Scaler Router Board

C. Perkins

August 28, 2007

1 Introduction

The Scaler Router Board (RAT) contains 322 in-
put pins, any of which can be routed to any of
the 521 output pins (See Figure 1). An input
pin may also be routed to as many output pins
as necessary. Inputs are mostly in the form of
16-bit DSM inputs (on 34-pin connectors) and
outputs are mostly in the form of 25-bit Scaler
outputs (on 50-pin connectors; 1 pin pair is a
clock signal). Four daughter boards perform this
routing. A microcontroller talks to each of the
four daughter boards and handles all communi-
cation with the user.

There are two communication paths to the
outside world. The path to program the routing
map and read back the current configuration is
over ethernet. A serial port is used to watch de-
bug messages from the microcontroller (this port
is connected to a terminal server to allow remote
monitoring). The only information that is sent
over the serial connection to the microcontroller
is IP information to configure the ethernet com-
munications.

2 Design and Implementation

2.1 Daughterboard

Figure 2 shows a block diagram of the daughter
board. Each daughter board has access to all of
the motherboard’s input pins and a subset of the
board’s output pins. The four daughter boards
cover the complete set of output pins. The
daughter board contains only a Xilinx Spartan-3
1500 BGA FPGA and footprints for two optional
oscillators. In normal operation, these oscilla-
tors are not used and do not need to be loaded.
Each of the four daughter board FPGAs is pro-

RAT Daughter

Spartan 3
1500
FPGA

— (487 10
ptional .
Oscillator pins)

2x300pin Connectors

Power (3.3V, 2.5V, 1.2V) (20)
FPGA Config Lines (6)

3.3V IO Lines (482)

{

Figure 2: Scaler Router Daughterboard

grammed from a separate PROM located on the
mother board. In addition to power lines and
FPGA configuration lines, each daughter board
has external connections to 482 3.3V 1/0 lines.
Not all of these I/O lines are used on any of
the daughter boards but could be if the daughter
board were reused on a different mother board.

There are two ways to configure the routing of
inputs to outputs. The simplest way is to hard-
code input lines to output lines directly in each
daughter board VHDL. The software provided
(described later) generates these VHDL files if
this method is used. The drawbacks to this
scheme are that each daughter board must be re-
programmed each time the routing map changes
and that it takes a long time (720 minutes) to
program each PROM over ethernet.

A simpler method is to make each daughter
board FPGA able to route any of its inputs to
any of its outputs. The user communicates with
the FPGA over ethernet to tell the FPGA how to
route it. This scheme has the advantage that the
VHDL code doesn’t need to be reprogrammed
when the routing is changed. To change the
routing, the user must simply tell the FPGA the
new map; the VHDL doesn’t change. The draw-
back to this scheme is that daughter board #3
contains too many outputs to place and route
this general design. Therefore, one of the scaler

Input Connector 1

Daughter
1

Output Connector 1

Output Connector 2

)

Output Connector 5

Input C tor 2 Daughter [T—— |
Aput -onnector 2aug TN Output Connector 6
Input Connector 3 \ 0 C 10
tput Connecto
Daughter | TP o
— Output Connector 11
Input Connector 20
~L
Daughter Output Connector 15
4 N| \
J Output Connector 16
Ethernet Micro-
controller —
Output Connector 21
Routing Serial Debug Port and
Configuration Network Configuration

Figure 1: Scaler Router Motherboard

outputs (J36) must be omitted. If it is possi-
ble to leave this output open, these scheme is
much easier and faster. If it is essential to use
all scaler outputs, daughter board #3 must be
programmed with the hardcoded VHDL but the
other three daughter boards can be left with the
general VHDL. Both schemes are described in
further detail in the Software section.

2.2 Motherboard

Figure 1 shows a block diagram of the mother
board. There are four daughter board slots per
motherboard. The motherboard contains the in-
put and output connectors as well as receiver and
driver chips. The motherboard also handles all
communication with the outside world.

