
Selective Trigger Detector

Readout Proposal

8/26/16

Jeff Landgraf

I. Configuration

The run control will specify, for each trigger, the list of trigger

detectors required to be read out. Additionally it will specify a

“prescale” to force the readout of all trigger detectors on some

fixed percentage of events.

ZDC, VPD, TOF, MTD, BEMC, EEMC, FMS, FPS…. This needs to be a new

mask, as far as I can see, as there is no current mask that separates

by detectors, spans the full set of detectors, and keeps the minimum

number of bits. (For example the crate index has gaps (for L0 and

old crates), has multiple detectors assigned to some crates, and has

multiple crates for some detectors). The mask should easily fit

into 16 bits.

We will also maintain the list of detectors contributing to each

DSM/QT board in the system. This will be a text file with a format

along the lines of:

<crate>[<board>]: det1, det2, det3, det4…

<crate>: det1, det2, det3

So we might have:

L1[6]: TOF, MTD, PP2PP

L1[8]: BBC, ZDC, VPD

L1[10]: BEMC, EEMC

L1[11]: TOF, BEMC, DAQ10k

FMS: FMS

This would correspond to the L1 boards requiring specific, different

detectors, but all boards in the FMS crate requiring the FMS

detector:

II. Trigger behavior

The L0 CPU software will perform the “logical or” of the masks for

each trigger fired on a given event to produce a “trigger detector

mask”. It will also check the “readout all detectors” prescale, and

if it is satisfied, it will override the trigger detector mask to

readout all crates.

III. Communication To DSM/QT crates and L2

The current data sent from L0 to DSM/QT crates on each event consists

of the following:

WORD 0 CRC TOKEN

WORD 1 DSM ADDRESS

WORD 2 NPRE NPOST

I propose changing this to:

WORD 0 CRC TOKEN

WORD 1 DSM ADDRESS

WORD 2 TRIGGER DETECTOR MASK NPRE NPOST TrgCmd DaqCmd

This limits npre/npost to values < 8, higher than the currently

supported values.

IV. L1 Data / DAQ File Format

The DAQ file should include the “TRIGGER DETECTOR MASK”. This will

be added to the Event Descriptor:

 * Current Status of Event Descriptor

The current situation with the event descriptor is:

Word 0 Name TrgDataFmtVer

Word 1 Length

Word 2 bunchXing_hi

Word 3 bunchXing_lo

Word 4 ActionWdDetectorBitMask TrgCmd DaqCmd

Word 5 token AddBits (status bits for

trg/daq handling)

Word 6 DSMInput ExternalBusy

Word 7 InternalBusy TrgDetMask

(was TcuCtrBunch(lo))

Word 8 TcuCtrBunch(hi) DSMAddress

Word 9 TCU_Mark Npre Crate_mask (lo 12 bits)

Word 10 Npost Res1 Crate_mask (hi 12 bits)

The rows correspond to 32 bits, for the full 11 word event

descriptor. I’ve taken the liberty of indicating the number of

bits actually used for each field rather than actual sizes of the

EvtDescData structure’s elements as it currently stands, as there are

many strange cases of 32 bit words from the hardware being moved, and

inefficiently unpacked, due to the long historical evolution of the

structure.

The tcuCtrBunch is actually a 32 bit quantity which is not aligned in

the data structure. The reason I mark tcuCtrBunch(lo) as unused is

because this quantity is the “fifo10” from the current TCU. The 16

bit DSMAddress is just the truncated version of tcuCtrBunch.

8 bits of the Res1 field are actually in use as the DAQ10K mask.

Also note that more bits could potentially be considered unused.

There are only actually 3 addBits flags used, also the daq10k mask

currently only has 6 possible bits.

I propose to remove tcuCounterBunch_lo and replace it with the

trigger detector mask. Not only is the data replicated, but also

the field is not used in any code checked into CVS so there should be

little impact on it’s reuse.

V. DSM/QT behavior

The DSM/QT crate software will parse the configuration file at

startup, so will “know” which boards must be read-out for which

“trigger detector mask”. It will only readout necessary boards.

For boards that are not read out, the behavior depends upon the type

of Crate:

DSM Crates: fill the board data with 0’s

QT Crates: Set the length of the data payload for that board to

0.

In either case, the DSM/QT software will ship the event (or empty

event) to L2 as normal. There should be no changes to the core L2

system.

This specific choice, can be discussed, It might be better to have

some specific test pattern or flag set so that QA / Data analysis can

know that the boards were not read out, rather than assume that the

data values were 0 --- TBD.

VI. QA / Bit Checkers

This change will need a minor corresponding change to the QA system

and any bit checkers to ensure that empty events are not treated as

corrupt events.

VII. Offline Interface

The offline interface should get some function to access the “Trigger

Detector Mask”.

VII. Progress

1. I updated the proposal for the STP broadcast message.

2. I updated the proposal for passing the TRGDET mask to

trigger/daq

I tested wheter the L2Result[] and C2Result[] arrays are currently

passed from L1 through all the way to DAQ. They are not. However,

I also investigated the event descriptor, and found unused space for

the TRGDET mask and updated the proposal to use this space for it.

3. I Implemented the Run Control

The configuration parameters now exist in the run control.

4. TRGDET Bit Definitions:

I have updated the “rtsSystems.h” file with the following values for

the TRGDET bits:

// Trigger Detector Bit Mask

#define TRGDET_ZDC 0

#define TRGDET_BBC 1

#define TRGDET_VPD 2

#define TRGDET_TOF 3

#define TRGDET_ETOF 4

#define TRGDET_MTD 5

#define TRGDET_BEMC 6

#define TRGDET_EEMC 7

#define TRGDET_PP2PP 8

#define TRGDET_FMS 9

#define TRGDET_FPS 10

5. Strawman detector to crate mapping:

I also created an initial trigger detector to crate mapping in

/RTS/conf/handler/trgDetToTriggerCrate.txt. This is not in any way

final, as I don’t have the full information.

6. Helper function for trigger crate software:

There is a helper function “UINT16 getTrgDetRequiredMask(char

*mynodename)” which takes as an argument the name of the trigger

crate and returns the required TRGDET mask. The function is

provided by RC_Config.h (through rtsCfgLib).

VIII. Still To Do:

1. Implement the L0 code assigning the trgdet masks

2. Actually change the STP broadcast message. (This is the one

task that must be done at the same time for all the software.)

3. Implement the changes in the trigger crates, by skipping readout

if the detector mask is not satisfied.

