
Early stage of RHIC collisions and its equilibration: a

story told by correlations

BNL Nuclear Physics Seminar

Mikhail Kopytine, STAR Collaboration

Kent State University

http://www.star.bnl.gov/~kopytin/

September 8, 2004

1

http://www.star.bnl.gov/~kopytin/


1 Content of the talk

• Equilibration

2



1 Content of the talk

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it

taking place ? What is the mechanism ?

2



1 Content of the talk

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it

taking place ? What is the mechanism ?

• Methods

2



1 Content of the talk

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it

taking place ? What is the mechanism ?

• Methods

Initial state: a “calibrated source” of correlations. Watch

their evolution into final state in time → system size. Use

two particle correlations and Discrete Wavelet Transform.

2



1 Content of the talk

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it

taking place ? What is the mechanism ?

• Methods

Initial state: a “calibrated source” of correlations. Watch

their evolution into final state in time → system size. Use

two particle correlations and Discrete Wavelet Transform.

• Observations

2



1 Content of the talk

• Equilibration

Arguably the central issue in hadronic sector at RHIC. Is it

taking place ? What is the mechanism ?

• Methods

Initial state: a “calibrated source” of correlations. Watch

their evolution into final state in time → system size. Use

two particle correlations and Discrete Wavelet Transform.

• Observations

• Conclusions

2



2 Autocorrelation

3



2 Autocorrelation

3



2 Autocorrelation

„

x1

x2

«

→
„

xΣ ≡ x1 + x2

x∆ ≡ x1 − x2

«

,

always a lossless transformation of data.

Autocorrelation A is a projection of a two-point

distribution onto difference variable(s) x∆, lossless for

xΣ-invariant (homogenous, stationary) problems.

∆R(x1, x2) =
ρsibling(x1, x2)

ρmixed(x1, x2)
− 1
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4 Discrete Wavelet Transform (DWT)

F λ
m,i,j(φ, η)–Haar wavelet orthonormal basis in (φ, η): scale fineness (m),

directional modes of sensitivity (λ), track density ρ(η, φ, pT ), locations in

2D (i, j). DWT is an expansion in this basis.
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b1 Elliptic flow-inspired example:

x axis – an angle in “natural

units” (2π = 1), y axis –

multiplicity. The

multiresolution theorem: a4

= a0+b0+b1+b2+b3, can

have better fineness.
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P(m), arb. units

Power spectrum of that flow event as a function of “fineness” m. The

dominant contrubution is m = 1 (the “v2” harmonic, b1). Statistical

fluctuations also contribute.

P (m) = 2−m
P

i〈ρ, Fm,i〉2.

Computational complexity O(N)!
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6 DWT Power Spectra and the Hilbert Space

Power of local fluctuations, mode λ: P λ(m) = 2−2m
P

i,j〈ρ, F λ
m,i,j〉2 ∝ norm2

in the DWT subspace. “Dynamic texture” P λ
dyn(m) ≡ P λ

true(m) − P λ
mix(m).
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X(t)
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Autocorrelation

A(τ) =

Z

∞

−∞

X(t)X(t + τ) dt

(1)

where τ = t2 − t1, and X(t) is

“homogeneous random field”.
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X(t)

tt
1

t
2

Autocorrelation

A(τ) =

Z

∞

−∞

X(t)X(t + τ) dt

(1)

where τ = t2 − t1, and X(t) is

“homogeneous random field”.

Wiener-Khinchin theorem relates A(τ) with the local fluctuation power

spectrum P (ω) via Fourier transform F.

Fω→τ (P (ω)) = A(τ) (2)

P (ω) = Fτ→ω(A(τ)) (3)

O(N) → O(N2) (4)

Prefer O(N) for initial data processing for CPU reasons.
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In the Haar discrete wavelet basis, the integral

equation 3 looks different:

P (m) =

Z

∞

−∞

X(τ/2)X(−τ/2)W (τ, m) dτ,

where W is the weight function for the Haar

wavelet. P (m) reflects differential structure on

scale m. See example:
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9 pt dependence: peripheral events,
√

sNN = 200 GeV

0

0.01

10
-1

1

P
λ d

yn
/P

λ m
ix

/N
ηφ mode
δη=1
δφ=π

0

0.01

10
-1

1
pt, GeV/c

φ mode
δη=1/2
δφ=π/2

0

0.01

10
-1

1

η mode
δη=1
δφ=π

Peripheral events (60-84%):

normalized dynamic texture

for fineness scales m = 0, 1, 0

from left to right panels,

respectively, as a function of

pt. • – STAR data; solid line –
standard HIJING, dash-dotted

line – HIJING without jets.
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line – HIJING without jets.

Qualitative trends in peripheral data are as expected. What signal to

expect in the central data, if correlation does not change ?
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central
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10 pt dependence: central events,
√
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just shown, renormalized as

just described.
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just described.

We are observing a modification of the minijet structure predominantly in

the longitudinal, η direction. Longitudinal expansion of the hot and dense

medium formed early in the collision makes this direction special and is

likely to be part of the modification mechanism.
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probability density distribution. In general, for N particles denoted

1, 2, ..., N the differential probability density
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where P (2|1) and subsequent terms are conditional single particle
probabilities.
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12 Understanding low pt
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An event generator tuned to reproduce like- and unlike-sign correlations in Qinv,

reproduces the low pt trends in the data. HBT, Coulomb and string

fragmentation physics contribute at low pt.
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• The scale dependence of the effect points to the early stage as its source

23



15 Summary

• DWT power spectra provide efficient (O(N)) differential scale

decomposition of the two-point correlation structure

• Fluctuations in local hadron density in the momentum space due to
angularly correlated (mini)jets are observable with minimum-bias TPC

tracks at pt < 2 GeV/c ⇒ can study equilibration !

• The minijet correlation structure is strongly modified with centrality; the
effect appears to “turn on” around ν = (Npart/2)1/3 ≈ 3.

• Broadening of the correlation in η and weakening of P η
dyn on the coarse

scale are consistent descriptions of the effect. The modification is

particularly strong at pt > 0.8 GeV. How does the coupling between

longitudinal flow and minijets work ? What do we learn about the

expanding fluid ? The fluid seems opaque and “dissipative”.

• The scale dependence of the effect points to the early stage as its source

• More info: nucl-ex/0407001
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