2.2.1 Inputs
The following input connections are available:

16 34 pin DSM Inputs
1 10 pin RCC Input

1 40 pin GLINK Input
1 50 pin TCU Input

1 32 pin header

Input signals can be either PECL or ECL
(check this) to accomodate DSM and TAC in-
puts. On the Scaler Router Board currently in-
stalled, each PECL input is terminated but if for
some reason one desires that these signals are left
unterminated, the resistors could be removed.

There are also 16 LEMO inputs available if
TTL inputs are desired. These TTL inputs take
the place of one of the DSM input connectors if
used and can be toggled in two groups of 8 using
jumpers J24 and J29. Note that both jumpers
J24 and J29 must have a jumper on either pins
1 & 2 or pins 2 & 3 to choose PECL or TTL. If
there is no jumper, neither format will work on
that input.

2.2.2 Outputs

The following output connections are available:

e 17 50 pin Scaler Outputs
e 3 34 pin DSM Outputs

e 1 40 pin GLINK Output

All output signals are PECL. The last pin
on each scaler output should be configured to
be a copy of the RHIC clock in order for the
scaler boards to function properly. Note that if
the hardwired VHDL code is used for daughter
board #3, an 18th Scaler output is available.

2.2.3 Communication and Programming

Communication is handled by an Atmel AT-
mega6450 microcontroller. There are two ways
to talk to the microcontroller: over ethernet and
through the serial port.

The onboard 10baseT ethernet controller (Cir-
rus CS8900a) can be connnected directly to a
standard ethernet hub. The microcontroller con-
tains a full TCP/IP stack that can be configured
to use either DHCP or a static IP address. It is
only programmed to respond to ICMP Ping re-
quests and incoming connections to TCP port
9876.

TCP port 9876 can be used for two func-
tions. First, it can be used to program the four
PROMs that configure the FPGAs. Because of
the speed of the microcontroller, this path is very
slow. This is accomplished by sending “TDI”
and “TMS” commands to the microcontroller us-
ing a specially designed protocol. The microcon-
troller has the appropriate connections to each
of the four PROMSs to program them indepen-
dently.

The ethernet connection can also be used to
configure the input-output mapping if the FP-
GAs are loaded with the “general” VHDL (as de-
scribed above). Using a similar protocol to that
mentioned above, the user sends commands to
read or write a mapping to a designated daugh-
ter board. The microcontroller receives these
commands and communicates directly with the
appropriate FPGA, either reading or writing a
mapping (using another specially designed pro-
tocol). There is also a command to reset all
mappings. When write commands are sent, the
mapping is also written to the microcontroller’s
EEPROM so that last used mappings remain in
place even if power is removed.

See the accompanying software for examples

of how to communicate with the microcontroller
over ethernet.

The second path to the microcontroller is
through the serial port. This port is mostly
used to monitor debug messages. To monitor
this port, use a serial port set to 19200 baud, 8
Data bits, No Parity, 1 Stop bit, and No flow con-
trol. The Scaler Router is currently connected to
port 4 on trgserv.trg.bnl.local which uses these
settings.

This port is also used to configure the TCP /IP
settings for the ethernet connection. When the
board starts up, the user has 5 seconds on this
port to press a key if they wish to change the
ethernet settings. Pressing a key puts you into
a very simple shell. Within this shell, press ’?’
to show a list of available commands. The com-
mands available are:

’?" Show commands

'p’ Show current configuration

’s” Choose between static IP and DHCP
1’ Set static IP address

'’ Set router address

n’ Set netmask

'q” Quit setup and boot

Because the shell is so simple, when enter-
ing an IP addres or netmask, you cannot use
backspace. If you make a mistake, simply reen-
ter the entire address. Be sure to print the cur-
rent configuration and check the address, router,
and netmask before you boot the controller.
These settings are programmed into the micro-
controller’s EEPROM and therefore will remain
in place even if power is removed.

