
CWP	180306	

	
Scaler	2	Operations	Manual	
	
	
	
Overview	
					Each	scaler	board	in	the	system	consists	of	a	PCB	scaler	board	and	a	corresponding	Linux	
receiver	machine.		The	PCB	scaler	boards	are	housed	in	standard	PC	boxes	and	powered	via	the	
PCI	slot	but	do	not	use	the	PCI	bus	besides	powering	the	board.		Currently,	boards	1-3	are	
housed	in	one	box	and	boards	4-6	are	housed	in	another	box.			The	status	of	the	Scaler	2	system	
can	be	monitored	at	:		
											https://online.star.bnl.gov/L2TimingPlots/scaler2mon/scaler2mon.html	
	
Scaler	Boards	
					Each	scaler	board	is	controlled	via	its	ConnectCore	Ethernet	interface.		To	control	a	board,	
ssh	into	the	corresponding	board	at	hostname	“scalerbdX.scaler.bnl.local”	using	the	“root”	
account.		Note	that	the	boards	are	connected	to	the	“scaler.bnl.local”	network	and	connection	
must	come	from	another	machine	on	that	network.		The	“root”	account	must	be	used	because	
the	control	code	is	run	as	a	system	process.	
					A	process	runs	on	each	board	that	communicates	between	the	FPGA	and	the	STAR	run	
control	system.		When	this	code	starts,	it	reprograms	the	FPGA	from	its	flash	memory	so	if	the	
board	gets	into	a	bad	state,	restarting	this	process	will	initialize	the	FPGA	and	control	code	to	its	
startup	state.		While	logged	into	the	corresponding	scaler	board,	run	`ps`	and	look	for	the	
`sca_control_node`	process.		To	kill	this	process	run	`kill -9 <PID>`	where	<PID>	
comes	from	the	`ps`	command.		To	restart	the	process,	run	
`/etc/init.d/S97scaler_control`.		It	will	take	about	30	seconds	to	reprogram	the	
FPGA	and	reinitialize	all	registers.		The	code	will	report	`Setup Done`	when	configuration	is	
complete.		After	the	code	starts	and	is	running,	it	will	print	a	short	series	of	messages	every	10	
seconds	that	indicate	the	reading	and	writing	of	registers.	These	messages	are	related	to	the	
monitoring	code	and	indicate	that	the	control	software	is	running	correctly.		Note	that	AFTER	a	
board	is	reprogrammed,	the	Linux	receiver	code	should	be	restarted	also,	as	described	in	the	
following	section.	
					Note	that	direct	communication	with	STAR	run	control	comes	from	a	central	process	running	
on	the	“scaler48”	machine	so	restarting	an	individual	board	will	not	affect	the	operation	of	a	
current	STAR	data-taking	run	but	the	corresponding	board	will	no	longer	be	configured	or	
running	until	the	STAR	run	is	restarted.		This	allows	scaler	boards	to	be	reconfigured	without	
affecting	STAR	data-taking.	
					If	errors	are	seen	on	the	monitoring	page	for	a	particular	board,	or	“Dropped	Blocks”	or	
“Data	Stream	Errors”	are	seen	in	the	receiver	section	for	a	board,	the	FPGA	should	be	
reprogramed	via	the	procedure	described	in	this	section	and	then	the	Linux	receiver	process	
should	be	restarted	as	described	in	the	next	section.	
	

Linux	Receivers	
					Data	is	streamed	from	each	scaler	board	to	its	corresponding	Linux	receiver	machine	via	
gigabit	Ethernet.		Streamed	data	is	stored	locally	on	each	receiver	machine	and	is	then	
histogrammed	at	the	end	of	each	STAR	run.		To	control	a	Linux	receiver	machine,	ssh	into	the	
corresponding	machine	at	hostname	“scalerrcvX.scaler.bnl.local”	using	the	standard	“trg”	
account.		Note	that	these	machines	are	also	on	the	“scaler.bnl.local”	network.	
					To	connect	to	the	control	process,	run	`su`	to	become	“root”	and	then	run	`screen –x`.		
Messages	related	to	the	operation	of	this	receiver	machine	will	stream	while	connected	to	this	
process.		To	stop	the	receiver	code,	press	`ctrl-c`	while	connected	to	this	process.		To	restart	
the	receiver	process,	make	sure	you	are	“root”	and	run	`systemctl start
scaler_receiver.service`.		No	message	will	be	printed	when	this	control	code	is	
started	but	the	process	can	be	monitored	using	`screen –x`	as	described	above.	
						Note	that	AFTER	the	FPGA	on	a	board	has	been	reprogrammed	(described	in	the	previous	
section),	the	receiver	code	should	be	restarted	as	described	in	this	section.	
						Also	note	that	as	in	the	case	of	the	boards	themselves,	direct	communication	with	STAR	run	
control	comes	from	a	central	process	running	on	the	“scaler48”	machine	so	restarting	the	code	
on	an	individual	receiver	machine	will	not	affect	the	operation	of	a	current	STAR	data-taking	
run	but	that	the	corresponding	receiver	will	no	longer	be	configured	or	running	until	the	STAR	
run	is	restarted.		This	allows	the	receiver	machine	code	to	be	restarted	without	affecting	STAR	
data-taking.	
	
