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ABSTRACT

Quantum Chromodynamics predicts a phase transition from a state formed

by hadrons to a plasma of deconfined quarks and gluons, the Quark Gluon

Plasma, as a the energy density exceeds a critical value. This deconfined

phase is believed to be the one in which the early universe existed in a time-

scale ∼ 10−5 s after the Big Bang.

Ultrarelativistic Heavy Ion Collisions, like the ones that take place at the

Relativistic Heavy Ion Collider at Brookhaven National Laboratory, reach en-

ergy densities above the critical value creating a deconfined phase of quarks

and gluons that can be studied at the laboratory. This gives us the opportunity

to study a phase of matter in the deconfined region of QCD, the properties of

the strong interaction, the formation of hadronic matter and the interaction

between hadrons.

In the analysis presented in this thesis, the dynamical evolution of the

particle emitting source and its space-time structure at freeze-out is studied

using the two particle intensity interferometry technique. The expansion of

the source is also studied. We find indications that this expansion may be

caused by the initial pressure gradient generated in the initial stages of the

collision through particle rescattering in a very dense medium.
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seguir... pero sobre todo gracias por haberme hecho tan feliz y por todo el amor

de estos últimos años.

v



VITA

8 September 1974 . . . . . . . . . . . . . . . . . . . . . . . Madrid, Spain

June 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.S. Physics
Universidad Autónoma de Madrid
Madrid, Spain

1999 - present . . . . . . . . . . . . . . . . . . . . . . . . . . . Graduate Research Assistant
Department of Physics
The Ohio State University

PUBLICATIONS

Azimuthally sensitive HBT in Au+Au collisions at √
sNN = 200 GeV

J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 93, 012301 (2004)

Azimuthal anisotropy at the Relativistic Heavy Ion Collider: the first
and fourth harmonics
J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 062301 (2004)

Cross Sections and Transverse Single-Spin Asymmetries in Forward
Neutral Pion Production from Proton Collisions at √

sNN = 200 GeV
J. Adams et al. (STAR Collaboration), Phys.Rev.Lett.92, 171801 (2004)

Identified particle distributions in pp and Au+Au collisions at √
sNN =

200 GeV
J. Adams et al. (STAR Collaboration), Phys.Rev.Lett.92, 112301 (2004)

Pion-Kaon correlations in AuAu collisions at √
sNN = 130 GeV

J. Adams et al. (STAR Collaboration), Phys.Rev.Lett.91, 262302 (2003)

vi



Multi-Strange Baryon Production in AuAu collisions at √
sNN = 130

GeV
J. Adams et al. (STAR Collaboration), Phys.Rev.Lett.92, 182301 (2004)

ρ0 Production and Possible Modification in AuAu and pp Collisions at√
sNN = 200 GeV

J. Adams et al. (STAR Collaboration), Phys.Rev.Lett.92, 092301 (2004)

Multiplicity fluctuations in AuAu collisions at √
sNN = 130 GeV

J. Adams et al. (STAR Collaboration), Phys.Rev.C68, 044905(2003)

Three-Pion HBT Correlations in Relativistic Heavy-Ion Collisions from
the STAR Experiment
J. Adams et al. (STAR Collaboration), Phys.Rev.Lett.91, 262301 (2003)

Evidence from dAu measurements for final-state suppression of high
pT hadrons in AuAu collisions at RHIC
J. Adams et al. (STAR Collaboration), Phys.Rev.Lett.91, 072304 (2003)

Particle dependence of azimuthal anisotropy and nuclear modifica-
tion of particle production at moderate pT in AuAu collisions at √

sNN

= 200 GeV
J. Adams et al. (STAR Collaboration), Phys.Rev.Lett.92, 052302 (2004)

Transverse momentum and collision energy dependence of high pT

hadron suppression in AuAu collisions at ultrarelativistic energies
J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 91, 172302 (2003)

Narrowing of the Balance Function with Centrality in AuAu Colli-
sions at √

sNN = 130 GeV
J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 90, 172301 (2003)

Strange anti-particle to particle ratios at mid-rapidity in √
sNN = 130

GeV AuAu collisions
J. Adams et al. (STAR Collaboration), Phys. Lett. B567, 167-174 (2003)

Disappearance of back-to-back high pT hadron correlations in central
AuAu collisions at √

sNN = 200 GeV
J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 90, 082302 (2003)

vii



Centrality Dependence of High pT Hadron Suppression in AuAu Col-
lisions at √

sNN = 200 GeV
C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89, 202301 (2002)

Azimuthal Anisotropy and Correlations in the Hard Scattering Regime
at RHIC
C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 90, 032301 (2003)

Coherent Rho-zero Production in Ultra-Peripheral Heavy Ion Colli-
sions
C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89, 272302 (2002)

Elliptic flow from two- and four-particle correlations in AuAu colli-
sions at √

sNN = 130 GeV
C. Adler et al. (STAR Collaboration), Phys. Rev. C66, 034904 (2002)

K*(892) Production in Relativistic Heavy Ion Collisions at √
sNN = 130

GeV
C. Adler et al. (STAR Collaboration), Phys. Rev. C66, 061901(R) (2002)

Azimuthal anisotropy of K0s and Lambda + Lambdabar production
at mid-rapidity from AuAu collisions at √

sNN = 130 GeV
C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89, 132301 (2002)

Mid-rapidity Lambda and Lambda bar Production in AuAu Collisions
at √

sNN = 130 GeV
C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89, 092301 (2002)

Mid-rapidity phi production in AuAu collisions at √
sNN = 130 GeV

C. Adler et al. (STAR Collaboration), Phys. Rev. C65, 041901(R) (2002)

Measurement of inclusive antiprotons from AuAu collisions at √
sNN

= 130 GeV
C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 87, 262302-1 (2001)

Antideuteron and Antihelium production in Au+Au collisions at √sNN

= 130 GeV
C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 87, 262301-1 (2001).

viii



Identified Particle Elliptic Flow in AuAu Collisions at √
sNN = 130 GeV

C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 87, 182301 (2001).

Multiplicity distribution and spectra of negatively charged hadrons
in AuAu collisions at √

sNN = 130 GeV
C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 87, 112303 (2001).

Pion Interferometry of √sNN = 130 GeV AuAu collisions at RHIC
C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 87, 082301 (2001).

Midrapidity Antiproton-to-Proton Ratio from AuAu √
sNN = 130 GeV

C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 86, 4778 (2001).

Elliptic Flow in Au+Au Collisions at √
sNN = 130 GeV

K.H. Ackermann et al. (STAR Collaboration), Phys. Rev. Lett. 86, 402 (2001).

Conference Contribution:

Pion Interferometry in AuAu collisions at √
sNN = 200 GeV
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CHAPTER 1

INTRODUCTION

Quantum Chromodynamics (QCD) is the theory of the strong interaction,

it describes the forces between the colored particles: quarks and gluons. Quarks

are never seen in isolation, but only in strongly interacting particles, called

hadrons, which are either baryons (formed by three quarks) or mesons (formed

by a quark-antiquark pair) [1]. The color force (or strong force) is carried by

gluons, just as the electromagnetic force between charged particles is carried

by photons. However, whereas photons carry no electric charge, gluons carry

color charge so they can interact with each other.

QCD predicts a phase transition from a state formed by hadrons to a

plasma of deconfined quarks and gluons, as the energy density exceeds a criti-

cal value [2, 3]. This state is called the Quark Gluon Plasma (QGP) [4, 5], and

is believed to be the one in which the early universe existed in a time-scale

∼ 10−5 s after the Big Bang [6].

Ultra-relativistic heavy ion collisions are a promising tool for the creation

of a QGP in the laboratory, and for studying the properties of the strong inter-

action and the strongly interacting matter.
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The experimental search for the QGP started in the mid 1980s at the Al-

ternating Gradient Synchrotron (AGS) in Brookhaven National Laboratory

(BNL), and at the Super Proton Synchrotron (SPS) in CERN. Since then,

many collisions at different energies have been produced and studied in a

fixed target basis, with one heavy ion beam impinging upon a stationary tar-

get (for recent reviews one can refer to the proceedings of the “Quark Matter”

conferences, see [7, 8, 9, 10] for most recent ones).

In 2000, the Relativistic Heavy Ion Collider (RHIC) at BNL produced the

first collisions of two heavy ion beams accelerated in two concentric rings. This

method has the advantage, over the fixed target one, of being able to achieve

higher center of mass energies. The Solenoidal Tracker at RHIC (STAR) is

one of the four experiments at RHIC.

The analysis presented here, in which we extract information about the

space-time geometry of the collision region, is based on data taken by STAR

from AuAu collisions at a center of mass energy per nucleon pair
√
sNN = 200

GeV. This thesis is organized as follows. It starts with a brief introduction on

the physics of the strong interaction at high energy densities and the exper-

imental search for the QGP in Chapters 2 and 3. A theoretical overview of

two particle interferometry (HBT) is given in Chapter 4. In Chapter 5, a de-

scription of the STAR detector is presented. The analysis method is described

in Chapter 6. The results as well as the discussion of them are presented in

Chapter 7. It finishes with conclusion and outlook.
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CHAPTER 2

THE QUARK-GLUON PLASMA

QCD predicts a phase transition from hadronic matter to a deconfined

state of quarks and gluons. In this chapter, an overview of this latter state

of matter and the transition as described by QCD is given.

2.1 Deconfinement and Chiral Symmetry Restoration

QCD is the theory that describes the strong interaction between quarks

and gluons. The strength of this interaction is given by the QCD running

coupling constant αs(q
2), which depends on the momentum transfer, q, as,

αs(q
2) =

12π

(33 − 2nf) ln
(

q2

Λ2

QCD

) . (2.1)

Here, nf is the number of flavors with mass below |q2|1/2 and ΛQCD is a (di-

mensional) parameter introduced by the renormalization process.

If αs(q
2) is expressed in terms of the coordinate space, r, which is inversely

proportional to q, αs(r) grows like r2 for large distances, leading to a rising

strength of the interaction with r. This behavior of the coupling constant re-

sults in the confinement of quarks and explains the fact that they are never
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Figure 2.1: QCD phase diagram, temperature T vs. baryon chemical poten-
tial µb associated with the baryon density ρb. The dashed line and shadowed
region indicate the most likely location for the transition and its theoretical
uncertainty. Red dots indicate the region reached by different experiments.

seen in isolation but only in strongly interacting matter. However, at very

small distances (large q2), αs(r) → 0, the coupling strength between color

charged particles decreases, and quarks and gluons can be thought to be free

particles. This is a fundamental property of the strong interaction known as

“asymptotic freedom”.
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Therefore, based on the asymptotic freedom, QCD predicts a transition

from a state formed by hadrons to a plasma of deconfined quarks and gluons,

at sufficient high energy density, where the average distance between parti-

cles becomes smaller and confinement disappears [2, 3]. This critical energy

density εc, at which the transition takes place, can be reached by heating the

matter at zero baryon chemical potential to a temperature Tc, by compressing

the nuclear matter at zero temperature to baryon densities above ρc, or by a

combination of both, as can be seen in the QCD phase diagram of Fig. 2.1 [11].

At zero temperature and high baryon densities we expect a deconfined

high-density phase predicted to exist in the interior of the neutron stars [12].

The region at zero baryon chemical potential and high temperatures is the one

predicted to exist at the early universe [6] and the one expected to be reached

at the highest energy collisions at RHIC, where the baryon chemical potential

is very small.

An important result of lattice QCD calculations is that at the critical tem-

perature for deconfinement, the approximate chiral symmetry of QCD, which

is spontaneously broken at low temperatures, is restored [13]. Chiral symme-

try is related to the helicity of the quarks. If the quark fields are decomposed

into left and right chirality components: ψL,R = (1∓γ5ψ), the QCD Lagrangian

with 3 massless quarks is invariant under the independent transformations

of right- and left-handed fields (“chiral rotations”). Therefore, in the limit of

massless quarks, QCD possesses chiral symmetry.
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At temperatures below Tc, quarks are confined in hadrons and do not ap-

pear as massless constituents, but instead posses mass of a few hundred MeV,

that is generated dynamically, and the symmetry gets broken. Also, the fact

that the density of qq̄ pairs in the QCD vacuum, as given by the quark con-

densate 〈qq̄〉, is non-vanishing is directly related to chiral symmetry breaking

[14].

Lattice QCD calculations show that around the critical temperature for de-

confinement, in which the interaction between quarks is minimized and their

effective masses are no longer given by their dynamical masses but by their

current mass values which are much smaller, quark condensate dramatically

decreases and chiral symmetry is restored.

This phase of QCD that exhibits deconfinement and chiral symmetry is the

one called Quark Gluon Plasma.

2.1.1 Phase transition at µb = 0

The region µb = 0 in Fig. 2.1 is accessible to lattice QCD numerical simula-

tions [15]. These methods provide reliable predictions for the thermodynamic

properties of the transition for systems with 2- and 3- flavor quarks. The re-

sults from these calculations are shown in Fig. 2.2, where the transition to

free quarks and gluons is observed in the sudden increase of the energy den-

sity as a function of temperature. The critical temperature for the 2-flavor

light quarks case, as predicted by these simulations, is Tc ∼ 170 MeV with a

critical density εc ∼ 0.7 GeV, for the 3-flavor case Tc is smaller by about 20
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MeV [16, 17]. For the most realistic case of 2-flavor light quarks and 1-flavor

heavier quark Tc ' 160 MeV [18].

One could think that in the QGP phase, the QCD coupling constant is

very small and the interaction between (massless) particles is very weak so,

to a good approximation, the QGP becomes an ideal gas whose properties

can be studied by thermodynamics [19]. The grand partition function for a

relativistic gas of fermions, or bosons, is:

(T lnZ)f =
gfV

12

(7π2

30
T 4 + µ2T 2 +

1

2π2
µ4

)

, (T lnZ)b =
gbV π

2

90
T 4, (2.2)
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where gf and gb are the degeneracies (degrees of freedom). And the energy

density, particle number, pressure and entropy density are:

ε =
T

V

∂(T lnZ)

∂T
+ µn, n =

1

V

∂(T lnZ)

∂µ
, P =

∂(T lnZ)

∂V
, s =

1

V

∂(T lnZ)

∂T
. (2.3)

Using the thermodynamic relation ε = −P + Ts + µn, one gets that the

equation of state for an ideal massless gas is P = ε/3. Assuming gh = 3 for the

hadronic gas if everything is pions, gq = 3 × 2 × 2 × Nf for the quarks, where

Nf is the number of flavors, and gg = 2 × 8 for the gluons:

εh

T 4
=
π2

10
,

εqg

T 4
= (16 +

21

2
Nf )

π2

30
T 4. (2.4)

For Nf = 3, εqg

T 4 = 15.6 is denoted as the Stefan-Boltzmann limit, and is

indicated by the arrows (εSB/T
4) in Fig. 2.2 [15]. The calculated values using

lattice QCD are below the values for an ideal gas, indicating strong interaction

among partons even above the phase transition temperature Tc.

