
171026	
	

Requirements	for	STP2	
Hank	Crawford,	Jack	Engelage,	Eleanor	Judd,	John	Nelson,	Chris	Perkins	

	
The	Star	Trigger	Pusher	(STP)	network	is	responsible	for	gathering	all	trigger	data	
for	each	event	at	STAR.		This	document	describes	the	Requirements	that	drive	the	
design	of	the	next	generation	of	this	network,	the	STP2.	Our	goals	for	this	upgrade	
include	increasing	the	trigger	readout	rate	to	>20	kHz	and	fabricating	the	new	
network	with	components	expected	to	be	available	for	at	least	the	next	5	years.	
	
Trigger	data	comes	from	~200	9U	VME	boards	distributed	in	18	VME	crates	in	the	
experiment	hall.	The	STP	network	currently	in	use	at	STAR	was	installed	in	2006	to	
replace	the	Myrinet	network,	a	commercial	network	that	suffered	from	
indeterminate	latencies.		The	STP	network	communicates	bi-directionally	with	each	
crate	CPU	through	a	Peripheral	Component	Interface	(PCI)	Mezzanine	Card	(PMC)	
on	the	CPU	which	communicates	via	fiber	optics	with	a	port	on	an	STP	Concentrator	
(STPC)	board.	Each	CPU	receives	the	event	trigger	information	from	the	controlling	
CPU	(L0)	through	an	STPC	and	sends	the	trigger	via	the	VME	backplane	to	all	boards	
in	its	crate.	The	CPU	then	gathers	information	from	each	board	via	the	crate	
backplane,	whose	bandwidth	currently	limits	the	trigger	rate	to	a	few	kHz.	The	CPUs	
push	this	data	to	one	of	two	STPCs	in	use	which	buffer	the	data	and	send	it	to	the	
STPReceiver		on	the		PCI	bus	of	the	L2	Linux	processor	where	trigger	events	are	
built.	L2	then	returns	the	organizing	token	to	the	Trigger	Control	Unit	(TCU)	stack.	
	
The	STP2	upgrade	will	communicate	directly	with	each	VME	board	in	the	trigger,	
eliminating	the	bottleneck	of	the	VME	backplane	and	the	older	processors.	A	group	
of	~25	STP2Cs	will	connect	the	boards	to	the	STP2Receiver	(STP2R)	which	
interfaces	through	the	much	faster	PCIexpress	(PCIe)	to	the	L2	event	builders.	
	
1.	Requirement:	Receive	BUILD_EVT	commands	from	the	controlling	CPU	on	a	
dedicated	channel	and	distribute	these	commands	to	all	clients	(VME	boards).	
Justification:	This	is	how	the	readout	of	the	trigger	data	from	the	VME	boards	is	
initiated.	
Status:	STP2C	will	fan	out	build	evt	to	all	boards.	
	
2.	Requirement:		Receive	tokens	from	L2	and	pass	them	back	to	the	controlling	CPU	
on	that	dedicated	channel.	
Justification:	This	is	how	the	controlling	CPU	knows	that	each	BUILD_EVT	
command	has	been	fully	processed.	
Status:	STP2C	will	be	able	to	communicate	with	individual	clients	and	this	is	the	
path	we	will	use	for	L2<->CPU.	
	
3.	Requirement:	Accept	variable-length	data	packets	from	~200	clients	and	route	
them	to	one	common	destination.	



Justification:	We	intend	to	upgrade	all	trigger	VME	boards	to	use	point-to-point	
communication	of	data	via	a	push-architecture	to	eliminate	the	VME	backplane	
bottleneck.	Each	VME	board	will	therefore	respond	to	the	BUILD_EVT	command	by	
extracting	data	from	its	local	buffer	and	pushing	it	onto	the	STP2	network.	The	STP2	
network	must	pass	all	of	that	data	to	L2,	which	will	build	the	event	and	notify	DAQ.	
Status:	The	STP2	Concentrators	(STP2C)	are	designed	to	accept	data	input	from	at	
least	8	ports.		Multiple	STP2Cs	connected	in	a	tree	structure	will	therefore	be	used	
to	gather	data	from	the	~200	clients	and	funnel	it	into	L2.	The	200	clients	implies	
we	will	need	200/8=25	STP2C	boards.	Each	client	will	have	a	Readout	Daughter	
Card	(RDC)	so	we	will	need	200	RDCs.	The	tree	will	end	in	a	single	STP2R.	Our	
current	plan	is	to	produce	30	STP2C,	250	RDC,	and	5	STP2R	board	so	that	we	have	
functioning	spares	for	tests	and	expansion.	
	
4.	Requirement:	Each	piece	of	the	STP2	network	must	EITHER	be	capable	of	
transmitting	output	data	at	the	maximum	total	rate	of	the	input	data	OR	contain	
enough	elasticity	buffer	space	to	allow	a	burst	of	input	data	packets	to	be	stored	
before	being	transmitted.	
Justification:	The	instantaneous	trigger	rate	at	STAR	varies	randomly	but	the	rate	
at	which	data	can	be	funneled	into	L2	has	a	fixed	upper	limit.	If	the	input	data	rate	
temporarily	exceeds	the	maximum	possible	output	data	rate	then	data	must	be	
stored	internally	before	it	can	be	read	out.	
Status:	The	overall	trigger	rate	and	the	maximum	burst	length	will	be	throttled	by	
restricting	the	number	of	available	tokens.	The	buffer	space	at	each	step	is	therefore	
defined	by	the	maximum	incoming	packet	size	and	the	maximum	number	of	tokens.	
	