The board is currently set to use a static IP ad-
dress of 172.16.128.25 (on the trg.bnl.local net-
work).

(optional JTAG port patch)

2.2.4 Microcontroller Programming

As you might guess, there is a good amount of
code that is used to program the microcontroller.
This code contains the TCP/IP stack and the
code to interface with both the PROMs and the
FPGAs. There should be no need to modify this

code but in the case that one needs to, here is
how its done.

This code is written mostly in C with some
special ATmega6450 commands. To compile
it, use AVR Studio 4 which is freely available.
There is a project file included with the code
that should be loaded in AVR Studio. To com-
pile, choose “Build” from the “Build” menu, or
press the button labelled “Build Active Configu-
ration”. The code should compile with no warn-
ings and generates the file scaler_router.hex.

To program the ATmega6450, first set the
jumpers on J62 and J63 for programming as
described in the Jumpers section. Then con-
nect a serial cable from you computer’s serial
port to the serial port on the mother board.
To program the chip, you use a program called
“PonyProg2000” with is also freely available.
Start PonyProg and choose “AVR micro” for the
device family and “ATmega64” for the device
type. If this is a new board that has never been
programmed before, you will need to program
the “FUSE” bits first. (Set FUSE Bits).

After the “FUSE” bits are set, in the “File”
menu, choose “Open Device File” and choose the
previously generated scaler_router.hex file.
Make sure that the Scaler Router Board is pow-
ered on and choose “Write All” from the “Com-
mand” menu. Choose “Yes” when it asks if
you're sure you want to write to the device. It
will then try to write to the device but come back
with the message “Device Missing or Unknown
Device”. This is because PonyProg doesn’t have
the ATmega6450 chip. The ATmega64 has the
same programming interface, though, so choose
“Ignore” when this message comes up. It will
then go through 2 write sequences (one for the
FLASH memory and one for the EEPROM) and
a verify sequence. After this, the board should
be ready to use.

Note that after you reprogram the AT-
mega6450, you will need to change jumpers
J62 and J63 back to serial communications and
reload the IP address, router and netmask.

2.3 Hardware Modifications

The external oscillator connected to the CS8900a
ethernet chip was connected wrong in the art-
work. To fix this, lift pins 97 & 98 on the eth-
ernet chip (U12) and connect the two pads of a
XXMhz crystal across them (something like part
number XXX). This patch will probably be very
fragile and should be epoxied.

The only other error on the artwork is the 5A
fuse where the power comes in. The board uses
more than 5 Amps so this must be bypassed by
soldering the input 5V cables to the other side of
the fuse (labelled v50_local on the schematic).

(JTAG Ports. optional patch)

2.4 Software

The software to communicate with the board
over ethernet (PROM programming and FPGA
route mapping) was written for linux and can be
used on any machine connected to the same net-
work as the Scaler Router Board (trg.bnl.local in
the current case). As a quick check, the board
should respond to ordinary Ping requests.

First, you must setup the desired Input-
Output mapping. This software resides
in the map_software subdirectory. The
files InputMap.txt and OutputMap.txt contain
mappings that are set in the layout and should
never be changed. When the Scaler Router
Board is cabled, you need to make a dictionary
file (see dict.all_ins_test.txt or dict.txt
for examples). This file maps between connector
numbers on the schematic and human readable
names.

When the dictionary is ready, the next step
is to make a file that maps input pins to output
pins. See ScalerRouterMap.all_ins_test.txt
or ScalerRouterMap.txt for examples.

Next, simply run:

gen_vhdl [InputMap] [OutputMap]
[dictionary] [RouteFile]

where InputMap is InputMap.txt, Out-
putMap is OutputMap.txt, dictionary is your
dictionary file, and RouteFile is your pin map.
This should complete with no errors.

