte enables
and address bits:

» buffer number (0-11): VA[17..14]

» ASIC (0-5): VA[O], LCE, UCE
* pad number (0-63): VA[6..1]
« timebin (0-511): VA[13..7]LCE, UCE

Specifically, the VRAM byte enabldsr the ADC data are given by:

[CE 1=!(BEO & 'A17 & 'A15) left controller
UCE 1 = !(BEO & !A17 & Al5)
LCE 2=!(BE1 & 'A17 & 'A15)
UCE 2 =!(BE1 & !A17 & A15)
LCE 3=(BE2 & !A17 & |A15)
UCE 3=(BE2 & !A17 & A15)
[CE 4 =!(BE3 & 'A17 & |A15)
UCE 4 = |(BE3 & !A17 & Al5)

LCE 1 =1(BEO & Al17 &!A15) right controller
UCE 1=(BEO & Al7 & A15)
LCE 2 =(BE1 & Al7 & !A15)
UCE 2=(BE1 & Al7 & Al5)
LCE 3=!(BE2 & Al7 & !A15)
UCE 3=!(BE2 & Al17 & Al5)
LCE 4 =(BE3 & Al7 & !A15)
UCE 4 = (BE3 & Al7 & A15)

The VRAM address linefor the ADC data are related to the 1960 address lines as fol-
lows:

VA[O] = A[16]
VA[6..1] = A[14..9]
VA[13.7] = A[8..2]
VA[17..14] = A[21..18]

For the CPP data(A[21..20] = 3), the 1960 address lines have the following meaning:
» buffer number (0-11): A[19..16]

* ASIC number (0-5): A[15..13]

* pad number (0-63): A[12..7]

* cluster number (0-31): A[6..2]

The VRAM byte enable®r the CPP dataare given by:

LCE 1=!(BEO & !A15 &!A13) Ileft controller
UCE 1=YBEO & 'Al5 & Al3)
L[CE 2 =(BE1 & 'A15 &!A13)

ASIC-VRAM interface requirements (TPC version) May 8, 1997 6

UCE 2 = |(BE1 &!A15 & Al3)
[CE 3 =!(BE2 &!A15 &!A13)
UCE 3=!(BE2 &!Al15 & Al3)
[CE 4 = |(BE3 & !A15 & !A13)
UCE 4 = |(BE3 &!A15 & Al3)

LCE1=!(BEO & Al5 &'A13) right controller
UCE 1=!(BEO & A15 & A13)
[CE2=!(BE1l & A15 &!A13)
UCE 2 = (BE1 & Al15 & Al3)
LCE 3=!(BE2 & Al15 & !A13)
UCE 3=!(BE2 & Al15 & A13)
[CE 4= |(BE3 & Al5 &!A13)
UCE 4 = |(BE3 & A15 & A13)

The VRAM address linegor the CPP dataare related to the i960 address lines as fol-
lows:

VA[0] = A[14] |
VAB.1] = A6.2]

VA[11.6] = A[12.7]

VA[15..12] = A[19..16]

2.0 Functional requirements

The following paragraphs roughly describe the areas which have to be covered by this
design.

2.1 Initialization

The VRAM contains a mask (WPBM) which is used to enable the SAM data on a per-bit
basis as it is transferred from the SAM to the DRAM array. This mask register powers up
as all ‘0’ s, effectively disabling any writes from the SAM to the DRAM. The register
must be initialized to all ‘1’ s using a dedicated sequencing of the chip’s control lines.

This initialization is the shared responsibility of the software and the controller hardware.
The software is obliged to write to a special address with 32 bits of ‘1's on the data bus. A
write to this address will cause the controller to sequence the VRAM’s control lines to
write the data present on the data lines into the chip’s WPB mask. [Note that this may be
easier to implement as a pair of addresses corresponding to the 2 sets of chip enables on
the IBM chips.]

2.2 Refresh

Refresh for the VRAM must be provided.

ASIC-VRAM interface requirements (TPC version) May 8, 1997 7

2.3 Arbitration

There are three requesters for the VRAM random-access cycle:
* transfer from the SAM to the VRAM memory

» refresh cycles

* 1960 bus accesses

Arbitration must be provided with priority in the order listed.

2.4 Filling from ASIC

Data must be assembled from the various ASIC sequential ports to the SAM port of the
VRAMs. When a SAM is full, its contents must be transferred to the appropriate row of
the VRAM before the next ASIC data are serviced.

Data must be entered in the sequence shown in Tables 1 and 2.

2.5 1960 bus access

Addresses presented by the 1960 bus master (either i960 or PLX) need to be scrambled in
one of two ways as described above.

For performance reasons, burst mode must be accomodated on the 1960 bus for processor
accesses. Burst mode does not have to be provided for the PLX bridge. Thus a maximum
of 4 longword accesses must be accomodated.