It is not yet clear if the transition between hadronic matter and QGP is a

phase transition or just a rapid crossover. At zero baryon chemical potential

and for the most realistic case of QCD with 2 flavors of light quarks and 1

flavor of a heavier quark, the order of the phase transition seems to depend

on the numerical values of the masses of the light and heavy quarks [20, 18].

If the latter is too heavy, the transition might be just a rapid increase of the

energy density over a small temperature interval, i.e. a rapid crossover.

Calculations at non-zero baryon chemical potential suggest the existence

of a critical point at an undetermined value of µb = µb(C.P.) which is most

likely above the value of the baryon chemical potential at RHIC energies.
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Transitions between the hadronic and the QGP phase at values of µb above

µb(C.P.) would be first-order transitions while the ones at µb below µb(C.P.)

would be crossover transitions [21].

9



CHAPTER 3

HEAVY ION COLLISIONS

Ultrarelativistic heavy ion collisions are the way of “heating” hadronic

matter to temperatures above Tc, and densities above εc, creating a decon-

fined phase of quarks and gluons that can be studied in the laboratory. If

this matter thermalizes quickly at an energy density still above εc, it passes

through the QGP phase as the collision fireball expands and cools down.

This gives us the opportunity to study, not only the characteristics of an un-

known phase of matter in an asymptotic region of QCD, but also the properties

of the strong interaction, the formation of hadronic matter and the interaction

between hadrons.

In this chapter, a description of how the collision region evolves and some

unique signatures of the possible QGP formation are described. Some impor-

tant results from RHIC are shown and the porpoise of the analysis presented

in this thesis is given.
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Figure 3.1: Space-time evolution of a heavy ion collision that undergoes a
phase transition to a QGP.

3.1 The space-time evolution of the collision

The different stages of the collision of two heavy ions at sufficient high en-

ergy to create a phase of deconfined quarks and gluons is shown in Fig. 3.1.

After the two initial nuclei collide, there is a pre-equilibrium stage in which

each nucleon scatters several times and partons (quarks and gluons) are lib-

erated. At some point these quarks and gluons thermalize by re-scattering,

resulting in a thermalized QGP. The system expands collectively and cools

down to temperatures around Tc, reaching hadronization in which hadrons

are formed from the quarks and gluons. The hadrons then interact inelasti-

cally until the system reaches chemical freeze out when this kind of interac-

tions stop as it keeps expanding. At that point there is not enough energy

to change the different species population, however these hadrons are still
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interacting elastically. Eventually, the system is diluted enough that the in-

teraction between hadrons stops, the system undergoes a thermal freeze-out

and hadrons fly off to the detectors.

At RHIC energies, the critical temperature Tc at which hadronization takes

place and the chemical freeze-out temperature Tch at which chemical equili-

bration takes place are very similar. Tc is calculated by lattice QCD and Tch

is extracted from a statistical model that reproduces the measured particle

ratios [22]. This implies that in nucleus-nucleus collisions at RHIC energies,

hadron multiplicities are established very close to the phase boundary be-

tween hadronic and quark matter.

3.2 Initial conditions

One can estimate the initially produced energy density by using the Bjorken

estimate [23]

ε =
ωh

πR2
Aτ0

(dNh

dy

)

y=0
, (3.1)

where (dNh/dy)y=0 is the number of hadrons per unit of rapidity produced

at midrapidity, ωh is the average energy of the hadrons, RA is the nuclear

radius and τ0 is the formation time of the medium, which is not known but is

generally taken to be 1 fm/c.

According to lattice QCD calculations, about 1 GeV/fm3 is needed to make

the transition to deconfined quarks and gluons. The estimate energy density

for RHIC for central AuAu collisions at
√
sNN = 200 GeV is ∼ 5.0 GeV/fm3 [24],

which clearly exceeds the energy density necessary to generate a deconfined
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state of quarks and gluons. We should therefore look for possible signatures

of a QGP phase.

3.3 QGP signatures

The experiments detect hadrons after thermal freeze-out when they have

lost most of the information about the early stages of the collision, and their

formation, through rescattering and collective expansion. However, there are

observables that can provide information about the early stages of the colli-

sion and the possible QGP phase. These early observables are discussed next.

3.3.1 Direct photons

The thermalized QGP would emit thermal radiation, real photons and vir-

tual photons (γ∗ → e+e− or µ+µ−) produced in quark-antiquark annihilation

(qq̄ → γg) and Comptom scattering (qg → γq) processes. These direct pho-

tons and leptons only interact through electromagnetic interaction and have

a large mean free path compared to the size of the fireball so they escape the

system without re-scattering carrying information on the earliest deconfined

stage [25, 26].

However, direct photons, as well as dileptons, are very difficult to measure

experimentally due to the large background of photons, and dileptons, emitted

during the hadronic gas phase. No conclusive photon or dilepton spectra con-

firming the QGP phase have been measured so far, but there is a continuous

effort to improve the sensibility of these measurements.
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Figure 3.2: Strange particle yields scaled by the number of participants and
normalized by p-Be collisions in PbPb collisions at 158 A GeV/c and pBe colli-
sions at 40 A GeV/c.

3.3.2 Strangeness Enhancement

In purely hadronic reactions, the production of strange quarks (s) is nor-

mally suppressed due to the high mass of the s-quark compared to the u and d

masses. With the high energy and gluon density in the QGP, the production of

strange quarks and anti-quarks by gluon fusion should be enhanced as com-

pared with lower energy and purely hadronic collisions [27, 28, 29]. Therefore,

important observables are the yield and ratios of strange hadrons at different

energies. Figure 3.2 [30] shows the enhancement of strange particles in heavy

ion collisions (PbPb collisions at 158 A GeV/c) as compared to pBe collisions
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at 40 A GeV/c. The enhancement increases with the strange quark content

(Ω−(sss), Ξ−(dss), Λ(uds)) [30].

3.3.3 Charmonium Suppression

Heavy quarks (c and b) are exclusively created in primary hard collisions.

Consequently, they are ideal messengers of the early stage of the collision

and the QGP formation. The J/ψ meson is a bound cc̄ state. As it is tightly

bound, it is unlikely to become unbound in interactions with hadronic matter

and escapes the collision region. However, at high energies with a high gluon

density resulting from the color deconfinement, a lot of light qq̄ pairs are pro-

duced that act as screening color charges around the heavy quark pairs weak-

ening the potential between them. This Debye screening of free color charges

in QGP prevent heavy quark cc̄ pairs from binding into a charmonium state

like J/ψ. Instead, they would couple with a lighter quark to make hadrons

with open charm. The predicted result is a suppression of charmonium in

heavy ion collisions [31, 32]. J/ψ suppression was found at the SPS by the

NA38/NA50 Collaboration [33], it is qualitatively in agreement with QGP pre-

dictions and cannot be reproduced by final state rescattering of the J/ψ with

a dense hadronic environment after hadronization.

3.3.4 Elliptic Flow

In section 3.1, during the description of the evolution of the fireball that

goes through a deconfined phase of quarks and gluons, it was mentioned that

the system expands collectively, in particular it does so perpendicular to the
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Figure 3.3: Initial overlap region in a non-central collision. The beam direc-
tion is perpendicular to the page.

Figure 3.4: Time evolution of the energy density in a non-central collision.
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beam direction in which the matter is initially at rest. This collective trans-

verse flow is a consequence of the pressure gradient near the surface of the

early collision fireball generated through rescattering that leads to a state of

local thermal equilibrium. Although collective transverse flow does not neces-

sarily imply a QGP phase, if QGP has been formed, collective transverse flow

is an unavoidable consequence.

In the case of a non-central collision, like the one shown in Fig 3.3, the

initial overlap region has an almond shape. If the produced matter thermal-

izes quickly, pressure builds up inside and the spatial deformation results in

anisotropic pressure gradients that generate stronger collective flow in the

shorter direction (in the reaction plane, the one formed by the bema axis

and the vector between the center of the nuclei or impact parameter vector)

than in the longer one (perpendicular to it) and the pT distribution becomes

anisotropic [34]. This anisotropy in momentum will reduce the initial spatial

anisotropy as the source evolves with time as shown in Fig. 3.4 [35]. For this

reason, it is believed that the final momentum anisotropy is primarily built

up in the initial stages of the evolution [36].

This phenomenon is usually called elliptic flow and is measured by the

second coefficient v2 of the Fourier expansion of the pT -spectrum [37]:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

(

1 +
∞

∑

n=1

2vn cos(n(ϕ− Ψr))
)

, (3.2)

where Ψr is the reaction plane angle and ϕ the azimuthal angle of the particle.
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Figure 3.5 [38] shows the energy dependence of v2 for charged particles

near mid-rapidity. v2 is positive and rising monotonically with the collision

center of mass energy per nucleon.

3.4 Experimental results from RHIC

In this section, an overview of some of the most important measurements

and results from RHIC is given. Detailed descriptions of the analysis are not

given, nor are all the results covered, this section is just intended to give an

idea of what the results from RHIC are telling us. Also, results related with

two particle interferometry will be discussed later in this thesis.
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3.4.1 Multiplicity

Multiplicity in heavy ion collisions tells us which fraction of the collision

energy is inelastically transferred to secondary particles. One could try to

calculate the multiplicity in nucleus-nucleus collisions as an incoherent su-

perposition of independent nucleon-nucleon collisions which yields a multi-

plicity equal to the number of collisions times the multiplicity in NN colli-

sions. From such calculation one would conclude that the AuAu multiplicity

per participant pair should exceed NN multiplicity by a factor of 3. Instead,

measured multiplicities at RHIC energies show a difference of only 50% per-

cent as shown in Fig. 3.6 [39]. Given that inelastic scattering in the final

state can only increase the multiplicity, this is an experimental proof that nu-

clear collisions at RHIC energies are not just an incoherent superposition of

nucleus-nucleus collisions but instead there is a high degree of coherence in

particle production [40].

3.4.2 Azimuthal anisotropy

Azimuthally anisotropic collisions in heavy ion were already introduced

in section 3.3.4. The fact that the azimuthal anisotropy is quite sizeable at

RHIC indicates the presence of collectivity. The latest results from RHIC

show that not only the most abundant and light particles like pion, kaons or

protons show this asymmetry but also the multi-strange baryons Ξ− (dss) and

Ω− (sss) show a sizable anisotropy as shown by the parameter v2 in Fig. 3.7

(left) [41]. Quark coalescence or recombination models [42, 43, 44], under the
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assumption of partonic collectivity, predict a universal scaling of the elliptic

flow parameter v2 vs. pT with the number of n constituents. Fig. 3.7 (right)

shows the measured v2 vs. pT scaled by n [41]. These results agree with the

predicted scaling which could be an indication of partonic collectivity at the

early stage of the collision.

3.4.3 High pT

In heavy ion collisions, large transverse momentum partons come from

the initial hard scattering of nucleon constituents. These partons fragment

and create a high energy cluster (jet) of particles. A high momentum parton

traversing a dense colored medium experience substantial energy loss and

may be absorbed [45, 46]. In the absence of effects in the nuclear medium

the rate of hard processes should scale linearly with the number of binary
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nucleon-nucleon collisions. However, recent results from RHIC show a sup-

pression of the single particle inclusive spectra of hadrons for pT > 2 GeV/c

in central AuAu collisions indicating substantial in-medium interactions as

shown by RAA(pT ) in Fig. 3.8 [47]. This quantity gives us a comparison of spec-

tra from AuAu collisions to an NN reference. A clear suppression is observed

for pT > 2 GeV/c for the most central collisions (0-5%, 5-10% and 10-20%).

The two particle azimuthal distribution of high pT particles gives us more

information on this. Two hadron angular correlations at large transverse mo-

mentum for AuAu collisions show a suppression of back-to-back relative to

small-angle correlations in central AuAu collisions [48], Fig. 3.9 (b). This

suppression is not observed in pp collisions even when the same mechanism
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(hard parton scattering and fragmentation) is responsible for the high trans-

verse momentum particle production in pp and AuAu collisions. If the sup-

pression is the result of initial-state effect, then it should also be observed in

dAu collisions. However, no suppression is observed in dAu collisions, Fig. 3.9

(a) [49], from which one concludes that the suppression in central AuAu colli-

sions is due to final state interactions with the dense system generated in the

collision.
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3.5 In this thesis

The porpoise of the analysis presented in this thesis is to study the space-

time structure of the particle emitting source at freeze-out. We will also ex-

tract dynamical information on the evolution of the collision to freeze-out; we

will study how much the source expands from the initial stage to freeze-out

and we will discuss its relation with the initial energy density gradient.
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CHAPTER 4

TWO-PARTICLE INTENSITY INTERFEROMETRY

To study the dynamical evolution and the space-time structure of the par-

ticle emitting source at freeze-out we use the two particle interferometry tech-

nique. In this chapter a theoretical overview of this technique and its appli-

cation in heavy ion collisions are given.

4.1 HBT Interferometry

Two-particle intensity interferometry gives access to the space-time geom-

etry of particle emitting sources. This technique was developed in the early

1950’s by R. Hanbury Brown and R.Q. Twiss [50] who used it to measure the

angular size of stellar objects. Because of their pioneering work, this method

is commonly called HBT interferometry. It differs from ordinary amplitude

interferometry in that it compares intensities, rather than amplitudes, at dif-

ferent points.