Network	Power	System	
					All	scaler	boards	and	Linux	receivers	are	powered	via	network-connected	power	supplies	and	
can	be	controlled	remotely.	
					Scaler	boards	and	receivers	1-3	are	connected	to	“nps2.scaler.bnl.local”	which	uses	the	
password	“!nps2”	(no	account	name)	and	can	be	connected	to	via	telnet.	
					Scaler	boards	and	receivers	4-6	are	connected	to	“nps1.scaler.bnl.local”	which	uses	the	
username	“apc”	and	password	“apc”	and	can	also	be	connected	to	via	telnet.	
					In	addition	to	network-connected	power	supplies,	each	Linux	receiver	machine	can	be	
controlled	via	its	IPMI	interface.		Sometimes	when	a	machine	is	powered	up,	it	doesn’t	start	
automatically	and	needs	a	push	of	its	physical	power	button.		This	IPMI	interface	is	a	way	to	do	
that	remotely,	as	well	as	directly	monitor	the	console	output	from	the	machine	and	respond	if	
it	gets	stuck	in	its	startup	procedure.	
					These	IPMI	interfaces	can	be	controlled	by	starting	a	web	browser	from	a	machine	that	is	
connected	to	the	“scaler.bnl.local”	network	and	going	to	the	address	
“http://scaleripmiX.scaler.bnl.local/”.		The	IPMI	interface	can	be	logged	into	using	username	
“ADMIN”	and	password	“ADMIN”.		Note	that	the	IPMI	interface	does	not	currently	work	on	all	
machines	because	not	all	of	the	machines	are	the	same	and	some	do	not	support	this	feature.		
The	IPMI	interface	is	also	broken	on	one	of	the	receiver	machines.	
	
	 	