This is complicated by the address scrambling necessary for the ADC and CPP data. The
scrambling results in 4 successive words in 1960 address space not being contiguous in the
VRAM.

Taking the case of the ADC data, 4 consecutive longwords on the 1960 bus have
A[3..2]=00,01,10,11. But these addesses result in VA[8..7]=00,01,... Note that these
accesses still fall within a row of the same byte of the same VRAM chip, so that burst
access can be accomodated with reasonable efficiency.

For the case of the CPP data, successive cluster words as seen from the i960 bus corre-
spond to VRAM address bits VA[2..1]. Again, these fall within a row, and can be accessed
without extra delay.

2.6 ADC/CPP transition

The VRAM controller treats incoming data as ADC data until it receives an END_ACQ
from each of its constituent ASICs. It then transitions to CPP mode. When it has com-
pleted emptying the ASICs of CPP data, which it must determine based on its internal

ASIC-VRAM interface requirements (TPC version) May 8, 1997 8

counters, it must signal the CPU that an event is ready. It does this by asserting an inter-
rupt. This interrupt is to remain asserted (level) until it is reset by the CPU.

The CPU resets the asserted interrupt by writing to a register interface built into the con-
troller, which has the following effects:
1) The controller deasserts the interrupt signal.

2) The controller resets any internal logic (e.g., counters) to make it ready for a new
event.

3) The controller distributes a CLEAR signal to each of its constituent ASICs.
The controller must also have a CLEAR input which is generated at the fiber optic inter-

face when an ‘abort event’ token is received. Upon receipt of this CLEAR, the controller
must execute numbers 2) and 3) in the above paragraph.

2.7 Register interface

The following registers must be implemented in the controller, accessible to the i960 pro-
cessor bus. In all cases the registers must appear as 32-bit objects, even if the contents are
byte-wide or even less. This means that the data should be in the least significant byte
lane, and the registers should fall on 4-byte addresses.

2.7.1 Buffer producer index (BPIl) $XXXXXX00

undefined buffer indek Read/Write

31 4 3 0

Bits BPI [3:0] are used by the controller to determine the number of the buffer into which
the next event should be stored. The software must guarantee that the proper buffer num-
ber is written into the controller before the event starts, and that the buffer register will not
be modified while an event is in progress.

2.7.2 Control Status register (CSR) $XXXXXX04

undefined INT Read
31 1 0

undefined CLEAR Write
31 1 0

ASIC-VRAM interface requirements (TPC version) May 8, 1997 9

The INT bit, when =1, signifies that the controller is presently asserting an interrupt.

Writing a ‘1’ to the CLEAR bit causes the controller to deassert its interrupt, together with
the side effects listed in an earlier paragraph. Writing a ‘0’ to this bit has no effect.

2.7.3 WPBM register $XXXXXX08
FF FF FF FF| Write
31 2423 1615 87 0

A write to this register causes the controller to sequence the VRAM control lines to write
the data present on the data lines into the VRAM’s WPB mask. Note that the data have no
effect on the controller; the data enter directly into the data ports of the affected VRAM
chips without passing through the controller.

ASIC-VRAM interface requirements (TPC version) May 8, 1997 10

1960 view of the ADC data

A[21..18] A[17..15] All4... 9] A[8...2]

buffer ASIC pad number timebi

buffer timebin ‘ pad number ASIC
VA[17..14] VA[13..7] VA[6..1] VA[O], LCE, UCE
ADC data seen from the VRAMs
1960 view of the CPP data
A[19..16] A[15.13] A[12..7] A[6..2] BE[3..0]
buffer ASIC pad cluster ng begin, end

buffer pad cluster n% ASIC ‘ begin, end

VA[15..12] VA[11..6] | VA[5..1] VA[0)] [LCE,UCE

CPP data seen from the VRAMs

ASIC-VRAM interface requirements (TPC version) May 8, 1997

11

base
base + 0x40000

base + 0x80000

base + 0xC0000

base + 0x100000
base + 0x140000
base + 0x180000
base + 0x1C0000

base + 0x200000
base + 0x240000

base + 0x280000

base + 0x2C0000
base + 0x300000

ADC buffer 1

ADC buffer 2

ADC bhuffer 3

ADC huffer 4

CPP buffer 1

ADC buffer 5

CPP buffer 2

ADC bhuffer 6

CPP buffer 3

ADC buffer 7

CPP buffer 4

ADC buffer 8

CPP buffer 5

ADC buffer 9

CPP buffer 6

ADC buffer 10

CPP buffer 7

ADC buffer 11

CPP buffer 8

ADC buffer 12

CPP buffer 9

ADC CPP data

CPP buffer 10

CPP buffer 11

CPP buffer 12

0x300000
0x310000
0x320000

0x330000
0x340000
0x350000
0x360000
0x370000
0x380000
0x390000

0x3A0000
0x3B0000

layout of buffers in 1960 address space

ASIC-VRAM interface requirements (TPC version)

May 8, 1997

12

