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Peibling T Ty = 11 + T2
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EERPETPRY o A = 1 — T2
always a lossless transformation of data.
Autocorrelation A is a projection of a two-point

distribution onto difference variable(s) za, lossless for
xs-invariant (homogenous, stationary) problems.
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3 Uncorrelated event reference for DWT

mixed events: no pixel used twice;
< 1 pixel from any event in the same
mixed event; no mixing of events
with largely different multiplicity and
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4 Discrete Wavelet Transform (DWT)

", s
Fa Vol

&& 0

F#L,i,j(qb,n)—Haar wavelet orthonormal basis in (¢,7n): scale fineness (m),
directional modes of sensitivity (), track density p(n, ¢, pr), locations in
2D (4,7). DWT is an expansion in this basis.



5 A flow-inspired example



5 A flow-inspired example

400F

200}

500¢
400¢
300F
200}
100}

400}

az

200F

400

200}

al

200F

400F

400F

200F

az2

400E

200F

al

800F
600

400F

a0

200F

Hal

ar

b0




5 A flow-inspired example

200F

400F

500
400F
300F
200F
100F

200

400}

400

200F

al

al

a0

i

il

EINIA

TR

Haar

b0

Elliptic flow-inspired example:
xr axis — an angle in “natural
units” (27 = 1), y axis —
multiplicity. The
multiresolution theorem: a4
= a04+b0+bl4+b24b3, can
have better fineness.



P(m), arb. units
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Power spectrum of that flow event as a function of ‘“fineness” m. The
dominant contrubution is m = 1 (the “v5"” harmonic, b1l). Statistical
fluctuations also contribute.

P(m) =277 3% (p, Fin.i)®.

Computational complexity O(N)!
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6 DWT Power Spectra and the Hilbert Space

many mixed

Power of local fluctuations, mode \: P*(m) = 272" 37 (p, F, ; ;)? oc norm?
in the DWT subspace. “Dynamic texture” P} (m)= P..,.(m)— P}. (m).

dyn
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7 DWT Power Spectra and Correlations
X(®) |

Autocorrelation

A = [ XWX (47 de

: (1)
1
: where 7 =1ty —t1, and X (i) is
: B  “homogeneous random field".
‘Y £ t
Wiener-Khinchin theorem relates A(7) with the local fluctuation power
spectrum P(w) via Fourier transform F.
Foor(P(w)) = A(T) (2)
P(w) = Frow(A(T)) (3)
O(N) — O(N?) (4)

Prefer O(N) for initial data processing for CPU reasons.
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In the Haar discrete wavelet basis, the integral
equation 3 looks different:

P(m) = /oo X(r/2)X (—1/2)W (r,m) dr,

where W is the weight function for the Haar
wavelet. P(m) reflects differential structure on
scale m. See example:
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Istron Bay, Greece, June 2002,
nucl-ex/0211015. STAR DWT
analysis of charge-independent
correlations, AuAu, /syn = 130 GeV
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8 Centrality dependence
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Per-particle-normalized
charge-independent
autocorrelations NAR in
difference variables na (solid
dots) and ¢ (open triangles).
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9 p, dependence: peripheral events, ./syy = 200 GeV

_ | Peripheral events (60-84%):
Eo.ol 7 normalized dynamic texture
T | for fineness scales m = 0,1,0
2 1 from left to right panels,

1 respectively, as a function of

o 1 I "] p.. e — STAR data: solid line —
| 1 I‘I‘l'* 1 1 1 ||||||| 1
07 L 107 L 107 . standard HIJING, dash-dotted
p,, GeVic line — HIJING without jets.
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_ | Peripheral events (60-84%):
Eo.ol 7 normalized dynamic texture
T | for fineness scales m = 0,1,0
2 1 from left to right panels,

1 respectively, as a function of

0= - . .
I 1 o {P.e— STAR data; solid line —
| ol - 1 1 L1l 1
07 L 107 L 107 . standard HIJING, dash-dotted
P, Gevic line — HIJING without jets.

Qualitative trends in peripheral data are as expected. What signal to
expect in the central data, if correlation does not change ?

Ptrue 1 Ptrue 1
—1)= = 1
sz'gc N central me:

(5)

peripheral Ncentral
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10 p; dependence: central events, ./syy = 200 GeV

Central (top 4%) events:

x 10 n normalized dynamic texture
0_1_ | for fineness scales m — 0,1,0
- | from left to right panels,
E 1 respectively, as a function of
%0.05 p:. « — STAR data; solid line —
o | standard HIJING; dashed line
[ 1 — HIJING with jet quenching;
0 boxes — peripheral STAR data
10 ”1 | just shown, renormalized as

just described.
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10 p; dependence: central events, ./syy = 200 GeV

Central (top 4%) events:

x 10 n normalized dynamic texture
0.1 -1 mode - for fineness scales m = 0,1,0
- [ on=1 | from left to right panels,
< =Tt : :
E 1 respectively, as a function of
5 I
£0.05 - 4 / Hpt. = STAR data; solid line —
% I °s "4 ] standard HLJING; dashed line
_ FERNI o " ¢ 7% 1 — HIJING with jet quenching;
O ey} boxes — peripheral STAR data
1072 1 107 1 10 1 just shown, renormalized as
Py GeVic just described.

We are observing a modification of the minijet structure predominantly in
the longitudinal, n direction. Longitudinal expansion of the hot and dense
medium formed early in the collision makes this direction special and is
likely to be part of the modification mechanism.

17



11 How to model correlations ?

18



11 How to model correlations ?

via rejection/acceptance algorithm, according to a multiparticle
probability density distribution. In general, for N particles denoted
1,2,....,N the differential probability density

P(1,2,..,N) = P(1)P(2|1)P(3|1,2)...P(N|1,2, ..., N — 1),

where P(2|1) and subsequent terms are conditional single particle
probabilities.
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12 Understanding low p;
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Dynamic texture response in
various idealized situations
(showing only one scale):

(a) events of random
(uncorrelated) particles

(b) p:-independent elliptic flow
(c) Correlations at low Q..
(Bose-Einstein correlations
and Coulomb effect)

(d) HIJING jets



13 Scale dependence

21



13 Scale dependence

P"dyn/P"mix/N

0.01 | T
- N mode -
- peripherdl + I
0.005 - N
Or R
] L |
-1
10 1

— N mode
- central

21



13 Scale dependence
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Scale dependence of the dynamic texture measure in peripheral and
central events for 1.1 < p; < 1.5 GeV/c. e— STAR data; solid line —
standard HIJING; dashed line — HIJING with jet quenching. An estimate
of systematic error, mainly due to track merging, is shown as a hatched
area.
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14 Rapidity scale and collision history

Bjorken expansion:
t=(22+712)2, CBis
space-like; DC, DA, DB,
4 AB contacts possible.

y = 5 In *= Rapidity and causality:

large dy <== large 6z. Large Jy

10 8 6 4 2 0 2 24 6 8 10 correlations reflect early state,
z,fm otherwise acausal.
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longitudinal flow and minijets work ? What do we learn about the
expanding fluid ? The fluid seems opaque and ‘dissipative”.

e [ he scale dependence of the effect points to the early stage as its source

e More info: nucl-ex/0407001
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