	
Configuration	and	Run	Control	
					All	configuration	and	direct	communication	with	STAR	run	control	is	done	on	the	“scaler48”	
machine.			This	machine	is	connected	to	the	“trg.bnl.local”	network	so	that	it	can	communicate	
with	run	control	and	to	the	“scaler.bnl.local”	network	so	that	it	can	communicate	with	the	
scaler	boards	and	receiver	machines.		The	standard	“trg”	account	is	used	on	this	machine.	
					A	central	controlling	process	runs	on	“scaler48”	called	“scaler_control_master”.		This	process	
runs	as	“trg”	and	the	output	can	by	monitored	by	running	`screen -x`	when	logged	into	the	
“trg”	account.		This	process	communicates	directly	with	STAR	run	control	so	if	there	is	a	
problem	with	the	“scaler48”	node	when	taking	STAR	runs,	this	process	should	be	inspected.		
When	this	process	receives	a	command	from	run	control	(ie	CONFIG,	RUN_START,	RUN_STOP,	
etc),	it	reads	the	Scaler	configuration	file	and	takes	care	of	configuring	each	of	the	scaler	boards	
and	receiver	machines	in	the	system.		The	individual	boards	and	receivers	don’t	communicate	
with	STAR	run	control	directly	but	only	indirectly	through	this	process.		If	there	is	a	problem	
with	one	of	the	boards	or	receivers,	this	process	will	time	out	quickly	on	that	board	and	
continue	on	to	the	others	so	any	problems	with	individual	boards	or	receivers	won’t	hang	up	
STAR	data-taking.	
					This	master	controller	process	starts	automatically	on	system	boot	but	can	also	be	stopped	
and	started	by	running	:		
																			`systemctl stop scaler_controller.service`	
																			`systemctl start scaler_controller.service`	
					The	configuration	file	for	the	Scaler2	system	is	located	at	:	
																		“~trg/code/scaler2/cfg/scaler_config.txt”	
					This	file	contains	configuration	settings	for	each	board	as	well	as	“mode”,	“coarse	delay”,	
and	“fine	delay”	settings	for	each	channel	of	each	board.		It	is	re-read	at	each	run	configuration	
time	and	is	archived	for	each	run.		In	this	file,	the	first	few	lines	configure	the	board	and	then	
there	is	a	line	for	each	channel.		For	the	channel	configuration	line,	the	first	field	is	“SC_MDP”	
to	identify	that	it	is	a	channel	setting.		After	this	identifier,	there	are	four	numbers	separated	by	
white	space.		The	first	is	the	channel	number	(starting	from	“0”).		The	second	is	the	“mode”	
setting	(0	=	level-triggered,	1	=	edge-triggered).		The	third	is	the	“coarse	delay”.		The	fourth	is	
the	“fine	delay”.	
					The	master	control	process	also	contains	a	“backdoor”	mechanism	for	stopping,	re-
configuring,	and	starting	JUST	the	scaler	system	during	a	STAR	run	without	affecting	the	data-
taking	run.		This	is	used	to	make	scanning	delay	settings	easier	while	setting	up	the	system	at	
the	beginning	of	a	new	year.		The	two	main	commands	used	in	this	procedure	are	:		
																			`~trg/code/scaler2/bin/local_config_start`	
																			`~trg/code/scaler2/bin/local_force_stop`	
					Running	`local_force_stop`	will	communicate	with	the	master	control	process	which	
will	“stop”	each	of	the	scaler	boards	and	receivers	without	interrupting	the	STAR	run.		Running	
`local_config_start <local_run_number>`	will	re-read	the	configuration	file	and	
re-configure	each	of	the	scaler	boards	and	receivers	using	the	supplied	“local_run_number”.	
Note	that	the	run	number	supplied	is	NOT	the	STAR	run	number	but	a	local	run	number	to	use	
for	this	“local”	run.		While	using	this	feature	to	scan	delay	settings,	it	is	useful	to	use	a	
“local_run_number”	that	is	very	different	from	the	STAR	run	numbering	system	to	avoid	

confusion.		Standard	procedure	has	been	to	use	a	“local_run_number”	following	the	format	
YYYYXXX	where	YYYY	is	the	year	and	XXX	just	counts	the	runs	used	(ie	001,	002,	003,	etc)	but	if	
it	is	not	important	to	keep	the	data,	a	dummy	“local_run_number”	can	be	used	repeatedly	such	
as	“999”.	
					Note	that	this	local	“config_start”/”stop”	procedure	is	only	able	to	change	register	settings	
on	the	boards	but	it	cannot	change	the	actual	STAR	trigger	system	Run_Stop	signal	which	goes	
to	all	the	scaler	boards	as	well	as	the	rest	of	the	full	STAR	trigger	system.		Therefore,	when	
doing	a	delay	scan	for	the	scaler	system	using	this	“local”	start/stop	procedure,	a	STAR	run	
must	be	in	progress	(ie	trigger	system	in	“run_mode”)	throughout	the	entire	scan	so	that	the	
scaler	boards	will	run	after	they	receive	a	local	“start”	command.			
					Also,	this	local	start/stop	procedure	is	done	in	software	via	the	master	control	process	to	
start/stop	boards	so	they	will	not	be	in	sync	with	each	other	or	the	rest	of	the	STAR	trigger	
system	in	regards	to	the	number	of	RHIC	ticks	since	the	start	of	the	run.		Hence,	the	“RS	Count”	
on	the	monitoring	page	will	not	be	uniform	for	all	boards	and	the	number	of	counts	in	the	data	
files	will	vary	depending	on	when	the	local	run	was	started/stopped.	
					The	use	of	this	local	start/stop	procedure	will	be	described	more	in	the	following	section	
discussing	timing-in	bits.	
	
Timing-In	Bits	
	
					To	collect	data	to	time-in	bits,	the	procedure	is	as	follows	:		
	

1. Make	a	copy	of	the	scaler	configuration	file	on	“scaler48”	to	use	for	delay	scanning.		Soft	
link	this	file	to	“scaler_config.txt”	so	that	it	will	be	used	when	configuring	the	boards.		To	
start,	leave	all	“coarse_delay”	settings	the	same	as	in	the	original	file	and	set	the	
“fine_delay”	setting	to	“0”	for	all	bits	to	be	timed-in.		Note	that	any	number	of	bits	can	
be	scanned	at	once	as	long	as	the	delay	setting	is	changed	for	each	one	in	this	file.		For	
the	“mode”	setting,	a	value	of	“0”	(level-triggered)	should	be	used	for	logic-level	bits	(ie	
bits	coming	from	the	output	of	QTs	or	DSMs).		The	procedure	for	discriminator	bits	will	
be	described	later	in	this	section.	