The first application of this technique to particle physics was by Gold-

haber et al. [51] who extracted the spatial extend of the source in proton-

antiproton annihilations from two pion correlations. The method exploits the
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Figure 4.1: Basic HBT diagram.

fact that identical bosons (fermions) should satisfy the Bose-Einstein (Fermi-

Dirac) statistics, therefore, for bosons (fermions) the two particle distribution

should show an enhancement (suppression) at small relative momentum be-

tween the particles.

The basic diagram for an HBT experiment is shown in Fig. 4.1, where we

have a source characterized by the emission function S(x, p). For this first

derivation, this emission function can be viewed as the probability that a par-

ticle with momentum p is emitted from the space-point x in the collision re-

gion, so that the total probability of emitting one particle with momentum p
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is the integral over the whole source:

P (~p) =

∫

d4xS(x, p)|p0=Ep
. (4.1)

The emission function must be evaluated on-shell, i.e. p0 = Ep = (m2 + ~p 2)1/2.

If the source in Fig. 4.1 emits two identical particles from positions x1

and x2, with momenta p1 and p2 that are measured at positions x′

1 and x
′

2, in

an ideal case with no final state interaction, the wave function for the two

particles is:

Ψ =
1√
2
[ei(x

′

1
−x1)p1ei(x

′

2
−x2)p2 ± ei(x

′

1
−x2)p1ei(x

′

2
−x1)p2 ]. (4.2)

The fact that they are identical particles implies that we cannot distinguish

between them, therefore, the wave function needs to be symmetrized for the

case of bosons or anti-symmetrized for the case of fermions; the positive sign

(+) is for bosons and the negative one (-) for fermions. This is also the proba-

bility density for measuring such a state.

Then the probability of measuring two particles with momenta p1 and p2

in our detector would be the squared of the wave function integrated over the

whole source, which, for completely incoherent emission, is:

P (~p1, ~p2) =

∫

d4x1d
4x2S(x1, p1)S(x2, p2)|Ψ|2. (4.3)

Introducing Eq. (4.2) in Eq. (4.3),

P (~p1, ~p2) =

∫

d4x1S(x1, p1)

∫

d4x2S(x2, p2) (4.4)

±
∫

d4x1d
4x2S(x1, p1)S(x2, p2) cos((p1 − p2)(x1 − x2)).
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Assuming that the emission function has a smooth momentum dependence, it

satisfies:

S(x1, p1)S(x2, p2) = S(x1, k +
1

2
q)S(x2, k −

1

2
q) ≈ S(x1, k)S(x2, k), (4.5)

where q and k are the relative and average pair momentum respectively. This

is the so called smoothness approximation [52] and it is only valid for small

relative momentum.

If one defines the variables x = x1 − x2 and X = 1
2
(x1 + x2), using the

smoothness approximation and Eq. (4.1), the two-particle probability can be

expressed as,

P (~p1, ~p2) = P (~p1)P (~p2) ±
∫

d4x cos(qr) ·
∫

d4X S(x+
X

2
, k)S(x− X

2
, k), (4.6)

where r is the relative separation and the term
∫

d4X S(x+ X
2
, k)S(x− X

2
, k) =

d(x, k) is the so-called relative distance distribution [52].

Then, the two-particle correlation function, defined as the ratio of the two-

particle probability divided by the product of the single-particle probabilities,

is given by

C(~q,~k) =
P (~p1, ~p2)

P (~p1)P (~p2)
≈ 1 ±

∫

d4x cos(qr)d(x, k)
∣

∣

∣

∫

d4xS(x, k)
∣

∣

∣

2 , (4.7)

where we have used the smoothness approximation in the denominator to get

the last term of the equation. Because the two measured particles are on-

shell, p0
1,2 = E1,2 = (m2 + ~p 2

1,2)
1/2, the four-momenta q and k are off-shell. They

satisfy the orthogonality relation kµq
ν = (m2

1 −m2
2)/2 that would be zero only

in the case of same mass particles. The on-shell approximation [52] k0 ≈ Ek =
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(m2 + ~k2)1/2 is needed on the right-hand side of Eq. (4.17) in order to evaluate

S(x, k).

With the mass-shell constraint written in the form q0 = ~β · ~q, Eq. 4.7 can

be rewritten as:

C(~q,~k) = 1 ±
∫

d3x cos(~q~x)
∫

dtd(~x+ ~βt, k)
∣

∣

∣

∫

d4xS(x, p)
∣

∣

∣

2 = 1 ±
∫

d3x cos(~q~x)S~k(~x)
∣

∣

∣

∫

d4xS(x, p)
∣

∣

∣

2 , (4.8)

where S~k(~x) is known as the “relative source function” [52].

The above derivation of the correlation function illustrates the basic ideas

of the two particle intensity interferometry technique, however it has its lim-

itations. The time structure of the source is completely integrated so that it

is impossible to reconstruct the space-time of the source from the correlation

function. This comes from the fact that the Wigner function S(x, k) is taken

as the phase-space probability density.

An alternative derivation for the two particle correlation function is as fol-

lows. The quantum state |φ > that describes the particle under consideration

emitted from the source is calculated by solving the Klein-Gordon equation:

(∇2 +m2)φ(x) = J(x), (4.9)

wherem is the mass of the particle, J(x) is the nuclear current operator acting

as the source of pions, and φ(x) is the pion field.

The solution to this equation can be written as [53],

|φ >= 2−n/2 exp
(

i

∫

d3pJ(~p)a+(~p)
)

|0 >, (4.10)

where J(~p) is the Fourier transform of J(~x), n =
∫

d3p|J(~p)|2, and a+
p is the

creation operator.
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|φ > has the property that it is an eigenstate of the annihilation operator

[54],

ap|φ >= i

∫

d4x
eipx

√

2Ep(2π)3
J(x)|φ > . (4.11)

Using the creation and annihilation operator, the single particle production

probability is given by

P (~p) =< φ|a+
p ap|φ >=

∫

d4xS(x, p), (4.12)

and the pair production probability is given by

P (~p1, ~p2) =< φ|a+
p1
a+

p2
ap2

ap1
|φ > . (4.13)

If one assumes chaotic particle emission, the expectation in Eq. (4.13) can

be expanded using the Wick theorem [55]

< φ|a+
p1
a+

p2
ap2
ap1

|φ >= (4.14)

< φ|a+
p1
ap1

|φ >< φ|a+
p2
ap2

|φ > ± < φ|a+
p1
ap2

|φ >< φ|a+
p2
ap1

|φ >,

where once more the positive (+) sign is for bosons and the negative (-) one

is for fermions. This expansion can be viewed as the sum of probabilities

of particles being emitted from two points taking into account the required

symmetrization (anti-symmetrization). Then the pair production probability

can be expressed as:

P (~p1, ~p2) =

∫

dx1S(x1, p1)

∫

dx2S(x2, p2)

±
∫

dx1S
(

x1,
p1 + p2

2

)

ei(p1−p2)x1

∫

dx2S
(

x2,
p1 + p2

2

)

ei(p1−p2)x2

=

∫

dx1S(x1, p1)

∫

dx2S(x2, p2) ±
∣

∣

∣

∫

dxS(x, k)eiqx
∣

∣

∣

2

, (4.15)
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and the correlation function is given by:

C(~p1, ~p2) =
P (~p1, ~p2)

P (~p1)P (~p2)
= 1 ±

∣

∣

∣

∫

d4xS(x, k)eiqx
∣

∣

∣

2

∫

d4x1S(x1, p1)
∫

d4x2S(x2, p2)
. (4.16)

Using the smoothness approximation in the denominator, the correlation

function can then be expressed in terms of the relative and average momenta

of the pair as

C(~q,~k) = 1 ±
∣

∣

∣

∣

∣

∫

d4xS(x, k)eiqx

∫

d4xS(x, k)

∣

∣

∣

∣

∣

2

. (4.17)

The on-shell approximation is needed on the right-hand side of Eq. 4.17

in order to evaluate S(x, k). The corrections due to this approximation are of

order ~q/8E2
k [56], which, for the range of ~q in which we are interested, are very

small.

4.2 Final state interactions

The derivation of the two particle correlation function described above

assumes no final state interactions. However, most HBT measurements in

heavy ion collisions are performed with charged particles. These particles

suffer long range Coulomb interaction effects on the way from the source to

the detector, which for like-sign (unlike-sign) particles cause a suppression

(enhancement) of the measured correlation function at low ~q. These particles

also feel the total electric charge of the source from which they are emitted.

There is also a strong interaction between outgoing particles, which plays a

very important role in proton-proton correlations due to the strong s-wave

resonance in the two nucleon channel just above threshold. These final state
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interactions will affect the correlation function and need to be taken into ac-

count in order to isolate the Bose-Einstein (Fermi-Dirac) interference effects.

In the case of the correlation function for particles under study in this the-

sis, like-charged pions, only Coulomb interaction between the outgoing parti-

cles plays an important role. The strong interaction between these particles is

very weak. A repulsive s-wave interaction exists for the I=2 ππ system. How-

ever, the range of this interaction is estimated to be ∼ 0.2 fm [57], while the

characteristic separation between pions produced in relativistic heavy-ion col-

lisions is ∼ 5 fm. Also, there are no doubly charged mesonic resonances that

could decay into same charged pions that would strong interact. For these

reasons, the strong interaction will be ignored for like sign particles.

In the following, the discussion will be exclusively for bosons, since the

particles used for the analysis presented in this thesis are pions.

4.2.1 Coulomb interaction

The fact that the two charged particles Coulomb interact on the way from

the source to the detector implies that the particles do not propagate as plane

waves. In order to account for the Coulomb interaction, it is possible to ei-

ther include the interaction in the theoretical calculation described above or

to take it into account when calculating the experimental correlation function.

In this analysis the latter one is used. Isolating Bose-Einstein interference ef-

fects from Coulomb interaction is not easy because both interactions are of

32



similar size and affect the two-particle correlation in similar relative momen-

tum scales.

In order to calculate the Coulomb interaction effects in the correlation

function one proceeds as follows. The Schrödinger equation for the Coulomb

wave function is [58]:

(−∇
2µ

− E +
e2

r
)ψc(~q, ~r) = 0, (4.18)

where r = |~r| is the relative coordinate, E = q2

2µ
is the energy of the particle in

the center of mass system, µ is the reduced mass, and e is the electromagnetic

coupling strength.

The solutions of this equation, written in terms of the confluent hypergeo-

metric function F , are [59]:

ψc(~q, ~r) = Γ(1 + iη±)e−
1

2
~q·~rF (−iη; 1; z±), (4.19)

z± =
1

2
(qr ± ~q · ~r) =

1

2
qr(1 ± cos θ).

Here, θ denotes the angle between ~r and ~q. The Sommerfeld parameter de-

pends on the particle mass m and e:

η± = ± e2

4π

µ

q/2
= ±me

2

4πq
, (4.20)

and the minus (plus) sign is for pairs of like-sign (unlike-sign) particles.

The symmetrized Coulomb wave function is:

ψr(~q, ~r) =
1√
2
(ψc(~q, ~r) + ψc(~q,−~r)). (4.21)
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Then the contribution from Coulomb interaction to the correlation function

can be calculated as:

Pc(~p1, ~p2) =
1

2

∫

d3rρ(~r)|ψr(~q, ~r)|2. (4.22)

Here ρ(~r) is the source function or the distribution of the average distance

between the particles in each pair as they are emitted. This expression is

then integrated numerically to calculate the Coulomb wave contribution to

the correlation function [59]. However, experimentally, the source function is

not known in advance so one must make some approximations.

In the point-source approximation [53] traditionally used, ρ(~r) ' δ3(x) and

the Coulomb part of the correlator is given by the Gamow factor G(η),

G(η) = |ϕc(0)|2 =
2πη

e2πη − 1
. (4.23)

However, in heavy-ion collisions, in which the emitting source has a finite

size, this approximation largely overestimates the Coulomb interaction effects

since particles are emitted with finite separation which leads to a weaker

Coulomb interaction.

An improved procedure is to calculate the interaction for a finite size static

source by approximating the source function to a spherical Gaussian of a given

radius and then integrating (4.22) [59, 58, 60]. This is the procedure followed

in the analysis presented here, in which the values for the integrated Coulomb

wave function were tabulated according to the assumed source size and the

Sommerfeld factor. From now on, the integrated wave Coulomb function over

a spherical Gaussian source will be called Kcoul, it depends on qinv and the
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radius R of the Gaussian, and is given by:

Kcoul(qinv) =

∫

d3rρ(~r)|ψr(~r, ~q)|2, (4.24)

where ρ(~r) ∝ exp(−~r/4R2). The experimental application of this Coulomb

factor will be discussed in Chapter 6.

As already mentioned, in addition to the Coulomb interaction between the

outgoing particles, the emitted particles feel the positively charged source.

The effects of this interaction on the pion correlation function was found to be

very small and decreases as the collision energy becomes ultrarelativistic [61,

62]. Therefore, we do not apply any correction to the data due to the central

Coulomb potential. The experimental validness of this will be discussed in

Chapter 6.

4.3 Gaussian parametrization

In order to extract information from the experimentally measured correla-

tion function about the space-momentum geometry of the source, the emission

function can be approximated by a Gaussian [63, 64, 65]:

S(x, k) ≈ S(x̄(k), k) exp[−1

2
x̃µ(k)Bµν(k)x̃

ν(k)], (4.25)

where the space time coordinates x̃µ are defined relative to the “effective

source center” x̄(k) for bosons emitted with momenta k:

x̃µ(k) = xµ − x̄µ(k) x̄µ(k) =< xµ > (k), (4.26)

where < ... > denotes an average with the emission function:

< f > (k) =

∫

d4xf(x)S(x, k)
∫

d4xS(x, k)
, (4.27)
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and the choice (B)−1
µν (k) =< x̃µx̃ν > (k) ensures that the Gaussian in (4.25) has

the same RMS widths in space-time as the full emission function.

Inserting Eq. (4.25) in Eq. (4.17), the correlation function takes a Gaussian

form:

C(~q,~k) = 1 + exp(−qµqν < x̃µx̃ν > (k)). (4.28)

Since the correlation function depends only in relative distances x̃µ, no in-

formation can be obtained about the center of emission. Instead, these width

parameters measure the widths of the distribution of particles in the system

from which particle pairs with momentum k are most likely to be emitted.

