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Abstract. From the correlation structure of transverse momentum p; in relativistic nuclear
collisions we observe for the first time temperature/velocity structure resulting from low-
Q? partons. Our novel analysis technique does not invoke an a priori jet hypothesis. p¢
autocorrelations derived from the scale dependence of (p;) fluctuations reveal a complex parton
dissipation process in RHIC heavy ion collisions. We also observe structure which may result
from collective bulk-medium recoil in response to parton stopping.

1. Introduction

Central Au-Au collisions at RHIC may generate a color-deconfined medium (quark-gluon plasma
or QGP) [1]. Some theoretical descriptions predict abundant low-Q? gluon production in the
early stages of high-energy nuclear collisions, with rapid parton thermalization as the source
of the colored medium [2, 3, 4]. Nonstatistical fluctuations of event-wise mean p; (p;) [5, 6]
may isolate fragments from low-Q? partons and determine the properties of the corresponding
medium. A recent measurement of excess (p;) fluctuations in Au-Au collisions at 130 GeV
revealed a large excess of fluctuations compared to independent-particle p; production [6].

In this paper we describe the event-wise structure of transverse momentum p; produced in
relativistic nuclear collisions at RHIC. We discuss the role of low-Q? partons as Brownian probe
particles in heavy ion collisions. We compare joint autocorrelations on (7, ¢) to conventional
leading-particle techniques for parton fragment analysis. We present experimental evidence
from mean-p; fluctuations and corresponding p; autocorrelations for local temperature/velocity
structure in A-A collisions which can be interpreted in terms of parton dissipation in the A-
A medium and same-side recoil response of the bulk medium to parton stopping. Finally, we
review the energy dependence of mean-p; fluctuations from SPS to RHIC and its implications.

2. Low-Q? partons as Brownian probes

In 1905 the microscopic structure of ordinary matter was addressed theoretically by Einstein,
who introduced the concept of a (Brownian) probe particle large enough to be observed
visually, yet small enough that its motion in response to the molecular dynamics of a fluid
might also be observed [7]. Those two constraints specified the one-micron probe particles
used by Jean Perrin to confirm molecular motion in fluids [8, 9]. The Langevin equation
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medium of point masses qualitatively smaller than the probe particle [10, 11]. The accelerations
are gaussian-random with zero mean; @goch (t) is isotropic and @pes(t) L 9(t) (and o< v). The
first term models collective dissipation of probe motion (viscosity), the second models individual
probe collisions with medium particles and the third simulates multiple Coulomb scattering of a
fast probe particle. A solution of that equation for unit initial speed in the = direction starting
at the (x,y) origin is shown in the first two panels of Fig. 1. Speed is dissipated with time,
leading to equilibration with the medium: fluctuations of velocity about zero and random walk
of the probe. An example of such motion is shown in the third panel: an electron track in a
time projection chamber exhibits multiple Coulomb scattering along its trajectory, terminating
in random walk represented by the circled ball of charge at the trajectory endpoint [12].
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Figure 1. Left panels: Solution to the Langevin equation for a point mass with unit initial
velocity in the positive x direction illustrating thermalization. Right panel: two views of an
electron track in a TPC, with charge ball from random walk at track endpoint (circled) [12].

In 2005 we seek the microscopic structure and local dynamics of the QCD medium formed
in RHIC heavy ion collisions. The point-mass concept of Einstein’s Brownian probe must be
extended to partonic probes, possibly with internal degrees of freedom and experiencing complex
non-point interactions with medium degrees of freedom. This problem requires novel analysis
techniques closely coupled to the Langevin equation and its associated numerical methods. The
analog in heavy ion collisions to Einstein’s Brownian probe is the low-Q? parton, visualized for
the first time by methods presented in this paper. In contrast to Einstein’s notion of a particle of
exceptional size observed indefinitely in equilibrium with microscopic motions of a thermalized
particulate medium, the QCD Brownian probe is identical to medium particles but possesses
an exceptional initial velocity relative to the medium with which it interacts for a brief interval:
do probe manifestations in the hadronic system reveal ‘microscopic’ degrees of freedom of the
medium, is the medium locally or globally equilibrated, what are its fluid properties?