2. Start	a	STAR	run	so	that	the	trigger	system	is	in	“run	mode”	
3. On	“scaler48”,	in	one	window	connect	to	the	master	control	process	by	running	

`screen -x`	from	the	“trg”	account.		This	window	is	used	to	observe	when	the	local	
run	starts/stops.	

4. Run	`local_force_stop`	as	described	previously	to	stop	the	scaler	system.		Watch	
the	master	control	process	window	and	wait	until	the	run	has	“stopped”.		The	STAR	
system	will	continue	to	run	even	though	the	scaler	system	is	locally	stopped.	

5. Run	`local_config_start <local_run_number>`	as	described	previously	to	
re-configure	and	start	the	scaler	system	using	the	“local_run_number”	with	the	current	
“fine	delay”	setting.		Watch	the	master	control	process	window	and	wait	until	the	local	
run	has	“started”.	

6. Let	the	system	run	for	5-10	seconds	to	collect	scaler	data	for	this	delay	setting.	
7. Change	the	“fine_delay”	setting	in	the	configuration	file	to	the	next	scan	value	(ie	

1,2,3,...)	

8. Return	to	step	4	to	stop/start	a	local	run	with	the	new	fine	delay	setting.		Note	that	the	
STAR	system	should	run	continuously	throughout	this	part	of	the	procedure.	

9. After	data	has	been	collected	for	all	fine	delay	settings,	run	`local_force_stop`	to	
stop	the	scaler	system	for	this	final	scan	run.		The	STAR	run	control	system	can	be	
stopped	at	this	point.	

	
					This	procedure	should	be	taken	WITH	BEAM	so	that	all	bits	are	being	exercised	as	they	will	
be	used	during	regular	data-taking.	
					At	this	point,	there	will	be	data	files	for	each	of	the	“local_run_number”	runs	which	each	
correspond	to	one	of	the	“fine_delay”	settings.	
					For	logic-level	bits	(ie	coming	from	the	output	of	QTs	or	DSMs),	the	analysis	procedure	is	as	
follows	:		
	

1. After	reading	the	header,	read	the	data	chunk	for	each	“channel”	(ie	each	distinct	set	of	
bit	combinations)	in	the	histrogrammed	data	file.	

2. Keeping	track	for	each	of	the	32	bits,	if	that	bit	is	on,	increment	the	count	for	that	bit	
based	on	the	“count”	for	that	“channel”.		Don’t	increment	the	count	if	the	bit	is	“off”	

3. Also	keep	track	of	the	total	number	of	RHIC	ticks	based	on	the	“count”	for	each	
“channel”.	

4. After	reading	all	“channels”	in	the	file,	use	the	information	from	above	to	determine	the	
frequency	that	each	bit	fired	(ie	Counts	for	the	channel	/	Total	RHIC	ticks	in	the	run).	

5. Repeat	this	procedure	for	each	of	the	“fine	delay”	settings	
	
					If	you	look	at	the	frequency	for	the	bit	being	timed	in	for	each	of	the	fine	delay	settings,	
most	frequencies	will	be	relatively	close	over	most	of	the	settings	but	will	have	one	or	two	fine	
delay	settings	where	the	frequency	is	drastically	different.		This	is	where	the	“edge”	is.		The	
different	frequency	could	be	much	higher	or	lower	but	the	main	thing	to	look	for	is	a	very	
different	value.		Depending	on	what	the	bit	is,	the	frequency	may	change	slightly	over	the	scan	
of	the	delays	if,	for	example,	it	has	something	to	do	with	beam	luminosity	but	the	drastically	
different	frequencies	should	still	be	evident.		For	the	“fine	delay”	setting,	choose	a	value	that	is	
far	from	the	edge.	
					To	determine	the	“coarse	delay”	setting,	use	the	data	file	from	the	previously	determined	
“fine	delay”	setting	and	look	at	the	frequency	for	the	bit	in	question	for	each	of	the	0-119	
bunch	crossings.		The	abort	gaps	should	be	apparent	and	should	be	aligned	using	the	“coarse	
delay”	setting	to	correspond	with	the	rest	of	the	system.	
					Note	that	some	scaler	bits	are	not	simply	lone	bits	indicating	a	hit	but	may	indicate	a	channel	
number	or	may	be	combined	with	other	hits	(ie	ZDC-SMD).		For	these	bits,	a	special	procedure	
may	be	needed	to	find	hits	which	may	use	more	than	one	bit	in	the	data	but	the	general	
procedure	is	the	same,	ie	counting	the	frequency	for	something	and	looking	for	the	edge/abort	
gaps.	
					The	procedure	for	timing-in	bits	from	discriminator	channels	is	slightly	different.		The	general	
procedure	is	to	route	the	discriminator	signals	to	TWO	different	scaler	boards	by	re-
programming	the	RAT	board.			When	following	the	procedure	above	for	taking	the	“fine	delay”	
scan	data,	set	the	“mode”	setting	on	one	of	the	boards	to	“1”	to	use	edge-triggering.		Set	the	