< x̃µx̃ν > coincide with the width of the total source only in the special case in

which the emission function does not contain space-momentum correlations

and factorizes as S(x, k) = f(x)g(k). This will be discussed later in more de-

tail.

4.3.1 Other contributions to the correlation function

Several effects can reduce or modify the experimentally measured corre-

lation function. Equation (4.28) has been calculated assuming a complete

chaotic emission. Pions emitted from the same coherent state or wave packet

do not exhibit interference effects [53], therefore, for a complete coherent

emission, the measured correlation function would be unity for all values of

q when properly normalized. In general, the emission of particles is neither

perfectly chaotic nor completely coherent, which will reduce the strength of

the correlation function reducing its intercept point at q = 0 [59]. In principle
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this can be taken into account by adding a new parameter, λ, to the correlation

function, which, in general, depends on k:

C(q, k) = 1 + λ(k) exp(−qµqν < x̃µx̃ν > (k)). (4.29)

This λ parameter should be unity for a fully chaotic source and smaller

than unity for a source with partially coherent particle emission. This is prob-

ably not the best way of taking non-chaotic emission into account [66]. In the

analysis presented here we have assumed completely chaotic emission and

expect λ to take care of the possible small deviation from it.

In practice, however, there are many reasons why deviations from C(q =

0, k) = 2 may be observed. For example, contribution from pions coming from

long-lived resonances, that lead to an extended source, modify the shape of

the correlation function changing the intercept point at q = 0. Misidentified

particles, such as electrons, in our pion sample that reduce the strength of

the correlation, reducing the enhancement at low relative momentum and

thus reducing the intercept point at q = 0. Or final state interaction not

properly taken into account, such as Coulomb interaction that will also reduce

the enhancement and therefore λ, or attractive strong interaction that would

lead to a false stronger enhancement.

4.4 Coordinate parametrization

One must also choose a coordinate system in which to work, to extract

information from the experimental two-particle correlator.
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Figure 4.2: Cartesian or Bertsch-Pratt (osl) parametrization.
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A commonly used 1-dimensional parametrization is

C(~q,~k) = 1 + λ(~k) exp(−q2
invR

2
inv(

~k)), (4.30)

in which all the spatial and temporal information of the source is contained

in Rinv. However, this parameter does not represent any physical extension of

the source.

A 3-dimensional parametrization that will allow to get information of the

source in the beam, and transverse directions is the Cartesian or Bertsch-

Pratt (“out− side − long”) parametrization [54, 67, 68, 69], shown in Fig. 4.2.

In this parametrization, the relative momentum vector of the pair ~q is de-

composed into a longitudinal direction along the beam axis, ql, an outward

direction parallel to the pair transverse momentum, qo, and a sideward di-

rection perpendicular to those two, qs. Using the on-shell approximation the

component of the 4-vector momentum q0 can be expressed as q0 = ~β · ~q.

The correlation function in this parametrization is expressed by:

C(~q,~k) = 1 + λ(~k) exp(−
∑

i,j=o,s,l

R2
ij(
~k)qiqj). (4.31)

The Gaussian parameters, or HBT radii, Rij are related to the space time

variances of the emission function by:

R2
ij(
~k) =< (x̃i − βit̃)(x̃j − βj t̃) > (~k) i, j = o, s, l. (4.32)

For an azimuthally integrated analysis, the emission function has a reflection

symmetry xs → −xs and the correlator is symmetric under qs → −qs. Then

R2
os = R2

sl = 0 and the correlator can be expressed as:

C(~q,~k) = 1 + λ(~k) exp(−R2
o(
~k)q2

o −R2
s(
~k)q2

s − R2
l (
~k)q2

l − 2R2
ol(
~k)qoql). (4.33)
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If one now chooses as the reference frame, the longitudinal comoving sys-

tem (LCMS) frame of the pair, in which the source is symmetric under xl →

−xl at midrapidity, the only cross-term left also vanishes and the two-particle

correlation function is given by:

C(~q,~k) = 1 + λ(~k) exp(−R2
o(
~k)q2

o −R2
s(
~k)q2

s − R2
l (
~k)q2

l ), (4.34)

where the HBT radii measure the spatial and temporal extend of the collision

system at freeze-out:

R2
o(k) = < (x̃− βT t̃)

2 > (k)

R2
s(k) = < ỹ2 > (4.35)

R2
l (k) = < z̃2 >,

here, βT = kT/k0 is the transverse pair velocity.

Note that only R2
o(k) carries temporal information. By comparing R2

o(k) to

R2
s(k) emission duration scales can be, in principle, extracted.

The azimuthally sensitive analysis, in which the not azimuthally symmet-

ric collision is studied from different angles Φ, will not be discussed in this

thesis, however it will be used to calculate systematic errors, so we will intro-

duce the basis here. For a detail description of this analysis refer to [70].

In such analysis, the emission function does not have a reflection symme-

try xs → −xs and so the correlator is not symmetric under qs → −qs, working

on the LCMS frame, and without knowledge of the first-order reaction plane

(due to detector limitations), the Gaussian parametrization becomes [71]

C(~q) = 1 + λ exp(−R2
o(
~k)q2

o − R2
s(
~k)q2

s − R2
l (
~k)q2

l − 2R2
os(
~k)qoqs). (4.36)
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While for the azimuthally integrated analysis the sign of the q components is

arbitrary, in the azimuthally-sensitive analysis, the sign of R2
os is important

because it tells us the azimuthal direction of the emitted particles, so the signs

of qo and qs are kept and particles in every pair are ordered such that ql > 0.

References [52, 72] give a detailed description of the relation between the

HBT radius parameters and the space-time geometry of the final freeze-out

stage for this analysis.

For a boost-invariant system, the Φ dependence of the HBT radii of Eq.

(4.36) can be written as [71]:

R2
o(kT ,Φ) = R2

o,0(kT ) + 2
∑

n=2,4,6···

R2
o,n(kT ) cos(nΦ)

R2
s(kT ,Φ) = R2

s,0(kT ) + 2
∑

n=2,4,6···

R2
s,n(kT ) cos(nΦ)

R2
l (kT ,Φ) = R2

l,0(kT ) + 2
∑

n=2,4,6···

R2
l,n(kT ) cos(nΦ)

R2
os(kT ,Φ) = 2

∑

n=2,4,6···

R2
os,n(kT ) sin(nΦ), (4.37)

where Rµ,n(kT ) (for µ = o, s, l, os, and n = 0, 2, 4...) are the nth order Fourier

coefficients. These coefficients, that are Φ independent, can be calculated as:

R2
µ,n(kT ) =

{

〈R2
µ(kT ,Φ) cos(nΦ)〉Φ (µ = o, s, l)

〈R2
µ(kT ,Φ) sin(nΦ)〉Φ (µ = os)

The 0th order Fourier coefficients correspond to the extracted HBT radii in

an azimuthally integrated analysis. In this analysis, Fourier coefficients for

4th order and above are consistent with 0.
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Figure 4.3: Homogeneity regions for different pair momenta.

4.5 HBT in dynamical systems

As already mentioned, the space-time variances < x̃µx̃ν > (k) in Eq. (4.29),

and therefore the HBT radii Ri(~k) in Eq. (4.34), depend on the total momen-

tum of the pair. This is because the particle momenta are correlated with

their emission points (space-momentum correlations). In heavy-ion collisions,

this is produced mainly by the collective expansion of the source. Also, ther-

malized sources may exhibit temperature gradients, causing additional space-

momentum correlations. Low momentum pions from the decay of long-lived

resonances that usually come from a larger space-time region may also gen-

erate space-momentum correlations.

Therefore, the HBT radii measure the size of the regions emitting particles

of a given momenta, the so called regions of homogeneity [73], as shown in the

sketch in Fig. 4.3. For an expanding source, depending on the direction and
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the modulus of the momenta of the pairs of particles entering the correlation

function, different parts of the source are measured. The center of a region of

homogeneity < x̄µ > depends also on k and lies, typically, between the center

of the collision region and the observer.

Also, the sizes of these regions of homogeneity are controlled by the ex-

panding velocity gradient [72, 74, 75], therefore, the dependence of the HBT

radii on the pair momenta, contains dynamical information of the particle

emitting source [54, 73].

4.6 Hydrodynamic predictions

In heavy-ion collisions, during a finite time interval between hadroniza-

tion and thermal freeze-out, and under certain conditions, the system can be

described as an ideal (non-viscous) fluid by a hydrodynamical model [53, 76,

77, 78].

A hydrodynamic model is fully specified by the equation of state and the

initial conditions; and its evolution is ended by implementing freeze-out con-

ditions.

One of the first hydrodynamic calculations [79], that assumed QGP forma-

tion and included HBT, predicted that the source would emit pions over a long

time period resulting in a long lifetime of the source and so in a large contri-

bution β2
T 〈t̃2〉 to the outward HBT radius in Eq. (4.35). As a consequence, the

ratio Ro/Rs being much larger than unity was predicted as a clear signal of

the QGP formation.
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Figure 4.4: HBT radii from a hydrodynamic calculation compared with the
experimental values at

√
sNN = 130 GeV from the STAR and PHENIX collab-

orations.

After the first results from RHIC at
√
sNN = 130 GeV came out, it was seen

that these hydrodynamic calculations were in good agreement with the exper-

imental measurements of the momentum structure of the emitting source and

the elliptic flow, however they failed to describe the space-time distribution at

freeze-out as given by the HBT results [77]. This was called the “HBT puzzle”

at RHIC.

Figure 4.4 shows a comparison of the experimental data at
√
sNN = 130

GeV/c [80, 81] with results from hydrodynamic calculations [77, 78]. A purely

hydrodynamic description with default initial conditions (solid lines in Fig.

4.4) fails to describe the measured HBT radii. Clearly Rs is underestimated,
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and Ro and Rl are overestimated by the model, also, the kT dependence of Ro

and Rs is too weak.

Rl is driven by the expansion dynamics via the longitudinal velocity gra-

dient at freeze-out. For a boost invariant longitudinal flow profile, as the one

assumed in this calculation, this gradient decreases with time as 1/τ , leading

to a typical hydrodynamic freeze-out time of ∼ 15 fm/c. To reduce Rl, freeze-

out must happen earlier or the boost invariance should be broken [77, 78].

The small measured ratio Ro/Rs ≤ 1 might be explained by a strong pos-

itive x − t correlation. Hydrodynamic models assume that particles emitted

from a larger x are emitted earlier, leading to a negative x− t correlation that

makes the term −βT 〈x̃0t̃〉 in R0 (4.35) positive leading to Ro >> Rs [77, 78].

The positive x− t correlation implies that particles emitted from larger x val-

ues decouple later.

Later in this thesis, evolution and emission times will be extracted from

the HBT radii according to a blast wave parametrization [82]; the expansion

of the source will be studied and some hints about the possible causes for the

discrepancies between measurements and hydrodynamic calculations will be

given.

4.7 Experimental construction of correlation function

As already discussed, the two-particle correlation function between identi-

cal bosons with momenta p1 and p2 is defined as the ratio of the two-particle
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and one-particle distributions:

C2(~p1, ~p2) =
P2(~p1, ~p2)

P1(~p1) · P1(~p2)
. (4.38)

Experimentally, it is obtained from the ratio:

C(~q,~k) =
A(~q)

B(~q)
, (4.39)

(normalized to unity at large ~q). The numerator, A(~q), is formed from pairs in

same events and represents the distribution of the two particle probabilities

for the relative momentum of each pair. The denominator, B(~q), is formed by

mixing particles in separate events and represents the single particle proba-

bilities.
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CHAPTER 5

THE STAR EXPERIMENT

STAR, a solenoidal detector based on particle tracking in a large time-

projection chamber, with a large solid angle detection of particles, is one of the

four experiments at RHIC. In this chapter, the collider complex is introduced

and the STAR detector described.

5.1 The Relativistic Heavy Ion Collider

RHIC consists on two concentric rings that accelerate and store two counter-

rotating hadron beams [83]. It is designed to collide the beams at six different

intersection points located along their 3.8 km circumference. The top achiev-

able energy for heavy ion beams (i.e. gold nuclei) is 100 GeV/u and that for

protons is 250 GeV. Superconducting magnets (cooled to below 4.6 degrees

Kelvin) are used in both rings to focus and guide the beams, and a radio fre-

quency (rf) system is used to capture, accelerate and store the beams.

A diagram of the collider complex is shown in Fig. 5.1. The acceleration

of the gold ion beams is as follows. Gold ions in a charge state Q = -1e are

injected in the Tandem Van de Graaff where they are partially stripped of
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Figure 5.1: RHIC complex

the electrons to a charge state Q = +12e, and then accelerated to 1 MeV/u

in the second stage of the Tandem. After further stripping at the exit of the

Tandem, gold ions are delivered to the Booster Synchrotron, with a charge

state Q = +32e, where they are accelerated to 95 MeV/u. At the exit of the

Booster, ions are stripped again to a charge state Q = +77e. They are then

injected into the Alternating Gradient Synchrotron (AGS) where their energy

is increased to 10.8 GeV/u. At the exit of the AGS, gold ions are fully stripped

to the charge state Q = +79e. The ions are then transferred to RHIC, through

the AGS-to-RHIC Beam Transfer Line, where they are accelerated to their

final energy and stored for up to 10 hours.

There are four detectors around the ring [84]; two large detectors (STAR

and PHENIX) and two smaller detectors (PHOBOS and BRAHMS). All of
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Figure 5.2: STAR detector with a cutaway for viewing the inner detectors.

them are primarily designed to measure the kinetic properties of relatively

low-momentum particles in a very high density medium.

5.2 The STAR detector

The STAR detector is an azimuthally symmetric, large acceptance solenoidal

detector designed primarily for measurements of hadron production over a

large solid angle [85].

The layout of STAR as it was for Run-2 is shown in Figs. 5.2 and 5.3. It

is located in a solenoidal magnet that provides a uniform magnetic field along

the beam axis, of up to 0.5 Tesla, for charged particle momentum analysis

[86]. The main tracking system is a large Time Projection Chamber (TPC).
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Figure 5.3: Side view of the STAR detector.