(o]

This code generates VHDL and UCF files for
each daughter that can be synthesized, placed
and routed into MCS files if the hardwired ap-
proach to routing is desired. The code also gen-
erates a file ScalerRouter.cmd that contains the
commands needed to configure the routing map
if the daughters are programmed with the “gen-
eral” VHDL.

The software to program the PROMs or
configure the FPGA routing map is in the
fpga_software subdirectory.

fpga_config [hostname] [cmd_filename]
[verify_after_program]

Configure the routing map on hostname using
the file cmd_filename generated with gen_vhdl.

fpga_verify [hostname] [cmd_filename]

Check the currently configured routing map on
hostname against the file cmd_filename (gener-
ated with gen_vhdl).

fpga_read_config [hostname]

Read back the currently configured routing
map on hostname. The routing map is printed
to the screen.

fpga_read [hostname] [daught_num]
[output_num]

Read a single map entry on hostname corre-
sponding to daught_num,output_num. The argu-
ment output_num is an index from 0 to the num-
ber of outputs on the daughter that is internal
to the VHDL code. The argument daught_num
should be between 1 and 4.

fpga_write [hostname] [daught_num]
[output_num] [input_num]

Write a single map entry on hostname setting
daught_num,output_num to input_num. The ar-
guments output_num and input_num are indices
from 0 to the number of outputs on the daugh-
ter card or the number of inputs (this index
is internal to the VHDL code). The argument
daught_num should be between 1 and 4.

prom_prog [hostname] [mcs_filename]

To check the routing map configuration,

[daught_num] [verify_after_program] you can use the files dict.all_ins_test.txt

Program the PROM for daughter board
daught_num on hostname using the MCS file
mcs_filename. The argument daught_num
should be between 1 and 4. After the PROM is
programmed (and optionally verified), the cor-
responding FPGA will be loaded with the new
code.

2.5 Jumpers

There are two sets of jumpers on the mother
board. J24 and J29 allow the user to choose be-
tween DSM input J15 (PECL) and the 16 LEMO
connectors (TTL). This input is split into an up-
per half and a lower half and the choice between
PECL and TTL can be made independently for
each half. Note that both jumpers J24 and J29
must have a jumper on either pins 1 & 2 or pins
2 & 3 to choose PECL or TTL. If there is no
jumper, neither format will work on that input.

The second set of jumpers allow you to choose
whether you are talking to the microproces-
sor or programming the microprocessor over the
DSUB-9 serial port. To talk to the micropro-
cessor, pins 1 & 2 should be connected (jumper
on) and pins 3/4, 5/6, and 7/8 should be un-
connected (jumper off)on header J62. Pins 2 &
3 should be connected with a jumper on header
J63.

To program the microprocessor, pins 1 & 2
should be unconnected (jumper off) and pins 3 &
4,5 & 6, and 7 & 8 should be connected (jumper
on) on header J62. Pins 1 & 2 should be con-
nected with a jumper on header J63.

2.6 Testing

First check that the ethernet configuration can
be set over the serial port as described in the
Communication and Programming section. Af-
ter this is set, as a quick check of the ethernet
connection, the board should respond to ordi-
nary Ping requests. You should also see debug
commands on the serial connection as the rout-
ing map is configured.

and ScalerRouterMap.all_ins_test.txt to
gen_vhdl as described in the Software section.
Then use fpga_config to try configuring the
routing map using the file ScalerRouter.cmd
that was just generated. Be sure to set the
verify_after_programming option so that the
configuration is checked after it is loaded. If
fpga_config verifies correctly, the communica-
tions and programming functions are all work-
ing.

To test the input and output channels, a DSM
with a working upper output channel (bits 16-31)
and working input channel 1 is needed. Con-
figure the DSM to play from its output mem-
ory and record into its input memories. The file
DSM_OutIn_Loop_Test.dat can be used for this
purpose.

First test the outputs by generating a
CMD file (using gen_vhdl) with the dictio-
nary dict.all_outs_test.txt and map file
ScalerRouterMap.all_outs_test.txt. Use
fpga_config to configure the routing map. This
configuration routes the inputs from 1 DSM in-
put connector (J57) to all output pins.