“mode”	delay	on	the	other	board	to	“0”	to	use	level-triggering.		The	“fine	delay”	should	then	be	
scanned	on	the	board	set	to	“0”	(level-triggering).		When	the	board	is	set	to	edge-triggering,	the	
“fine-delay”	is	not	used	and	thus	should	not	be	scanned	for	that	board.	
					The	general	procedure	for	analyzing	the	scan	data	for	the	discriminator	channels	is	to	look	at	
the	relative	frequency	between	the	level-triggered	board	and	the	edge-triggered	board	for	each	
“fine	delay”	setting.		The	general	theory	is	that	the	edge-triggered	board	will	catch	“all”	of	the	
hits	while	the	level-triggered	board	will	catch	some	fraction	of	the	hits	depending	on	where	the	
“fine	delay”	setting	is	set.		Looking	at	the	relative	frequencies	between	the	level-triggered	
board	vs	edge-triggered	board	will	show	where	the	“edge”	is	for	these	channels.	
					An	example	is	shown	below	of	a	plot	of	the	relative	frequency	between	level-triggered	
channels	vs	edge-triggered	channels	for	all	fine	delay	settings.		This	plot	is	for	BBC	discriminator	
channels.	
	

	
					In	the	final	configuration	file,	a	“fine	delay”	setting	should	be	chosen	after	the	edge	where	
the	ratio	is	stable	but	not	too	long	after	the	edge	so	that	all	pulses	are	caught.		In	the	above	
plot,	a	fine	delay	setting	of	“6”	was	used	but	a	slightly	smaller	fine	delay	setting	could	also	be	
used.	
					The	reason	that	the	level-triggered	channels	catch	more	hits	than	the	edge-triggered	
channels	(ie	the	ratio	is	>	1)	is	not	fully	known	but	may	have	to	do	with	late	hits	or	noise	in	the	
system.		It	was	determined	that	the	ratio	goes	above	“1”	because	the	edge-triggered	channels	
are	missing	some	hits	as	opposed	to	the	level-triggered	channels	counting	too	many	hits.		The	
plot	for	these	channels	is	consistent	every	year,	however,	and	the	fine	delay	setting	was	
originally	chosen	at	a	point	on	the	curve	to	match	the	“old”	scaler	boards	when	the	transition	
was	made	to	the	“new”	scaler	boards.		The	ratio	for	VPD	discriminator	channels	is	much	cleaner	
and	plateaus	out	at	close	to	exactly	“1”.	
					The	procedure	for	determining	the	“coarse	delay”	setting	for	the	discriminator	channels	is	
the	same	as	for	the	logic-level	channels	once	a	“fine	delay”	setting	is	chosen.	
	
	

Troubleshooting	
					On	the	Scaler2	monitoring	page,	if	the	“FIFO	Overrun”	is	set	for	a	board,	or	if	there	are	non-
zero	“Dropped	Blocks”	or	“Data	Stream	Errors”,	the	first	(and	usually	only)	thing	to	do	is	to	first	
reprogram	the	scaler	board	FPGA	and	then	restart	the	receiver	process	(both	procedures	
described	previously).	
					If	there	is	a	problem	in	the	connection	to	STAR	run	control	(ie	scaler48	node	is	red	or	stops	
the	run),	the	master	control	process	should	be	checked	on	“scaler48”.		Occasional	problems	
have	also	been	seen	in	previous	runs	when	one	of	the	NFS	mounts	gets	corrupted	on	the	
“scaler48”	machine.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