In addition, there are two other tracking detectors, a Silicon Vertex Detector

(SVT) [87], located close to the beam pipe for the tracking of charged particles

near the interaction point, and two forward TPCs (FTPCs) [88], for tracking

of charge particles at large rapidity, 2.5 < |η| < 4. Other active subsystems

include, a Ring Imaging Cherenkov (RICH) [89] that extent particle identifica-

tion at higher pT , and about 10% of the full-barrel electromagnetic calorimeter

[90] to measure photons, electrons, and the total transverse energy of events.

The fast detectors that provide input to the trigger system are a central trig-

ger barrel (CTB) that surrounds the outer cylinder of the TPC, and two zero-

degree calorimeters (ZDC) located in the forward and backward directions.
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5.2.1 The Time Projection Chamber

The TPC is the main tracking detector in STAR [91] and the only one used

in the reconstruction of the events used in the analysis presented in this the-

sis. It records the tracks of particles, measures their momenta and identi-

fies the particles by measuring their ionization energy loss (dE/dx), providing

complete tracking for charged particles within ± 1.8 units of pseudorapidity

through the full azimuthal angle (∆φ = 2π) and over the full range of mul-

tiplicities up to ∼ 4 · 103 particles per event. Particles are identified over a

momentum range from 100 MeV/c to around 1 GeV/c and momenta are mea-

sured over a range of 100 MeV/c to 30 GeV/c.

A TPC detector is a large 3 dimensional gas filled vessel in a well defined

electric field. When a charged particle traverses the gas, it creates electron-

ion pairs, that the electric field prevents from recombining, and the electrons

drift quickly towards the readout chambers located at the ends of the TPC.

The drift field is chosen so that it is not strong enough to create secondary

electron-ion pairs.

The STAR TPC surrounds the beam-beam interaction region and its drift

volume is limited by 2 concentric field cage cylinders, of radii 50 cm and 200

cm, and the end caps as shown in Fig. 5.4. It is 4.2 m long. It is filled with P10

gas (10% methane and 90% argon) at 2 mbar above the atmospheric pressure

[92]. The main property of this gas is a fast drift velocity which peaks at a low

electric field. There is a central membrane held at 28 kV that, together with

the equipotential rings along the inner and outer field cage, create a uniform
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Figure 5.4: Section view of the STAR TPC showing the inner and outer field
cages, the central membrana and the 12 sectors of each end cap.
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Figure 5.5: Distribution of pads in a STAR TPC sector.

drift field of 135 V/cm from the central membrane to the ground end caps

where the readout chambers are located.

The readout system is based on Multi Wire Proportional Chambers (MWPC)

with readout pads [93]. The readout pads are arranged in 12 sectors around

the end caps which can be seen in Fig. 5.4. There are 45 pad rows, radially lo-

cated between the inner and outer radii, in each sector. Each sector is divided

in inner (13 pad rows) and outer (32 pad rows) subsectors. The outer sub-

sectors have continuous pad coverage to optimize the dE/dx measurements.

The inner subsectors are in the region of highest track density and are opti-

mized for good two-hit resolution, using smaller pads. Figure 5.5 shows the

distribution of pads in one sector of the TPC.
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The readout chamber is separated from the drift region by the gating grid.

The gating grid is a plane of wires that electronically separates the amplifica-

tion region from the drift region. It is usually closed to prevent ions created

in the amplification region from getting back into the drift region. When an

event is to be recorded, the gating grid wires are set to voltages that allow

electrons to pass through.

The readout chamber consists on two wire planes: a ground plane and

anode wires, located above the pad plane as shown in Fig. 5.6. The ground

plane shields the TPC drift region from the strong fields around the anode

wires. As electrons drift pass the gating grid and the ground plane, they

accelerate towards the anode wires where they initiate an avalanche, leaving

a cloud of positively charged ions remaining around the wires. The pads image
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Figure 5.7: View of an event from the end of the TPC as displayed by the level
3 trigger.

this charge that goes to the electronics. The size and shape of the ion cloud

depends on the number of primary ions, drift distance and diffusion, and gas

gain.

5.2.2 The trigger system

The STAR trigger system is based on the input from fast detectors to con-

trol the event selection for the much slower tracker detectors [94]. It is di-

vided into different layers with level 0 being the fastest while level 1 and 2

are slower but apply more restrictive constraints on the event selection. STAR
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Figure 5.8: Summed pulse heights from the ZDCs vs the ones from the CTB
for events with primary collision vertex successfully reconstructed from tracks
in the TPC.

has a third level trigger that performs complete online reconstruction of the

events [95]. An online display of the level 3 trigger provides views of the

events as the one shown in Fig. 5.7, from the end of the TPC.

The fast detectors that provide input to the trigger system are the CTB

at |η| < 1 and the ZDCs in the forward direction at θ < 2 mrad. The CTB

surrounds the outer cylinder of the TPC and triggers on the flux of charged

particles in the midrapidity region. It consists of 240 scintillator slats ar-

ranged in 4 cylindrical bands each covering 1/2 unit of pseudorapidity. The
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ZDCs are used to measure the energy of neutral particles remaining in the

forward direction since spectators neutrons diverge by less than 1 mrad from

the beam. Each ZDC consists of three modules and each module consists on

a series of tungsten plates alternating with layers of wavelength shift fibers

that route Cherenkov light to a photo multiplier tube.

Figure 5.8 shows the summed ZDC pulse height and that of the CTB for

events with primary vertex successfully reconstructed from tracks in the TPC.

In collisions at small impact parameters (central collisions), small ZDC val-

ues and large multiplicity in the CTB are measured. As the impact parameter

increases, the multiplicity measured by the CTB decreases while the energy

measured by the ZDC increases. For very large impact parameter (most pe-

ripheral collisions), the multiplicity in the CTB is small and the energy in

the ZDCs is also small as the neutral spectator fragments are bound to the

charged ones and thus deflected by the beam magnets.

In the analysis presented here events from two different trigger settings

were used. Hadronic minimum bias, that requires a coincidence of signals

above threshold in both ZDCs, and hadronic central, that also requires high

CTB signal.

5.3 Hits, tracks and event reconstruction

The reconstruction of the tracks of primary particles passing through the

TPC in a given event is as follows. First the ionization clusters in the TPC

are separately found in the x and y coordinates. These are determined by the
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charge measured on adjacent pads in a single pad row. Assuming that the

signal distribution on the pads is a Gaussian

x =
σ2

2ω
ln

(h3

h1

)

, (5.1)

where h1, h2, and h3 are the amplitudes on 3 adjacent pads with pad h2 cen-

tered at y = 0, ω is the pad width and

σ2 =
ω2

ln(h1h2h3)
. (5.2)

Once the pad location of the clusters is known, a pass is made to find single

tracks, i.e. that left by a single charged particle as it crossed the pad row,

and multiple hits in a cluster. Deconvolution of close hits is very important

for two-track resolution and dE/dx measurements. The found hits are then

transformed into TPC space points, where the z coordinate is determined by

measuring the time of arrival of the electrons in “time buckets” and weighting

the average by the amount of charge collected in each bucket. These space

points also contain information on the energy deposited by the track.

The track reconstruction algorithm starts by finding a 3-point seed in the

outer pad rows of the TPC where the hit density is smaller. This seed is then

extrapolated inwards to the next pad rows. A hit in a pad row is added to

the track segment if it lies inside a search radius around the track projection

to that pad row. Once all the tracks are formed, a Kalman procedure is used

to fit the track. The Kalman fit includes Coulomb scattering and energy loss

in the traversed material. The Kalman fit is run twice, once outwards and

another time inwards, and during this process the outlier hits are removed in
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order to improve track momentum resolution. A further pass is done to join

track segments that were split during the track finding process. These recon-

structed tracks are called global tracks. The particle charge is determined by

correlating the curvature direction of the track and the magnetic field.

The primary vertex position is calculated from the maximum of the distri-

bution of the position of closest approach of every reconstructed global track

to the beam line. After the primary vertex is determined, another fit to the

tracks with a distance of closest approach to the primary vertex of less than

3 cm is performed, but in this case the primary vertex in included as a point

of the track. If the fit is successful, the track parameters are updated and the

track is classified as a primary track. The analysis presented in this thesis

uses those primary tracks.
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CHAPTER 6

ANALYSIS

In this chapter a detail description of the analysis is given and several

experimental issues with high importance to HBT like Coulomb interaction

or momentum resolution are discussed.

6.1 Event selection and centrality binning

For this analysis, we selected events with a collision vertex position within

±25 cm measured from the center of the TPC in order to keep the same ac-

ceptance with the rapidity selection applied. This event selection was applied

to all data discussed here.

The centrality of the collision was characterized according to the measured

multiplicity of charged hadrons at midrapidity as shown in Fig. 6.1. For the

analysis presented here we binned our data in six centrality bins correspond-

ing to 0-5%, 5-10%, 10-20%, 20-30%, 30-50% and 50-80% of the total hadronic

cross section. A hadronic-central triggered data set of 1 million events was

used only for the first bin, the other five bins are from a minimum-bias trig-

gered data set of 1.7 million events.
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Figure 6.1: Multiplicity distribution.

It was mentioned in Chapter 4 that the denominator of the correlation

function, B(~q,~k) in Eq. (4.39), is formed by mixing particles in separate

events, so that each particle in one event is mixed with all the particles in a

collection of events which in our case consists of 20 events, which is a number

large enough to avoid the introduction of any bias in our correlation function.

Mixed pairs are formed only with particles with “similar” events in order to

avoid any signal in our correlation function that could be produced by mix-

ing events with different characteristics. In our analysis, similar events have

primary vertex position within 5 cm and multiplicities within 5 to 30% of the

total cross section.
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Figure 6.2: dE/dx vs. momentum.

6.2 Particle selection

We selected tracks in the rapidity region |y| < 0.5. Particle identification

was done by correlating the specific ionization of the particles in the gas of

TPC with their measured momentum. The energy lost by a particle as it

travels through a given gas depends on the velocity at which it travels and it

is described by the Bethe-Bloch formula [96]

−dE
dx

= κz2 Z

Aβ2
[
1

2
ln

2mec
2γ2β2

I2
Ekin − β2 − δ

2
].

For a given momentum, each particle mass will have a different velocity

and a different dE/dx as it traverses the gas of the TPC, as seen in Fig. 6.2.
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For this analysis, pions were selected by requiring the deviation of the specific

ionization to be within 2 standard deviations (experimentally determined as

a function of the particle momentum and event multiplicity) of the Bethe-

Bloch value for pions. To help remove kaons that could satisfy this condition,

particles were also required to be farther than 2 standard deviations of the

expected value for kaons. There is a small contamination of electrons in our

pion sample, specially in the low momentum region (p < 400 MeV/c). The

effect of this contamination will be discussed later in this chapter.

To reduce contributions from non-primary pions, we applied a DCA (dis-

tance of closest approach of the extrapolated track to the primary vertex) cut

of 3 cm to each track.

In the STAR HBT analysis at
√
sNN = 130 GeV [80], as well as in previ-

ous experiments [97, 98, 99, 100, 101], tracks were divided in different bins

according with their transverse momentum, pT , and only particles within a

given bin were used to form correlation functions. In the analysis presented

here, no specific pT cut was applied to single tracks; however, due to limita-

tions in the identification of pions due to the mixing of the dE/dx bands at

high momentum (Fig. 6.2), and to the momentum pair cut described in next

section, only tracks with p < 1.2 GeV/c are included in the correlation func-

tions.
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a) b) c) d)

Figure 6.3: Distribution of same number of hits in two tracks for four possible
cases. Closed circles are hits assigned to one track, open circles are assigned
to the other. a) SL = -0.5 (clearly two tracks) b) SL = 1 (possible split track) c)
SL = 1 (possible split track) d) SL = 0.08 (likely two tracks)

6.3 Pair cuts

In this section we describe two cuts that are intended to remove the effects

of two track reconstruction defects that have high impact on HBT: split tracks

(one single particle reconstructed as two tracks) and merged tracks (two par-

ticles with similar momenta reconstructed as one track).

6.3.1 Track splitting

Track splitting causes an enhancement of pairs at low relative momentum

q. This false enhancement is created by single particles reconstructed as two

tracks with similar momenta. In order to remove these split tracks we com-

pared the location of the hits for each track in the pair along the pad-rows
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in the TPC and assigned a quantity to each pair, called Splitting Level (SL),

calculated as follows:

SL ≡
∑

i Si

Nhits1 + Nhits2
where Si = (6.1)

{ +1 one track leaves a hit on pad-row
−1 both tracks leave a hit on pad-row
0 neither track leaves a hit on pad-row,

where i is the pad-row number, and Nhits1 and Nhits2 are the total number

of hits associated to each track in the pair. If only one track has a hit in a

given pad-row +1 is added to this running quantity, if both tracks have a hit

in the same pad-row, a sign of separate tracks, -1 is added to this quantity;

after the sum is done, it is divided by the sum of hits in both tracks, this

normalizes SL to a value between -0.5 (both tracks have hits in exactly same

pad-rows) and 1.0 (tracks do not have any hit in same pad-row). Figure 6.3

shows four different cases for the same number of total hits; in case a) two

different tracks with SL = -0.5, in b) and c) two different cases of possible split

tracks with SL = 1, and in d) two different tracks with SL = 0.08.

The enhancement of pairs at low relative momentum caused by split tracks

can be seen in Fig. 6.4 where the distribution of “real” pairs (pairs of tracks

from same event) vs. relative invariant momentum (qinv) and SL is shown.

This enhancement is not seen for “mixed” pairs (pairs of tracks from different

events) in Fig. 6.5.

To remove these split tracks, we required every pair to have SL smaller

than a certain value. This value was determined from the 1-dimensional cor-

relation functions for different values of SL; some of them are shown in Fig.
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Figure 6.4: Distribution of pairs of tracks from the same event
vs. relative momentum qinv and splitting level (SL).
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Figure 6.5: Distribution of pairs of tracks from different
events vs. relative momentum qinv and splitting level (SL).
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Figure 6.6: 1D correlation function for different values of SL (anti-splitting
cut). The cut applied in this analysis is SL < 0.6.

6.6. We observe that when making this cut more restrictive (reducing the

maximum allowed value for SL) the enhancement is reduced until we reach

SL = 0.6 when the correlation function becomes stable and does not change for

lower values of SL. Therefore, all the pairs entering the correlation functions

were required to have SL < 0.6; cutting at this value is also supported by sim-

ulation studies. While the SL cut eliminates all the false “real” pairs produced

by track splitting, it also removes some pairs which happen to satisfy the cut

but do not originate from a single particle. Therefore we apply the SL cut to

both, “real” and “mixed” pairs.
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tion of merged hits allowed. Cut applied in the analysis is fraction of merged
hits (FMH) < 10%.