3. Joint autocorrelations vs conditional distributions

Conventional study of QCD jets in elementary collisions is inherently model-dependent.
Scattered partons with large transverse momentum are associated individually with
concentrations of transverse momentum or energy localized on angle variables (n,¢). In
heavy ion collisions, where such identification is impractical, jet studies are based on a high-
p: ‘leading particle’ which may estimate a parton momentum direction and some fraction of its
magnitude. The leading-particle momentum is the basis for two-particle conditional distributions
on transverse momentum and angles. Those distributions reveal medium modifications to parton
production and fragmentation as changes in the single-particle p; spectrum (R44) and in the
fragment-pair relative azimuth distribution (away-side jet disappearance), referred to collectively
as jet quenching [13]. The leading-particle approach is based on perturbative concepts of parton
hard scattering as a point-like binary interaction and parton energy loss as gluon bremsstrahlung.
We can then ask how the medium is modified by parton energy loss and what happens to lou-Q?



partons, in a Q2 regime where the pQCD assumption of point-like interactions breaks down,
where the parton may have an effective internal structure. In other words, how can we describe
parton dissipation as a transport process, including bulk-medium degrees of freedom?

To access low-Q? partons we have developed an alternative analysis method for jet correlations
employing autocorrelation distributions which do not require a leading- or trigger-particle
concept. The autocorrelation principle is illustrated in Fig. 2. Projections of the two-
particle momentum space of 130 GeV Au-Au collisions onto subspaces (11, 72) and (¢1, ¢2) (left
panels) indicate that correlations on those spaces are approximately invariant on sum variables
Ny = m—+n2 and ¢ = @1+ @2, in which case autocorrelations on difference variables na = n1—n2
and ¢A = ¢1 — ¢o retain nearly all the information in the unprojected distribution [14].
The autocorrelation concept was first introduced to solve the Langevin equation, to extract
deterministic information from stochastic trajectories. In time-series analysis the autocorrelation
of time series f(t) is A(1) = 7 _Tﬁz f(t) f(t+ 7) dt, where difference variable 7 = t; — tg is the
lag. For a stationary distribution (f(t) correlations statistically independent of absolute time)
the autocorrelation represents a projection by averaging of all the information in f(¢).
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Figure 2. Left panels: Two-particle distributions on n and ¢ from central Au-Au collisions at
130 GeV illustrating stationarity along the sum axis. Right panels: Joint autocorrelations on
(na, ¢a) from p-p collisions (left) and Au-Au collisions (right).

The same principle can be applied to ensemble-averaged two-particle momentum distributions
which are approximately invariant on their sum variables [15]. Distributions on angle space
(n1, M2, @1, P2) can be reduced to joint autocorrelations on difference variables (na, ¢a). For
example, joint autocorrelations in the right-most two panels of Fig. 2 correspond to (11, 72) and
(¢1, ¢2) distributions in the left-most four panels. Joint autocorrelations for relativistic nuclear
collisions retain almost all correlation structure on a visualizable 2D space and provide access to
parton fragment angular correlations with no leading-particle condition, sampling a minimum-
bitas parton distribution. Jet correlations are thus revealed with no a priori jet hypothesis,
providing access to the low-Q? partons which serve as Brownian probes of the QCD medium.

4. The p-p reference system

The reference system for low-Q? partons in A-A collisions is the hard component of correlations
in p-p collisions. The single-particle p; spectrum for p-p collisions can be decomposed into soft
and hard components on the basis of event multiplicity dependence [16]. Event multiplicity



determines statistically the fraction of p-p collisions containing observable parton scattering
(hard component). Hard components for ten multiplicity classes in the first panel of Fig. 3,
obtained by subtracting fixed soft-component spectrum model Sy, are plotted on transverse
rapidity ¢ = In{(my + pt)/mo}. The approximately gaussian distributions on y; may be
compared with conventional fragmentation functions plotted on logarithmic variable ¢ =
In{Ejc:/p:} [17]. Such single-particle structures motivated a study of two-particle correlations
on (Y1, yr2). An example in Fig. 3 (second panel) reveals structures at smaller and larger y;.
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Figure 3. Single-particle hard-component distributions on transverse rapidity for ten
multiplicity classes of 200 GeV p-p collisions; two-particle distribution on transverse rapidity and
soft and hard components respectively of joint autocorrelations on pseudorapidity and azimuth.