Connect the upper DSM output channel
(lower connector on the DSMI) to the Scaler
Router input labelled J57. Connect DSM input
channel 1 to the Scaler Router output labelled
J48. By hand, put the DSM into run mode and
then out of run mode.

Included in the software provided is a VX-

Works library called dsm_dump.o. Load this li-
brary and run:

DSM_Dump (DSM_base_address,
"rat_test.j57.j48.dat");

This will output a dump of the DSM memories
into a file called rat_test.j57.j48.dat. Move
this file to a linux machine to be checked later.

Now use the special cable that splits a Scaler
output into two DSM connections. Connect the
scaler end of the cable to the Scaler Router out-
put labelled J44. Leave the DSM cable con-
nected to DSM input channel 1. Remove the
other end of this cable from Scaler Router out-
put J48 and connect it to the lower bits of the
scaler splitter cable.

Put the DSM into and out of run mode again
and run:

DSM_Dump (DSM_base_address,
"rat_test.j57.j44_lo.dat");

Move the DSM cable to the upper bits of the
scaler splitter cable, put the DSM into and out
of run mode, and run:

DSM_Dump (DSM_base_address,
"rat_test.j57.j44_hi.dat");

Cycle through all the outputs on the Scaler
Router board using this process, changing the
output filename to DSM_Dump accordingly. Be
sure to test both the high and low sections of
the Scaler outputs as appropriate. There is also
one 40pin output for which a special cable has
also been made and a high and low section will

need to be tested.
On the linux machine with the saved data files,
run the supplied program:

check_dsm [datafile] 1

Since we only used the upper 16 bits of the
DSM output, we only care about bits 16-31 in
the output of this check. Ignore bits 0-15. The
check_dsm program will report the percent that
each bit was correct and the percent that each
bit was a ’1’. If the Scaler Router output tested
was a 34pin output or the lower half of a scaler
output, all 16 upper bits should be correct 100%
of the time and should be ’1’ about 50% of the
time. From the output, you should be able to
tell if certain bits are stuck at ’1’ or ’0’. If you
are testing the upper bits of a Scaler output, you
should only see the first nine bits (16-24) correct
100% of the time.

The second argument to check_dsmis an offset
between output memory values and input mem-
ory values. This offset should be 1 but if you
are having trouble getting 100% correct data, try
changing this value to a few other values near 1.

To check the input channels, generate a
CMD file (using gen_vhdl) with the dictio-
nary dict.all_ins_test.txt and map file
ScalerRouterMap.all_ins_test.txt. Use
fpga_config to configure the routing map. This
configuration routes the inputs from one input

Input QOutput
J56 J44
J57 J43
J51 J68
J55 J67
J59 —lo | J47
J59—hi | J46
J61 J48 — hi
J53 J34
J52 J39
J69 J65
J50 J64
J54 J45
J70 J72
J49 J73
J58 J35
J66 J42
J71 J41
J30 J40
J15 J48 — lo
J75 J37
J60—lo | J38-1lo
J60 —hi | J38—hi

Figure 3: Input Output mapping for testing in-
puts

connector to one output connector. Therefore,
both the input and output connected to the
Scaler Router will have to be moved after each
DSM_Dump call.

See Figure 3 for the input and output con-
nectors to use for this test. For example, for
the first test, connect the upper DSM output to
Scaler Router input J56. Connect Scaler Router
output J44 (lower half) to the DSM input chan-
nel 1. Put the DSM into and out of run mode
and run:

DSM_Dump (DSM_base_address,
"rat_test.j56.j44.dat");

Cycle through the list of inputs and outputs
listed in Figure 3, saving the output file of
DSM_Dump on a linux machine as before.

Run through the new data files
check_dsm checking that the appropriate bits are
correct 100%.

with