68



6.3.2 Track merging

Once we have removed split tracks, we can study the effects of two parti-

cles reconstructed as one track. Merged tracks cause a reduction of pairs at

low relative momentum since the particles that have higher probability of be-

ing merged are those with similar momenta. To eliminate the effect of track

merging, we required that all pairs entering numerator and denominator of

the correlation function had a fraction of merged hits no larger than 10%. Two

hits are considered merged if the probability of separating them is less than

99% according to the two-track resolution in the TPC. By applying this cut

to “real” and “mixed” pairs, we introduce in the denominator the effect that

merged tracks have in the numerator: a reduction of low q pairs. However, we

may also remove “real” pairs that satisfy the cut, this would reduce the HBT

fit parameters, and needs to be taken into account as will be described later

in this chapter.

To determine the maximum fraction of merged hits allowed we proceed as

we did for the anti-splitting cut. Figure 6.7 shows the 1-dimensional corre-

lation functions for different values of the maximum fraction of merged hits

allowed. By requiring the fraction of merged hits to be less than 10% for ev-

ery pair entering the correlation function, the effect of merged tracks in the

correlation function was almost completely removed.
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6.3.3 kT cut

As already mentioned, no pT cut was applied to single tracks, however, in

addition to the two cuts already described, pairs were required to have an av-

erage transverse momentum (kT ) between 150 and 600 MeV/c and they were

divided in 4 kT bins (150-250, 250-350, 350-450 and 450-600 MeV/c). No dif-

ference was observed between the extracted HBT parameters when applying

equivalent pT or kT cuts, however statistics improves when using the latter

one, as two pions from different pT bins will be used in a kT -cut analysis, but

not in a pT -cut one.

6.4 Coulomb interaction and fitting procedures

As discussed in Chapter 4, Eq. (4.34) applies only if the sole cause of corre-

lation is quantum statistics. In our case, significant Coulomb effects must also

be accounted for (strong interactions are negligible here [57]). This Coulomb

interaction, repulsive for like-sign particles, causes a reduction on the number

of real pairs at low q reducing the correlation function.

Three different procedures can be applied in order to take this interaction

into account. The first procedure, that was used in the STAR HBT analysis at
√

s
NN

= 130 GeV [80], as well as by previous experiments [97, 98, 99, 100, 101],

consists on fitting the correlation function to:

C(qo, qs, ql) =
A(~q)

B(~q)
= Kcoul(qinv) × (1 + λe−q2

oR2
o−q2

sR2
s−q2

l
R2

l ), (6.2)
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normalized to unity at large ~q, where Kcoul(qinv) is the squared Coulomb wave-

function integrated over the whole source (as described in 4.2.1), which in our

case is a spherical Gaussian source of 5 fm radius. Traditionally, equation

(6.2) has been expressed as:

C ′(qo, qs, ql) =
A(~q)

B(~q)Kcoul(qinv)
= 1 + λe−q2

oR2
o−q2

sR2
s−q2

l
R2

l , (6.3)

and this new correlation function was called the Coulomb corrected correlation

function since we introduce in the denominator a Coulomb factor with what

we try to compensate the Coulomb interaction that is present in the numera-

tor. We call this the standard procedure. However, this procedure overcorrects

the correlation function since it assumes that all pairs in the background are

primary pairs and need to be corrected, including those that are not formed

by primary pions.

In the second procedure, inspired by the previous one and implemented

before by the E802 Collaboration [102], the Coulomb term is diluted according

to the fraction of pairs that Coulomb interact:

K ′

coul(qinv) = 1 + f(Kcoul(qinv) − 1), (6.4)

where f has a value between 0 (no Coulomb weighting) and 1 (standard

weight). The correlation function, normalized to unity at large ~q, in this pro-

cedure is fitted to:

C(qo, qs, ql) =
A(~q)

B(~q)
= K ′

coul(qinv) × (1 + λe−q2
oR2

o−q2
sR2

s−q2

l
R2

l ).

We call this the dilution procedure. Assuming that λ is approximately the

fraction of primary pions, we compare the standard procedure to the dilution
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one with f = λ in the latter one. This increases Ro by 10-15% and has a very

small effect in Rs and Rl as seen in Fig. 6.8, circles; λ decreases by 10-15%.

Finally, in this analysis, we have implemented a new procedure, first sug-

gested by Bowler [60] and Sinyukov [103], and recently advocated by the

CERES collaboration [104], in which only pairs with Bose-Einstein interac-

tion are considered to Coulomb interact. The correlation function in this pro-

cedure is fitted to:

C(qo, qs, ql) =
A(~q)

B(~q)
= (1 − λ) + λKcoul(qinv)(1 + e−q2

oR2
o−q2

sR2
s−q2

l
R2

l ), (6.5)

normalized to unity at large ~q, where Kcoul(qinv) is the same as in the standard

procedure. The first term on the right-hand side of equation (6.5) accounts for

the pairs that do not interact and the second term for the ones that (Coulomb

and Bose-Einstein) interact. We call this Bowler-Sinyukov procedure. It has a

similar effect on the HBT parameters as the dilution one as seen in Fig. 6.8.

It is worth mentioning that the fact that the parameters λ and Ro, and con-

sequently the ratio Ro/Rs, extracted using the standard procedure are smaller

than the ones obtained in the STAR HBT analysis at
√
sNN = 130 GeV [80], is

explained by a different particle selection used for each analysis. In the anal-

ysis presented here, the contribution from non-primary pions is larger than in

the previous one leading to smaller λ and Ro when using that procedure. How-

ever, the parameters obtained when using the Bowler-Sinyukov procedure are

almost not affected by this contribution from non-primary pions.

Figure 6.9 shows the projections of the 3-dimensional correlation function

according to the Bertsch-Pratt parametrization described in section 4.4 for
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Figure 6.8: HBT parameters for the three possible fitting procedures to the
correlation functions from the 0-5% most central events.
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an azimuthally integrated analysis. The closed symbols represent the uncor-

rected correlation function and the open ones the Coulomb corrected correla-

tion function according to the standard procedure. The lines are fits to the

data, the dashed line is the standard fit to the Coulomb corrected correlation

function, and the solid line the Bowler-Sinyukov fit to the uncorrected one.

As a consistency check for the Bowler-Sinyukov procedure, we calculated

the π+π− correlation function, which is dominated by Coulomb interaction,

and compare to different calculations. In Fig. 6.10, lines indicate the standard

(dashed) (Kcoul(qinv)) and Bowler-Sinyukov (solid) ((1−λ)+λKcoul(qinv)) Coulomb

functions; in the latter, λ was extracted from the fit to the 3D like-sign corre-

lation function. Clearly, the Bowler-Sinyukov function (solid line) better re-

produces the data (triangles) than the standard function (dashed line). The

small discrepancy between the Bowler-Sinyukov function and the data dis-

appears when strong interaction (negligible for like sign pairs) is added to

the Bowler-Sinyukov function as shown by the theoretical calculation [105]

(stars).

The Coulomb interaction between the outgoing charged pions and the resid-

ual positive charged source is negligible. This is confirmed by the good agree-

ment observed between the parameters extracted from π+π+ and π−π− corre-

lation functions as will be shown later in this thesis, Fig. 7.1.
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Sinyukov (solid line) procedures.
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6.5 Momentum resolution correction

The limited single-particle momentum resolution induces systematic un-

derestimation of the HBT parameters. To determine the magnitude of this

effect we need to know the momentum resolution for the particles under con-

sideration. The components of ~p expressed as a function of the measured

quantities pT , the azimuthal angle, ϕ, and the polar angle, θ, are

px = pT cos(ϕ)

py = pT sin(ϕ) (6.6)

pz =
pT

tan(θ)
.

The deviation of these components from the real components is the momen-

tum resolution and can be expressed as

δpx = px
δpT

pT
− pyδϕ

δpy = py
δpT

pT
+ pxδϕ (6.7)

δpz = pz
δpT

pT
+ pT

δθ

sin2(θ)
.

We extract the widths δpT , δϕ and δθ as a function of p for midrapidity pions

from Monte-Carlo tracks embedded into real events. Figure 6.11 shows these

widths as a function of pT . We see that the resolution on pT , given by δpT/pT ,

has a width of about 1% for the p range under consideration.

To account for this limited momentum resolution, a correction, Kmomentum,

is applied to each measured correlation function:

C(~qmeas) =
A(~p1,meas, ~p2,meas)

B(~p1,meas, ~p2,meas)
Kmomentum. (6.8)
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The correction factor is calculated from the single-particle momentum resolu-

tion as follows:

Kmometum(~q) =
C2(~qideal)

C2(~qsmear)
=

A(~p1,ideal,~p2,ideal)

B(~p1,ideal,~p2,ideal)

A(~p1,smear,~p2,smear)

B(~p1,smear,~p2,smear)

, (6.9)

where the ideal and smear correlation function are formed as follows.

Numerator and denominator of the ideal correlation function are formed

by pairs of pions from different events. Each pair in the numerator is weighted,

accordingly with the Bowler-Sinyukov function, by:

weight = (1 − λ) + λKcoul(qinv) × (1 + e−q2
oR2

o−q2
sR2

s−q2

l
R2

l ), (6.10)

where Kcoul(qinv) is the same one as described in section 6.4. If the measured

momentum were the “real” momentum, this ideal correlation function would

be the “real” correlation function, however this is not the case, so we calculate

a smeared correlation function for which numerator and denominator are also

formed by pairs of pions from different events but their momenta have been

smeared according to the extracted momentum resolution. Pairs in numerator

are also weighted by the weight given by Eq. (6.10). This smeared correlation

function is to the ideal one, as our “measured” correlation function is to the

“real” one, which allows us to calculate the correction factor.

For the weight, certain values for the HBT parameters (λ, Ro, Rs, and Rl)

need to be assumed. Therefore, this procedure is iterative with the following

steps:

1. Fit the correlation function without momentum resolution correction

and use the extracted HBT parameters for the first weight
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2. Construct the momentum resolution corrected correlation function

3. Fit it according to (6.5)

4. If the extracted parameters agree with the ones used to calculate the

weight, those are the final parameters. If they differ from the ones used,

then use this latter extracted parameters for the new weight and go back

to step 2.

Also, to be fully consistent, the Coulomb factor Kcoul(qinv) used in the fit

to extract the HBT parameters must be modified to account for momentum

resolution as follows:

Kcoul(qinv) = Kcoul(qinv,meas)
Kcoul(qinv,ideal)

Kcoul(qinv,smear)
=

K2
coul(qinv,meas)

Kcoul(qinv,smear)
. (6.11)

For this analysis, after two iterations the extracted parameters were con-

sistent with the input ones. We also checked that when convergence is reached,

the “uncorrected” results matched the smeared ones. The effect of this correc-

tion is an increase on the HBT radius parameters between 1.0% for the lowest

kT bin (150, 250) MeV/c and 2.5% for the highest one (450, 600) MeV/c.

6.6 Systematic associated with pair cuts

The maximum fraction of merged hits cut used to remove the effects pro-

duced by track merging, as described in section 6.3, introduces a systematic

reduction on the HBT fit parameters λ, R2
o, R2

s, and R2
l , since it discriminates

against low-q pairs which carry the correlation signal.
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Figure 6.12: For π−π− pairs (top), merging occurs more often between tracks
with |qoqs| = qoqs than with |qoqs| 6= qoqs. For π+π+ pairs (bottom) opposite
conditions are satisfied.
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In order to estimate this reduction we define a validity range for the cut

in the number of merged hits in which the lower limit is 0 (i.e. no merging)

and the upper limit is defined by the value for which we consider there is

already too much merging. This value is determined from the 0th order Fourier

coefficients, R2
os,0 which is expected to be 0 (see equation 4.38). However, track

merging introduces a deviation caused by the preferential merging of track

pairs with correlated transverse momenta, qo and qs as shown in Fig. 6.12. In

the case of π−π− pairs, there is a higher degree of track merging when |qoqs|

= qoqs than when |qoqs| 6= qoqs (top pairs). For π+π+ pairs the conditions are

opposite (bottom pairs).

When R2
os for π+π+ or π−π− analysis clearly deviates from 0, we considered

that there is already too much merging and use that value of the maximum

fraction of merged hits as the upper limit of the validity range. We calculate

the change on each HBT radius in this range and consider it to be the artificial

reduction due to the cut for that specific parameter. This reduction is included

as a systematic error in the final error. This is done for each centrality and

each kT bin.

As an example, Fig. 6.13 shows the 0th order (left) and 2nd divided by 0th or-

der (right) Fourier coefficient as a function of the maximum fraction of merged

hits allowed for the 5% most central events and kT between 150 and 250 MeV.

From R2
os,0, located in the bottom left panel, we determined the upper limit of

our range to be 0.2 and the corresponding variations in the HBT radii to be

0.7% for Ro, 0.5% for Rs and 1.1% for Rl.
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6.7 How Gaussian is the source?