Soft and hard correlation components on y;, interpreted as longitudinal string fragments
(smaller y;) and transverse parton fragments (larger y;), produce corresponding structures in
joint angular autocorrelations on (na, ¢a). In the third panel, string-fragment correlations
for unlike-sign pairs are determined by local charge and transverse-momentum conservation
(the sharp peak at the origin is conversion electrons). Minimum-bias parton fragments in the
fourth panel produce classic jet correlations, with a same-side (na < 7/2) jet cone at the
origin and an away-side (na > 7/2) ridge corresponding to the broad distribution of parton-
pair centers of momentum. Similar-quality parton fragment distributions on (na, ¢a) can be
obtained for both p;s of a hadron pair down to 0.35 GeV/c (parton Q)/2 ~ 1 GeV). The criteria
for partons as Brownian probes are 1) Q2 large enough that resulting hadron correlations are
statistically significant and uniquely assigned to parton fragments, and 2) Q? small enough
that correlations are significantly modified by local medium dynamics. In the QCD context the
medium itself is formed from low-Q? partons. In the low-Q? regime ‘partons’ may not interact
as point color charges, and complex couplings to the medium, e.g., tensor components of the
velocity field (Hubble expansion), may be important. Non-perturbative aspects of low-Q? parton
collisions should be accessible via low-p; fragment angular autocorrelations and two-particle y;
distributions.

5. (p¢) fluctuations and prehadronic temperature/velocity structure

Event-wise (p;) fluctuations generally result from local event-wise changes in the shape of the
single-particle p; spectrum, as illustrated in Fig. 4 (first panel). In each collision, a distribution
of ‘source’ temperature and/or velocity on (7, ¢) determines the local parent p; spectrum shape.
Each hadron p; samples a spectrum shape determined by the sample location, as shown in Fig. 4
(second panel). The local parent shape can be characterized schematically by parameter 3(n, ¢),
interpreted loosely as 1/T or v/c for the local pre-hadronic medium. Variation of either or both
parameters relative to an ensemble mean results in (p;) fluctuations.

A similar situation is encountered in studies of the cosmic microwave background (CMB)
as shown in Fig. 4 (third panel) [18]. The temperature distribution § on the unit sphere is
represented by the microwave power density (local spectrum integral rather than mean). The
B(0, ¢) structure for that single event is directly observable due to large photon numbers. In



contrast, for a single heavy ion collision as in Fig. 4 (fourth panel) the parent distribution is
sparsely sampled by ~ 1000 final-state hadrons, and parent properties are not accessible on an
event-wise basis.
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Figure 4. Sources of (p;) fluctuations, temperature/velocity (/3) distribution on binned angle
space, WMAP microwave distribution and particle distribution from central Au-Au collision.

Interpreting (p;) fluctuations has two aspects: 1) study equivalent two-particle number
correlations on p; or y, which reveal medium modification of the two-particle parton fragment
distribution—those correlations are directly related to a distribution on (1, 32) sensitive to
in-medium parton dissipation; 2) invert the scale or bin-size dependence of (p;) fluctuations
to obtain p; autocorrelations on (1, ¢) which reveal details of event-wise (3(n, ¢) distribution.
We first consider properties of (7, ¢) as a random variable and its relation to two-particle
correlations on p; or y;. We then employ p; autocorrelations from (p;) fluctuations to infer
aspects of the §(n, ¢) distribution which depend only on separation of pairs of points on (1, @).

6. Parton Dissipation in the A-A Medium

(p¢) fluctuations can be related to a 1D distribution on temperature/velocity parameter 3 and
corresponding two-point distribution on (51, 52). Each entry of those distributions corresponds to
an event-wise p; spectrum in a single bin or pair of bins on (7, ¢). The frequency distribution on /3
represents variation of the single-particle p; spectrum shape. For Gaussian-random fluctuations
the relative variance of the ( distribution is ag /B% = 1/n, where n is the exponent of Lévy
distribution A/(1+4 By(m¢—mg)/n)™ describing the average p; spectrum shape [19]. The shape of
the single-particle spectrum is thus related to the event-wise temperature/velocity distribution.
Other aspects of shape determination, such as collective radial flow, also contribute to exponent
n. We therefore consider the two-point distribution on (31, 32).

Given the correspondence between the fluctuation distribution on § and the shape of the
single-particle spectrum on p; we seek the relation between the distribution on (1, 32) and
the shape of the two-particle distribution on (ps,pi2). The distribution on (31, 32) provides
information about the correlation structure of event-wise 3 distributions. The two-particle Lévy
distribution on (ps1, p2), constructed as a Cartesian product of two single-particle distributions
with Lévy exponent n, represents a mixed-pair reference distribution (pairs from different but
similar events). We can also define a two-particle object Lévy distribution representing sibling
pairs (pairs formed from single events), with exponents ny and na representing variances on
sum and difference axes (0s,5a). The ratio of object and reference distributions reveals a
saddle-shaped structure whose curvatures measure temperature/velocity correlations on (7, ¢).