5.	Requirement:	The	STP2	network	must	have	a	small	latency		(<1µs)	
Justification:	The	trigger	operation	depends	on	elasticity	buffers	in	the	VME	boards	
as	well	as	the	STP2	network	to	maintain	event	integrity	and	latency	sets	the	
memory	size	limits.	
Status:	Trigger	Readout	Prototype	(TRP)	tests	showed	that	the	GTP	transceiver	
solution	works	and	did	not	lose	any	events.	
	
6.	Requirement:	Accept	input	data	on	each	channel	at	>	20Mb/s	
Justification:	Each	QT	board	produces	a	maximum	of	1kb	per	event:	
32	chns	*	32bits/chn	=	1	kb/evt	
1kb/evt	*	20	kHz	=	20	Mb/s	
NOTE	that	each	DSM	produces	just	128b	per	event,	so	it	is	the	QT	boards	that	define	
this	Requirement.	
Status:	GTP	transceivers	on	the	Xilinx	Artix-7	FPGAs	operate	at	6.6	Gb/s.	
	
7.	Requirement:	Drive	output	data	to	L2	at	>	2Gb/s	
Justification:	Each	QT	board	produces	a	maximum	of	1kb	per	event	and	each	DSM	
produces	128b	per	event	(see	Req	#6);		
(100	QT	bds	x	1kb/bd)	+	(100	DSM	bds	*	128b/evt)	=	113	kb/evt	
113	kb/evt	*	20	kHz	=	2	Gb/s	



Status:	The	TRP	board	tested	throughput	at	2.3Gb/s	showing	that	the	GTP	links	and	
the	SDRAM	buffering	were	robust.	Note	that	QT	data	is	0	suppressed	so	typical	
events	will	be	much	smaller	than	this	implying	that	events	rates	can	be	much	larger.	
	
8.	Requirement:	Work	with	STP	PMC	input	
Justification:	We	need	to	operate	the	network	during	the	transition	from	STP	to	
STP2.	After	the	planned	upgrades	to	the	VME	boards	there	will	still	be	one	board	
(the	TCU)	that	cannot	connect	directly	to	the	STP2	network.	It	will	continue	to	be	
read	out	over	the	VME	backplane,	by	a	CPU	with	an	existing	STP	PMC	card.	
Status:	We	originally	planned	to	design	an	STP2	Translator	board	(STP2T)	to	accept	
fiber	input	from	the	current	STP	PMCs	and	convert	them	to	a	data	stream	
compatible	with	STP2	ports.	Our	current	plan	is	to	build	GigaLink	transceivers	into	
the	SPT2C	to	communicate	with	STP	PMC	cards.	
	
9.	Requirement:	Use	"standard"	high-speed	transceivers	
Justification:	These	will	be	available	in	multiple	FPGAs	for	many	years	
Status:	The	STP2	design	uses	Xilinx	GTP	transceivers	on	Artix-7	FPGAs	which	
operate	at	6.6	Gb/s.		
	
10.	Requirement:	Use	"standard"	high-speed	linux	interface	
Justification:	These	components	are	expected	to	be	available	for	>5years	
Status:	Using	PCIe	interface.	A	four-lane	PCIe	device	can	transfer	1GB/s.	
	
11.	Requirement:	Must	establish	the	network	in	<10	seconds	
Justification:	This	is	a	critical	component	of	trigger	operation	and	it	needs	to	
become	operational	without	major	delay	in	establishing	data	taking	for	efficient	
operation	
Status:	The	design	makes	all	links	come	up	automatically	and	eliminates	RBT	
programming	-	all	configuration	is	accomplished	through	ethernet	settable	
registers.	
	
12.	Requirement:	The	STP2	network	must	have	a	simple	operator-initiated	
recovery	sequence	that	completes	in	<	10	seconds	
Justification:	see	11	above	
Status:	The	STP2	boards	will	be	powered	through	a	remotely	controlled	power	
supply	to	facilitate	power	cycling.	In	addition,	each	board	will	have	a	reset	command	
response	that	reinitializes	all	control	code	on	the	board.	
	
13.	Requirement:	Each	piece	of	the	STP2	network	must	have	a	communications	
path	that	is	separate	from	all	the	data	connections	and	allows	the	user	to	monitor	
the	status	of	that	piece.	
Justification:	It	is	necessary	for	the	users	to	be	able	to	monitor	the	performance	of	
the	STP2	network,	and	debug	problems	when	they	occur.	
Status:	Each	board	will	have	ConnectCore	interface	hardware	for	communication.	
This	is	what	we	tested	on	the	TRP.	We	have	developed	VHDL-based	communication	
with	ConnectCore	in	a	framework	that	is	already	set	up.	We	want	to	add	the	



equivalent	of	m	commands.	Expect	that	each	node	will	reside	on	trg.bnl.local	even	
though	we	will	add	200+	nodes.	
	
	