As already discussed, the shape of the correlation function is usually de-

scribed by a Gaussian. Before showing the results from our analysis it is

important to study the possible deviations of our correlation functions from

a Gaussian shape. To do so, we followed the method suggested in [106], in

which the Edgeworth expansion, an expansion based on a complete orthonor-

mal set of functions around a Gaussian, is expected to give a better description

of the data. The expansion around the 3-dimensional Gaussian in the Bowler-

Sinyukov procedure for an azimuthally integrated analysis is

C(qo, qs, ql) = (1 − λ) + λKcoul(qinv)

+λKcoul(qinv) · e−q2
oR2

o−q2
sR2

s−q2

l
R2

l ×
[

1 +

∞
∑

n=4,n even

κo,n

n!(
√

2)n
Hn(qoRo)

]

×

[

1 +
∞

∑

n=4,n even

κs,n

n!(
√

2)n
Hn(qsRs)

]

×

[

1 +
∞

∑

n=4,n even

κl,n

n!(
√

2)n
Hn(qlRl)

]

, (6.12)

where κi,n (i = o, s, l) are fit parameters and Hn(qiRi) are the Hermite polyno-

mials of order n:

Hn(x) = (−1)nex2 dn

dxn
e−xn

. (6.13)

Only Hermite polynomials of even order are included in the expansion be-

cause the correlation function for identical particles must be invariant under

(qo, qs, ql) → (−qo,−qs,−ql) as discussed in Chapter 4.
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Figure 6.14: Projections of the 3 dimensional correlation functions and fits to
equation (6.5) (left) and with the Edgeworth expansion to equation (6.12) to
6th order (right).
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(6.5) and to equation (6.12) to 4th and to 6th orders.
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kT (MeV/c) 150-250 250-350 350-450 450-600
κo,4 (4th ord.) 0.37±0.05 0.36±0.04 0.33±0.05 0.40±0.06

κo,4 0.53±0.11 0.45±0.10 0.20±0.11 0.22±0.13
κo,6 0.83±0.39 0.53±0.38 0.63±0.44 -0.84±0.53

κs,4 (4th ord.) 0.22±0.04 -0.03±0.04 -0.27±0.04 -0.50±0.05
κs,4 0.99±0.10 0.79±0.10 0.16±0.11 -0.07±0.13
κs,6 3.07±0.35 3.21±0.37 1.71±0.44 1.80±0.51

κl,4 (4th ord.) 1.60±0.06 1.25±0.05 1.04±0.06 0.78±0.06
κl,4 1.32±0.07 0.70±0.07 0.54±0.09 0.32±0.11
κl,6 -1.76±0.29 -2.82±0.29 -2.41±0.35 -2.12±0.43

Table 6.1: κi,n parameters for fits of the correlations functions up to 4th order
(when indicated) and 6th order of the Edgeworth expansion for the 5% most
central events. The extracted radii are shown in Fig. 6.15.

We fit our correlation functions to the form given by (6.12) up to 4th and

6th order of the Hermite polynomials, and compare with fits to (6.5) (without

expansion). In Fig. 6.14 we show the projections of the correlation function

for the 0-5% most central events and kT between 150 and 250 MeV/c, and cor-

responding fits with no expansion in the left column and with expansion up

to 6th order in the right one; we observe a small improvement in the fit when

we include the Edgeworth expansion in the fit. However, no significant dif-

ferences are observed between a fit with an expansion to 4th or 6th order. In

Fig. 6.15 the extracted HBT parameters as a function of kT for the 0-5% most

central events for the fits without expansion, with expansion up to 4th order

and with expansion up to 6th order are shown. The corresponding values for

the κ parameters are shown in Table 6.1. When comparing the extracted pa-

rameters including the expansion to 6th order to those extracted without the
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expansion, we observe that Ro decreases by ∼ 2% for all kT bins, Rs changes

between ∼ -7% for the lowest kT bin (150-250) MeV/c and ∼ +3% for the high-

est one (450-600) MeV/c, and Rl decreases between ∼ 18% and ∼ 8% for the

lowest and highest kT bins respectively. Similar trends are observed at all

centralities. This changes in the HBT radii can be considered as systematic

deviation of the correlation function from a Gaussian, however we do not con-

sider them as an uncertainty in the extracted HBT parameters. The main

reason for this is that we do not know what the relation between the HBT

parameters extracted when including the expansion and the source function

is.
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CHAPTER 7

RESULTS AND DISCUSSION

In this chapter the HBT parameters as a function of mT for the 6 different

centralities are presented. This allows us to study the centrality dependence

of the mT dependence of the HBT radii, which is discussed in the second sec-

tion of the chapter. In the last section, the extracted parameters from a blast

wave fit to the results are given and discussed. The expansion of the source is

also studied.

7.1 mT dependence of the HBT parameters for most cen-
tral collisions

As already discussed in Chapter 4, the HBT radius parameters measure

the sizes of the homogeneity regions (regions emitting particles of given mo-

menta) [73]. Hence, for an expanding source, depending on the momenta of

the pairs of particles entering the correlation function, different parts of the

source are measured. Also, the size of these regions are controlled by the

expanding velocity gradients [72, 74, 75]. Therefore the dependence of the

transverse radii on the pair transverse mass contains dynamical information

of the particle emitting source [54, 73].
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Figure 7.1: HBT parameters for 0-5% most central events for π+π+ and π−π−

correlation functions. Error bars include statistical and systematic uncertain-
ties.
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Figure 7.1 shows the HBT parameters λ, Ro, Rs, Rl and the ratio Ro/Rs for

the 0-5% most central events as a function of mT for π+π+ and π−π− correla-

tion functions. We observe an excellent agreement between the parameters

extracted from the positively and negatively charged pion analyses. This con-

firms that the interaction between the outgoing particles an the positively

charged source is negligible. The λ parameter increases with mT , this is con-

sistent with studies at lower energies [80, 97, 101, 107], in which the increase

was attributed to decreased contributions of pions from long-lived resonances

at higher pT . The three HBT radii rapidly decrease as a function of mT ; the

decrease of the transverse radii (Ro and Rs) with mT is due to the radial flow

[72, 74, 75]; the strong decrease in Rl is produced by the longitudinal flow

[64, 72, 73, 75, 108]. Ro falls steeper than Rs with mT which could suggest

that Ro might be more affected by radial flow [82]. In contrast to several

model predictions [77, 79], Ro/Rs ∼ 1, which indicates short emission dura-

tion in a blast wave parametrization [82] as will be discussed later in this

section.

In Fig. 7.2 we compare our extracted HBT radius parameters from π+π+

and π−π− correlation functions for the 0-30% most central events with those

obtained by the PHENIX collaboration [109] at the same beam energy and

centrality. In general, very good agreement is observed in the three radii,

although small discrepancies are seen in Ro at small relative momentum.

Figure 7.3 shows the HBT parameters vs. collision energy for midrapidity,

low pT π
−π− from central Au+Au, Pb+Pb or Pb+Au collisions [97, 98, 99, 100,
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101]. In order to be able to compare with STAR previous results at
√
sNN = 130

GeV, we applied similar cuts in our analysis as those described in [80] and we

fit our correlation function according to the standard procedure described in

section 6.4, closed circles (
√
sNN = 200 GeV) in Fig. 7.3. With respect the

STAR results at
√
sNN = 130 GeV, we observe an increase of ∼ 10% in the

transverse radii Ro and Rs. In the case of Rs this increase could be attributed

to a larger freeze-out volume for a larger pion multiplicity. Rl is consistent

with our previous result. Also, the predicted increase by hydrodynamic mod-

els in the ratio Ro/Rs as a probe of the formation of QGP is not observed at
√
sNN = 200 GeV.

We have also included in Fig. 7.3 the values for the HBT parameters at
√
sNN = 200 GeV extracted when applying the cuts discussed in this thesis and

fitting the correlation function accordingly to the Bowler-Sinyukov procedure

(section 6.4), open circles in Fig. 7.3. This procedure is also used by the

CERES collaboration. The smaller λ, Ro, and Rs can be explained by the

different cuts as already discussed in section 6.4. The larger value for Ro/Rs

is due to the improved procedure for taking Coulomb interaction into account,

Bowler-Sinyukov procedure, section 6.4.

7.2 Centrality dependence of the mT dependence

The excellent agreement in the results for positively and negatively charged

pion correlation functions for the most central collisions shown in the previ-

ous section allows us to add the correlation functions for positive and negative
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Figure 7.4: HBT parameters vs. mT for 6 different centralities.
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pions in order to improve statistics. All the results shown in the rest of this

chapter correspond to these added correlation functions. The centrality de-

pendence of the source parameters is presented in Fig. 7.4 where the HBT

parameters are shown as a function of mT for 6 different centralities. The λ

parameter slightly increases with decreasing centrality. The three radii in-

crease with increasing number of participants and Rl varies similar to Ro and

Rs; forRo and Rs this increase may be attributed to increase in the geometrical

overlap of the two nuclei. Ro/Rs ∼ 1, for all centralities.

7.3 Discussion of the centrality dependence of the mT de-
pendence

As already mentioned in section 7.1, the dependence of the HBT radii in

the transverse mass contains dynamical information of the particle emitting

source. In order to extract information about the dependence of the HBT radii

on mT for different centralities, we fit the mT dependence of each HBT radii

for each centrality from Fig. 7.4 by a simple power-law fit: Ri(mT ) = R′

i ·

(mT/mπ)−αi (solid lines in Fig. 7.5). Figure 7.6 shows the extracted fit param-

eters for the three HBT radii, R′ in the top panel and α in the lower one, as a

function of the number of participants, where Nparticipants has been calculated

using a Glauber model calculation that is described in [110]. R′ decreases

with decreasing number of participants, consistently with the decreasing ini-

tial source size. α is approximately constant for Rl, this would indicate a con-

stant longitudinal flow for all centralities; however, for the transverse radii

Ro and Rs, α seems to decrease for the most peripheral collisions which could
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Cent. (%) T (MeV) ρ0 R (fm) τ (fm/c) ∆τ (fm/c) χ2/dof
0-5 88 ± 2 1.04 ± 0.01 13.5 ± 0.1 9.3 ± 0.1 2.96 ± 0.04 9.50/58

5-10 99 ± 3 1.00 ± 0.01 12.4 ± 0.1 8.3 ± 0.2 2.49 ± 0.10 1.35/46
10-20 102 ± 3 0.97 ± 0.01 11.3 ± 0.1 7.6 ± 0.2 2.31 ± 0.08 1.69/48
20-30 105 ± 2 0.93 ± 0.01 10.3 ± 0.1 6.9 ± 0.1 2.00 ± 0.08 0.93/50
30-50 109 ± 3 0.82 ± 0.02 8.2 ± 0.2 6.0 ± 0.2 1.38 ± 0.18 1.25/50
50-80 110 ± 4 0.52 ± 0.05 4.5 ± 0.5 5.0 ± 0.3 0.31 ± 0.82 0.77/47

Table 7.1: Extracted parameters from a blast wave fit simultaneously to pion
HBT radii, and pion, kaon, and proton transverse momentum spectra.

be an indication of a small decrease on transverse flow and/or an increase on

temperature for those most peripheral collisions; this is consistent with the

values for flow and temperature extracted from blast wave fits to pion, kaon,

and proton transverse momentum spectra [111]. The decrease in α with de-

creasing number of participants is faster in Ro than in Rs which could again

indicate that Ro may be more affected by radial flow [82].

7.4 Blast wave parametrization

It was already discussed that hydrodynamic calculations that successfully

reproduce transverse momentum spectra and elliptic flow, fail to reproduce

the HBT parameters [77]. In most cases, these calculations underestimate

Rs and overestimate Ro and Rl; since Rs only probes the spatial extent of the

source while Ro and Rl are sensitive to the duration of the particle emission

and the system lifetime [54], they may be underestimating the system size

and/or overestimating its emission duration and evolution time. We use a

blast wave parametrization, designed to describe the freeze-out configuration,
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to fit our data. In this section the extracted parameters and their physical

implications are discussed.

This blast wave parametrization [82] assumes that the system is contained

within an infinitely long cylinder along the beam line and requires longitudi-

nal boost invariant flow. We use this parametrization to simultaneously fit the

pion HBT radii and the pion, kaon and proton spectra [111] (to constraint tem-

perature and flow velocity) with a single set of free parameters: the freeze-out

temperature (T ); the maximum flow rapidity (ρ0); the radius (R) of the cylin-

der that confines the system; the system proper time (τ =
√
t2 − z2); and the

emission duration (∆τ ). In the fit, the transverse flow rapidity linearly in-

creases from zero at the center to a maximum value at the edge of the system.

The best fit parameters are summarized in Table 7.1.

Most of the parameters, as well as their evolution with centrality, agree

with reasonable expectations. Temperature decreases with increasing cen-

trality and the average transverse flow velocity < βT > increases with in-

creasing centrality, both results are consistent with those extracted from blast

wave fits to spectra only [111] and reflect increasing rescattering and expan-

sion with centrality. This is also consistent with the observed increase in the

system evolution time. We observe an increasing emission duration with cen-

trality too.

The geometrical size of the source, Rgeom, can be calculated assuming a

transverse expanding, longitudinally boost-invariant source, and a Gaussian
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transverse density profile, by fitting the mT dependence of Rs to:

Rs(mT ) =

√

R2
geom

1 + ρ2
0(

1
2

+ mT

T
)
, (7.1)

where T is the freeze-out temperature and ρ0 is the surface transverse ra-

pidity [75]. Figure 7.7 shows the fits to Rs for each centrality with T and ρ0

extracted from fits to pion, kaon, and proton transverse momentum spectra

(T = 90 MeV, ρ0 = 1.206 for the most central collisions and T = 120 MeV, ρ0 =

0.829 for the most peripheral ones) [111]. The above extracted Rgeom is shown

in Figure 7.8 as a function of Nparticipants. R as extracted from the blast wave fit

discussed above is also shown. We observe a good agreement between the two

extracted radii, that increase from ∼5 fm for the most peripheral collisions to

∼13 fm for the most central ones following the growth of the system initial

size.

As already mentioned, Rs carries only spatial information about the source

[52, 72]. In the particular case of vanishing space-momentum correlations (no

transverse flow or T = ∞), the radius of the “whole” source R is approximately

described by R = 2 × Rs, independent of kT , where Rs is the extracted HBT

side radius, which in this particular case is the RMS of the distribution of

particles in the transverse plane at freeze-out. In Fig. 7.8 we have included

2 × Rs for our lowest kT bin, kT = 150-250 MeV/c, in order to compare it with

the extracted source radii. We observe that for the most peripheral collision

2 × Rs is similar to R indicating smaller space-momentum correlations (i.e.

less transverse flow and/or higher temperature); however, for the most central

collisions, 2 × Rs is smaller than the extracted radii indicating an increase
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in flow and/or a decrease in temperature that increase the space-momentum

correlations in these collisions.

7.4.1 Source expansion

For non-central collisions, the initial overlapping region of the two nuclei

has an elliptic shape with the larger axis perpendicular to the reaction plane

(out-of-plane) and the shorter axis in the reaction plane (in-plane) (see Fig.