Ratios of sibling to mixed pair densities for 130 GeV Au-Au collisions are shown in Fig. 5
(first two panels) plotted on variable X (p;) [20]. Those panels are dominated by a Lévy saddle,
a 2D manifestation of two-particle p; spectrum shape variation due to velocity and temperature
fluctuations in the parent distribution. The saddle is an intermediate shape in the dissipation
process; its curvatures reflect the correlation structure of the (31, 32) distribution, especially
its covariance as discussed in [20]. The saddle curvatures on sum and difference variables,



Figure 5. Left panels: Two-particle distributions on X (p;) (see text) for peripheral and central
Au-Au collisions. Right panels: Corresponding number distributions on transverse rapidity.

measured by 1/ny, —1/n and 1/na — 1/n, represent the variance excesses (beyond independent
p sampling from a fixed parent) and covariance of temperature/velocity fluctuations for small-
amplitude Gaussian-random fluctuations. For an equilibrated system the saddle would be
flat (zero curvatures), and (3 fluctuations would be consistent with finite-number fluctuations:
J%E /B% = J%A /B2 = 1/n. The integral of correlations on (ps1, pr2), measured by the saddle-
curvature difference 1/ny—1/na, is equivalent to (p;) fluctuations measured in the corresponding
detector acceptance [6]. With increasing Au-Au centrality the curvature on the difference axis
increases strongly, while that on the sum axis approaches zero [20].

More recently, we have transitioned from per-pair correlation measure 7#—1 plotted on variable
X (pt) to per-particle density ratio Ap/,/prey plotted on transverse rapidity y;. We wish to
follow, within a single context, the transition from parton fragment distributions in elementary
collisions to correlations from parton dissipation in a bulk medium. Fig. 4 (last two panels) shows
Ap/\/Pref on (yi1, ye2) for peripheral and central Au-Au collisions at 200 GeV. The logarithmic
y¢ interval [1,4.5] corresponds to linear p; ~ [0.15,6] GeV /c. Peripheral collisions produce a 2D
minimum-bias parton fragment distribution peaked at y; ~ 2.5 (p; ~ 1 GeV/c), similar to p-p
collisions but without small-y; correlations from string fragmentation. As centrality increases the
fragment distribution is transported to smaller y; and approaches a shape corresponding to the
Lévy saddle on X (p;) x X (p¢). In this format we can study the transition with A-A centrality
between two extreme cases: 1) in vacuo distributions of string and parton fragments and 2)
gaussian-random variation of 5 on (7, ¢) for a nearly-equilibrated system. Parton equilibration
in the A-A bulk medium is represented by the transition between those extremes.

7. (pt) fluctuations and p; autocorrelations

The previous section describes (p;) fluctuations in terms of two-particle number densities on
(pt1, pr2) or its logarithmic equivalent (41, ys2), the issue being modification of the two-particle
parton fragment distribution with changing A-A centrality. One can also express (p;) fluctuations
in terms of two-particle p; distributions on (7, ¢) which reveal different aspects of the underlying
two-particle number distribution on vector momentum. This section describes a procedure
to determine the correlation structure of the (3(n,¢) distribution as a temperature/velocity
distribution on the prehadronic medium.

Fluctuations in bins of a given size or scale are determined by two-particle correlations with
characteristic lengths less than or equal to the bin scale. By measuring fluctuation magnitudes
as a function of bin size one can recover some details of the two-particle correlation structure—
those aspects which depend on the separation of pairs of points, not on their absolute positions.
The relation between fluctuations and correlations is given by the integral equation [15]
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with kernel K0 = (m — k+1/2)/m - (n — 14 1/2)/n representing the 2D macrobin system,

Ac?..(61,0¢) is a variance excess and Ap(p; : n;)/\/preg(n) is an autocorrelation density ratio.

That equation can be inverted numerically to obtain the p; autocorrelation.
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Figure 6. Left panels: (p;) fluctuation scale dependence and corresponding p; autocorrelation
for peripheral Au-Au collisions. Right panels: Similar distributions for mid-central collisions.

