
Page 1

Trigger Software
January 2008
John Nelson

These notes are intended for anyone taking over responsibility for trigger software. The
software is supported by three types of operating systems and the individual elements will be
outlined under these headings.
All software is based in the STAR software repository and can be obtained from CVS by
reference to online/RTS/trg
VME hardware and VxWorks OS
Trigger hardware consists of numerous VME crates, each controlled by one CPU (two for
L1) and containing boards of different types. VxWorks is a real-time operating system
(without virtual memory) and the address space of each CPU covers the address space of all
the boards it controls.
The VME standard is fully documented and is a necessary background to understanding how
the crate system works.
VxWorks provides support for inter-process communication and there is a trigger-daq inter-
processor messaging system which is fully described in DAQ documentation as ICCP9,
There are 6 types of VME systems covered by trigger software: Scalers (VME wrappers
only), DSM, QT, L1 and L0, and RCC Common code is used for all DSM crates, and
separate common code for the QT crates. The L1 crate is unique and has its own suite of
code. The TCU is controlled by the L0 CPU (situated in the L1 crate) and L0 code manages
the flow of tokens to the TCU and generates the event-build command to the rest of trigger
software.
A common set of utilities and libraries is also provided.
The scaler crate is controlled by software which sends data to l2ana02 in the L2 system.
RCC monitors the RHIC clock and the RCC board. This has specific control code.
Note that all data produced by VxWorks systems is big-endian.
Code is compiled on startrg.starp.bnl.gov which supports the VxWorks cross-compilers and
libraries.
Each VME CPU is configured by a startup script.
L2 and Linux
Level 2 is controlled by code in the l2ana01 computer supported by RedHat 2.4 OS. Data
from all the trigger detectors, including BTOW and ETOW, are collected by L2 and
formatted into a trigger data block and sent onward to DAQ. Shell scripts run in the
background to move other data to l2ana02 and to trgscratch for further processing and, in the
case of l2ana02, to RCF and HPSS for storage. Most of the shell scripts are initiated at
boot-time. See /etc/rc.local on different computers.
The ALICE RORC links to BTOW/ETOW are also managed by L2 software.
The primary function of L2 is to generate an ACCEPT (or ABORT) decision which is fed to
the code in L0 controlling the TCU. This decision is the result of data analysis performed
by a series of algorithms that L2 calls once all data from a given event have been received.

Page 2

Note that all data produced by Linux are little-endian and byte-swapping is used to translate
VME data. The trigger block is finally constructed in big-endian format.
Support from SUN Solaris
The cross-compilers for VxWorks are provided on startrg.starp while the CVS connection to
AFS is provided by startrg2.
The whole of trigger is controlled by configuration files which describe the contents of each
VME crate including the registers and lookup tables that must be loaded at the start of a run.
These files are parsed by a suite of routines and a single binary file (Tier1 file) is generated as
a result. MakeConfig and ReadConfig can be executed on either startrg or startrg2.
Occasionally it is necessary to modify MakeConfig code in order to incorporate additions to
the syntax of the configuration files.
Other utilities are provided to mask hot towers in the Barrel and Endcap calorimeters.
General notes
Code is generally fully documented inline. Documentation of hardware is contained on the
TRG sub-system web-site and familiarity is essential.
VxWorks libraries and operating routines are documented and explained in considerable
detail in two reference books, copies of which are widely available.
Interaction with Run Control is described in ICCP9 documentation on the DAQ sub-system
web-site. Headers in /RTS/include provide other essential information.
Starting point
You need to get an overview of how the trigger system works, including the role of the TCU,
the DSM tree as well as the function of tokens, and the RHIC clock and finally the initial
processing to form an ACCEPT (or ABORT) decision by L2.
Become familiar with the directory layout of the ‘trg’ account on startrg.starp. On your own
account, use CVS to check-out trigger software from online/RTS/trg. You should also
checkout online/RTS/include which contains all common headers required by trigger and
DAQ. Pay particular note to trg/include/trgStructures.h which defines trigger data.
Understand how DSM code works, including mechanisms for reading DSM boards, how the
configuration file is obtained from Run Control and then decoded. Understand the sequence
of messages that are sent from Run Control to start the run, configure the boards, and finally
end the run. Understand how the messaging system works. Importantly, understand how
error/information logging operates.
The QT system operates in a similar way, although the readout and configuration of the QT
boards is different.
The configuration engines DSM_Config and QT_Config are essential reading.
Study code in L1, beginning with the token manager. Leave the hardware interface code to
the last. This manages the rate of flow of tokens to the TCU, executing ACCEPT and
ABORT commands from L2, and dealing with low priority messages from the token
manager.
Once you are familiar with the various aspects of trigger operation in VME, then move on to
L2.
Have fun.