3.3). The initial in-plane (Rx,initial) and out-of-plane (Ry,initial) radii can be cal-

culated as 2 × RRMS
i,initial for i = x, y, if one assumes homogeneous distribution

of particles, where RRMS
i,initial is the root mean squared of the distribution of par-

ticles in the 2-dimensional almond shaped initial overlapping region. In this

analysis this initial distribution of particles in the transverse plane was cal-

culated using the Monte Carlo Glauber model calculation described in [110].

The azimuthally integrated initial radius of the ellipse (Rinitial) can be calcu-

lated from those two radii as

Rinitial =

√

R2
x,initial +R2

y,initial

2
. (7.2)

The final in-plane (Rx) and out-of-plane (Ry) radii can be calculated from

the extracted radius R from the blast wave parametrization and the final

source eccentricity, calculated as εfinal ≈ 2R2
s,2/R

2
s,0 where R2

s,2 and R2
s,0 are

the 0th and 2nd order Rs Fourier coefficients [70], as follows:

R2
x = (1 − ε)R2

R2
y = (1 + ε)R2 (7.3)
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The final eccentricity values are: 0.0049 ± 0.01, 0.0289 ± 0.01, 0.0775 ± 0.01,

0.1111 ± 0.01, 0.1289 ± 0.01, from most central to most peripheral, where the

uncertainties are experimental only [70].

Figure 7.9 (bottom panel) shows R/Rinitial vs. number of participants for

in-plane, out-of-plane and azimuthally integrated directions. The relative ex-

pansion of the source R/Rinitial, is found to be stronger in-plane than out-of-

plane for peripheral collisions, and similar in both directions for the most

central ones. The azimuthally integrated radius indicates a stronger expan-

sion of the source for the central collisions than for peripheral however, this

expansion seems to be very similar for all centralities decreasing just for the

most peripheral cases. Figure 7.9 (top panel) shows the overall expansion of

the source given by R − Rinitial vs. number of participants. This expansion

clearly increases with centrality and it is similar in-plane and out-of-plane,

specially for the most central collisions.

We would like to know what is the origin of the expansion and in particular

what is causing the differences between in-plane and out-of-plane expansions.

We know that most of the collisions have an initial spatial anisotropy, they are

out-of-plane extended at the initial stage. Only in the most central collisions

the initial source will be almost spherical. This initial spatial anisotropy in-

duces an energy density gradient stronger in the in-plane than in the out-of-

plane direction, which, by particle reinteraction, generates an initial pressure

gradient also stronger in-plane than out-of-plane. As the centrality increases
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initial

the difference between the initial energy density gradient in-plane and out-of-

plane diminishes, which brings the expansion in-plane and out-of-plane closer

together.

Following this idea that the initial pressure gradients drive the expan-

sion, we attempt to estimate the initial energy density gradient. We assume

that the energy density at the center of the system scales with the particle

multiplicity, which we obtained from the pion dN/dY as reported in [111].

An estimate of the energy density gradient may be obtained by dividing the

maximum energy density by the initial spatial RMS that we have introduced

earlier. Doing so, we assume that this spatial RMS scales with the distance
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between the center and the edge of the system where the energy density is

zero.

Figure 7.10 shows R − Rinitial vs. (dN/dy)/RRMS
initial, where RRMS

initial is the cor-

responding in-plane, out-of-plane and azimuthally integrated initial RMS de-

scribed before. We observe a clear scaling for Rx and Ry as well as for the

azimuthally integrated radius R with (dN/dy)/RRMS
initial. For the same central-

ity, the in-plane radius corresponds to a larger value of (dN/dy)/RRMS
initial than

the out-of-plane one indicating that the expansion is actually driven by the

initial pressure gradient.

The good fit to the data obtained with the blast wave parametrization,

consistent with expansion, and the comparison in different ways of the initial

and final sizes of the source clearly indicate that the results can be interpreted

in terms of collective expansion that could be driven by the initial pressure

gradient. However, the time scales extracted from the fit seems to be small,

i.e. smaller than the values predicted by most hydrodynamic models [77].

Time scales are discussed next.

7.4.2 Time scales

From the dependence of Rl on mT shown in Fig. 7.11 and assuming boost-

invariant longitudinal flow, we can extract information about the system evo-

lution time-scale, or proper time of freeze-out, of the source by fitting it to

a formula first suggested by Sinyukov and collaborators [73, 108] and then
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improved by others [64, 75, 82]:

Rl = τ

√

T

mT

K2(mT/T )

K1(mT/T )
, (7.4)

where T is the freeze-out temperature and K1 and K2 are the modified Bessel

functions of order 1 and 2. This expression also assumes vanishing transverse

flow and instantaneous freeze-out in proper time (i.e. ∆τ = 0). The first as-

sumption is approximatively justified by the small dependence of Rl on ρ0 in

a full blast wave calculation [82]; the second approximation is justified by the

small ∆τ from blast wave fits. Figure 7.11 also shows the fits to Rl (lines)

using temperatures, T , consistently with spectra as for the fit to Rs. The ex-

tracted values for the evolution time are shown in Fig. 7.12; we observe an
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increase in evolution time with centrality from τ ≈ 4 fm/c for the most pe-

ripheral events to τ ≈ 9 fm/c for the most central ones. In the same plot, the

extracted evolution time from the blast wave fit is shown. Good agreement is

observed between the two extracted evolution times for all centralities. They

are surprisingly small compared to hydrodynamical calculations which pre-

dict a freeze-out time of ∼ 15 fm/c and not of ∼ 9 fm/c. These hydrodynamical

calculations may over-predict the system lifetime or our assumption in which

the extraction of τ is based, longitudinal boost invariant expansion, may be

wrong.
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As a check for the consistency of the evolution time extracted from the

blast wave fit, Fig. 7.13 shows the final source radius as extracted from the

blast wave fit minus the initial edge source size vs. βT,max · τ . Here, βT,max

is the maximum flow velocity and the one we would expect to measure at the

edge of the expanding source at kinetic freeze-out. It has been calculated from

the ρ0 blast wave parameter shown in Table 7.1. The evolution time, τ , is the

blast wave parameter shown in Fig. 7.12. The systematic error in βT,max · τ

comes from the finite size of the centrality bins. If the extracted radius and

evolution time are right, we expect that the final edge radius can be related

to the initial one by the relation Rfinal < Rinitial + βT,max · τ so that the points in

Fig. 7.13 should be clearly below the solid line (x = y). Most points are clearly

above the line which may suggest that τ is not properly calculated within the

blast wave parametrization. A larger τ would move the points below the line.

In order to calculate what values for R − Rinitial as a function of βT,maxτ

would be a reasonable expectation, a possible approach would be to set a pro-

file for the transverse flow velocity at the edge like: βT,edge = t
τ
βT,max. We can

then expect Rfinal to be given by Rfinal = Rinitial +
∫ τ

0
βT,edgedt = Rinitial +0.5βT,max ·

τ . The dashed line in Fig. 7.13 is a y = 0.5 · x line and indicates where the

results of this calculation would be. We see that, as expected, the points are

even farther away (more than two times) from this line confirming that τ may

not be properly calculated.

However the procedure followed to get Fig. 7.13 has a problem. In order

to calculate the initial and final edge radii of the whole source, some shape
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for the source needs to be assumed. In this analysis we assumed a hard edge

shape (“box profile”) for both, initial and final, sources, and calculated the

radii as 2 · RRMS where RRMS is the RMS of the distribution of particles in

the transverse plane. This is only true for a homogeneous distribution of

particles. It would be better if we did not have to assume any shape and

could compare the initial and final RMS’s. In order to do that we assume an

initial 2 dimensional Gaussian transverse density profile with σ = RRMS
initial in

which every particle has a transverse radial velocity βT = r
R
βT,max so that the

equation of motion for each particle is given by: r = r0e
Bt where B =

βT,max

R
.

This implies that the initial Gaussian profile evolves in the presence of a time-

independent non-relativistic Hubble flow. By studying its evolution we expect

to extract more information on the evolution time of our source.

If the final transverse distribution of particles is given by a function f(r, t),

then, by the conservation on the number of particles

1

2πσ2
0

∫ b

0

e−r2/2σ2

0r dr =

∫ beBt

0

f(r, t)r dr (7.5)

If we differentiate both sides of this equation with respect to b,

1

2πσ2
0

e−b2/2σ2

0 · b = f(beBt) · b · e2Bt (7.6)

And changing the variable to r = beBt:

f(r, t) =
1

2π(σ0eBt)2
e−r2/2(σ0eBt)2 (7.7)

So that the final distribution in indeed a Gaussian with σ(t) = σ0e
Bt, which

allows us to study the evolution from the initial to the final RMS.
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Figure 7.14: Evolution of a Gaussian distribution for a constant number of
particles with standard deviation changing with time as σ(t) = σ0e

βT,max·t/R.

As an example, Fig 7.14 shows the evolution of the Gaussian distribution

of particles for the 0-5% most central collisions. We observe that at the time

extracted from the blast wave fit the Gaussian has not yet reached its final

σ = RMSfinal. It needs 14.42 fm/c to reach it. However this time should

be a lower limit of the actual evolution time since we assume that all the

particles have already a small transverse velocity at t = 0. This extracted time

may confirm the conclusion from Fig. 7.13 that the evolution time extracted

from the blast wave fit is too small. Table 7.2 shows the comparison between

the two extracted times for different centralities. We observe that the one

extracted from the blast wave fit is smaller in most of the centralities.
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Centrality (%) BW τ (fm/c) τmin (fm/c)
0-5 9.3 ± 0.1 14.4 ± 1.1

5-10 8.3 ± 0.2 13.2 ± 1.0
10-20 7.6 ± 0.2 11.9 ± 1.1
20-30 6.9 ± 0.1 11.2 ± 0.9
30-50 6.0 ± 0.2 8.4 ± 0.8
50-80 5.0 ± 0.3 2.8 ± 0.6

Table 7.2: Evolution time as extracted from the blast wave fit compared to the
one extracted from the evolution of initial Gaussian density profile and which
may be a lower limit of the actual evolution time.
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Figure 7.15: Emission duration time ∆τ vs. number of participants as ex-
tracted using a blast fit to HBT parameters and spectra.
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Figure 7.15 shows the emission duration time, ∆τ as a function of the num-

ber of participants extracted from the blast wave fit to pion HBT parameters

and spectra described above. ∆τ increases with increasing centrality up to ∼

3 fm/c. As for the proper time, the emission duration is very small for all cen-

tralities, however it has increased with respect to the values extracted from

our analysis at
√
sNN = 130 GeV [82] due to the improved procedure of taking

Coulomb interaction into account and the consequently increase in Ro.
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CHAPTER 8

CONCLUSION

In this thesis, a systematic analysis of two identical pion interferometry in

relativistic heavy ion collisions at RHIC has been presented. These collisions

give us access to an unknown phase of matter at extremely high temperatures

and densities in an asymptotic region of QCD.

It was shown that relativistic heavy ion collisions are not just a superposi-

tion of pp collisions. One important difference is the collective behavior seen

in heavy ion collisions that is not observed in pp collisions. The mT depen-

dence of the HBT transverse radii indicates a strong transverse flow in the

system, which depends on the centrality of the collision. By using the blast

wave parametrization to fit our results, it was shown that the system collec-

tively expands by a factor of at least two times for most centralities. This

has been well established by HBT. It was determined that this collective ex-

pansion may be caused by the initial pressure gradient that was generated in

the initial stages of the collision through particle rescattering in a very dense

medium.

116



The long emission time predicted as a clear signature of the QGP forma-

tion that would have been reflected in the ratio Ro/Rs >> 1 has not been

measured in this analysis. On the contrary, from the blast wave fit we extract

rather short emission times. Also, the evolution times extracted from that fit

are smaller than the one predicted by hydrodynamic calculations. This dis-

crepancy may be due to an overestimation of Rl in the hydrodynamical model

or due to the incorrect blast wave assumption of the system being longitu-

dinally boost invariant. We have shown that slightly longer evolution times

are more reasonable implying that, indeed, the longitudinal boost invariant

assumption may have only limited validity. However, agreement between hy-

drodynamic calculations and HBT experimental results is needed in order to

make the hydrodynamic description of the heavy ion collisions completely re-

liable.
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APPENDIX A

RELEVANT VARIABLES

The coordinate system in STAR is defined to be right-handed, with the +z

axis defined by the direction of the clockwise RHIC beam. Positive y is defined

to point vertically upwards, and +x is perpendicular to both. The origin of the

coordinate system is located at the center of the STAR solenoid magnet [86].

The transverse momentum of a particles is the modulus of the momentum

vector transverse to the beam direction,

pT =
√

p2
x + p2

y. (A.1)

The transverse mass of the particle having mass m0 is,

mT =
√

p2
T +m2

0. (A.2)

so that the transverse kinetic energy is mT −m0.

The azimuthal angle of the particles momentum in the laboratory frame is

φlab = tan−1(py/px). (A.3)

The rapidity of the particle is a measurement of its forward (beam) direc-

tion,

y =
1

2
ln

(E + pz

E − pz

)

, (A.4)
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which is boost invariant.

The pseudorapidity is defined as

η =
1

2
ln

(1 + cos(θ)

1 − cos(θ)

)

= − ln{tan[cos−1(pz/p)]}, (A.5)

where θ is the angle between the momentum of the particle and the beam

axis. For p >> m, η ≈ y.

For a pair of particle, the transverse momentum vector of the pair is de-

fined as,

~kT =
(~p1 + ~p2

2

)

T
. (A.6)

The transverse mass of the pair, for identical particles of mass m0, is de-

fined as,

mT =

√

|~kT |2 +m2
0. (A.7)

The momentum difference of the pair is given by

~q = ~p1 − ~p2. (A.8)

An invariant form of this momentum differences commonly used in a 1-

dimensional HBT analysis is

qinv =
√

(q0)2 − |~q|2. (A.9)

In the blast wave parametrization, the maximum transverse flow velocity

is given by

βT,max = tanh(ρ), (A.10)

where ρ = r̃(ρ0 + ρa cos(2φ)) is the transverse flow rapidity. In an azimuthally

integrated analysis ρa = 0 and ρ = r̃ρ0.
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The average transverse flow velocity is

〈βT 〉 =

∫

arctanh(ρ r
R
)r dr

∫

r dr
. (A.11)

The system evolution time is,

τ =
√
t2 − z2. (A.12)
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