Fig. 6 shows fluctuation scale dependence on bin sizes (07, d¢) and joint p; autocorrelations
on difference variables (na, ¢a) for peripheral (left panels) and mid-central (right panels) Au-Au
collisions. Fluctuation measurements at the full STAR acceptance correspond to the single points
at the apex of the distributions on scale. Measurements with different detectors correspond to
different regions of those surfaces. Inversion to autocorrelations provides physical interpretation
of fluctuation scale dependence. By inverting (p;) fluctuations, parton fragment distributions are
visualized as temperature/velocity structures on (7, ¢) complementary to number correlations on
(ye1, ye2) described in the previous section. A more comprehensive picture of parton scattering,
dissipation and fragmentation is thereby established.

Figure 7. p; autocorrelation from inversion for peripheral Au-Au collisions, autocorrelations
from pair counting for minimum-bias p-p collisions and from collisions with n., > 9.

p¢ autocorrelations can also be determined directly by pair counting. In Fig. 7 the peripheral
Au-Au result from the previous section (first panel) is compared to the minimum-bias p-p result
(second panel) and to p-p collisions with n., > 9 (third panel). The last panel shows the
charge-dependent (like-sign — unlike-sign pairs) p; autocorrelation for the same event class,
reflecting charge-ordering along the jet thrust axis during parton fragmentation. This is the
first determination of p; correlations in p-p collisions.

8. Local velocity structure and same-side recoil

Whether derived from pair counting or from fluctuation inversion, the resulting p;
autocorrelations can be separated into several components. We first subtract multipoles on
azimuth (azimuth sinusoids independent of pseudorapidity), revealing structure associated with
parton scattering and fragmentation. Fig. 8 shows the resulting p; autocorrelation for 20-30%
central Au-Au collisions at 200 GeV (first panel) and a three-component model fit to that



distribution (second panel) including a same-side (¢a < 7/2) positive peak, a same-side negative
peak and an away-side (¢pa > m/2) positive peak. The fit is excellent, with residuals at the
percent level. The third panel shows the result of subtracting the positive same-side model peak
(representing parton fragments) from the data in the first panel. The shape of the negative same-
side peak is very different from the positive peak; there is thus negligible systematic coupling in
the fit procedure. The fourth panel shows the data distribution in the third panel plotted in a
cylindrical format, suggesting an interpretation in terms of temperature/velocity correlations.
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Figure 8. p; autocorrelation for mid-central Au-Au collisions, model fit, data autocorrelation
with positive same-side model peak subtracted and the same distribution in cylinder format.

Histogram values of the p; autocorrelation effectively measure correlations (covariances) of
blue or red shifts of local p; spectra relative to the ensemble mean spectrum at pairs of points
separated by (na, ¢a). The negative same-side peak can therefore be interpreted as a systematic
red shift of local p; distributions adjacent to the positive fragment peak. The red shift can in
turn be interpreted as recoil of the bulk medium in response to stopping the parton partner of the
observed parton (positive same-side peak). This detailed picture of parton dissipation, stopping
and fragmentation in a A-A collisions, including recoil response of the dissipative bulk medium
suggested in the fourth panel, is accessed for the first time with joint p; autocorrelations.

9. Reconstructing Event-wise Temperature/velocity Structure

We now consider the relation of p; autocorrelations to individual collision events. In Fig. 9 we
repeat the WMAP CMB distribution of microwave power on the unit sphere, picturing a single
Big Bang ‘event’ which has a large statistical depth and can therefore be directly observed [18].
Information relevant to cosmological theory is extracted as a power spectrum on polar angle
(second panel), formally equivalent (within a Fourier transform) to an autocorrelation according
to the Wiener-Khinchine theorem. In some studies, CMB angular autocorrelations and cross-
correlation have been determined directly [21].
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Figure 9. CMB power distribution, corresponding power spectrum, joint p; autocorrelation for
mid-central Au-Au collisions and simulated temperature/velocity distribution for single collision.

In our study of heavy ion collisions we obtain angular p; autocorrelations as in the third
panel. Due to sparse sampling we cannot directly visualize the temperature/velocity structure



of individual collision events as for the CMB survey. The local microwave power density of
the CMB survey is analogous to local (p;) in a Au-Au collision. For individual collisions, and
especially for smaller bin sizes, the event-wise mean values are not significant. However, given
pr autocorrelations we can simulate event-wise velocity/temperature distributions. We estimate
the number of hard parton scatters within the STAR acceptance in a central Au-Au collision
as 20-40, based on an analysis of p-p collisions [16]. Combining that frequency estimate with
shape information from the autocorrelation, and introducing some statistical variation of peak
structure about the autocorrelation mean value, we can produce simulated events as shown in
Fig. 9 (fourth panel): distributions on primary angle variables (7, ¢), whereas the autocorrelation
is on difference variables (na,¢a). This exercise illustrates that while Au-Au collisions are
RHIC may be locally equilibrated prior to kinetic decoupling, they remain highly structured due
to copious parton scattering which is not fully dissipated. Access to that structure requires p;
rather than angular or number autocorrelations on (7, ¢) to provide the full picture.

10. Energy dependence of (p;) fluctuations and parton scattering

Given this close connection between parton scattering and fluctuations, the collision-energy
dependence of (p;) fluctuations may reveal previously inaccessible parton dynamics at lower
collision energies. In Fig. 10 (first panel) we show the centrality dependence (v measures mean
participant path length in nucleon diameters) of (p;) fluctuations for four RHIC energies and a
summary (crosshatched region) of SPS fluctuation measurements at 12.6 and 17.3 GeV [22], all
at the full STAR acceptance (CERES measurements are extrapolated). In the second panel the
pseudorapidity scale dependence of fluctuations at full azimuth acceptance is shown for central
collisions at six energies. Extrapolation of CERES data in the first panel is illustrated by the
dashed lines at the bottom of the second. Fluctuation measure Aop,., is related to the variance
difference in Eq. (1) by Ac?,,, = 20p, Aoy, with op, the single-particle variance. To good
approximation Aoy,., ~ ®,,, and both are per particle fluctuation measures. ®,, was used for
the CERES fluctuation measurements.
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Figure 10. Centrality, pseudorapidity scale and energy dependence of (p;) fluctuations for
central collisions in the STAR acceptance and energy dependence for Hijing Monte Carlo.

For either measure we observe a dramatic increase in (p;) fluctuations from SPS to RHIC
energies. The centrality dependence in the first panel suggests that fluctuations for p-p and
peripheral A-A collisions saturate near 60 GeV, whereas there is monotonic increase for the more
central collisions. The scale dependence in the second panel illustrates how measurements with
different detector acceptances are related. Measurements over common scale intervals should
correspond. At RHIC energies we have demonstrated that (p;) fluctuations are dominated by
fragments from low-Q? parton collisions. The energy dependence of Aop,.n or @, is shown in
the third panel of Fig. 10, plotted vs \/syy. We observe that (p;) fluctuations vary almost
linearly with log{,/syn/10.5} (solid curve in that panel), suggesting a threshold for observable
parton scattering and fragmentation near 10 GeV.



Fluctuation measurements based on %, =~ \/A%%t:n/ (Ren P?) [22] appear to contradict

the results described here, implying instead negligible energy dependence of (p;) fluctuations
from SPS to RHIC. We observe that nuclear collisions at RHIC are dominated by local
temperature/velocity structure from hard parton scattering. 3,, is a per pair measure which
averages the local p; correlation structure dominating RHIC collisions over the entire detector
acceptance, resulting in apparent reduction of correlations with increasing A-A centrality as
1/Nparticipant (per the central limit theorem) and consequent insensitivity to contributions from
hard scattering. We want to study separately the changes in p; production (7') and in the
correlation structure of that produced p; (0T) prior to hadronization. %, by construction
estimates relative temperature fluctuations of the form §7/7. It thus divides the structure
problem by the production problem, greatly decreasing sensitivity to each.

11. Summary
We have demonstrated that low-Q? partons, accessed here for the first time by novel analysis
techniques including joint autocorrelations, serve as Brownian probes of A-A collisions, being the
softest detectable dynamical objects which experience QCD interactions as color charges. Our
analysis of p-p correlations provides an essential reference for A-A collisions. Inversion of the
scale dependence of (p;) fluctuations provides the first access to p; autocorrelations which reveal
a complex parton dissipation process in A-A collisions relative to p-p collisions. We observe
possible evidence for bulk-medium recoil in response to parton stopping. We also observe strong
energy dependence of (p;) fluctuations, which is to be expected given the dominant role of
scattered partons in driving those fluctuations.

This work was supported in part by the Office of Science of the U.S. DoE under grant DE-
FGO03-97ER41020.
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