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1 Introduction

As instantaneous luminosity continues to increase at RHIC, multiple collisions in one beam crossing become
more likely, and the use of a detector coincidence (such as the “AND” of the BBC arms) as a luminosity
monitor becomes less and less valid. This is because a simple detector coincidence is a “binary” result that
conveys no direct information about how many times the detector was hit by particles from the collision.
However, by modeling the probability of firing the detector over many crossings of the beam, we can indirectly
extract this information. In effect, we change our assumption from 0 = no collision, 1 = 1 collision to 0 =
no collision, 1 = (≥ 1 collision) and find the true hit rate in the detectors from this information.

Once we have done this, we will look at the implications for relative luminosity in Run 09
√

s = 200 GeV,
specifically focusing on comparisons between the ZDC and BBC (which are traditionally used to quantify
systematic uncertainty on the relative luminosity). We will also try to study the dependence of a certain
class of events (events capable of triggering only one arm of the detector) on rate.

2 Extracting Rate From Detection Probabilities

2.1 Measuring Collisions with a Single-Sided Detector

In this section and the next, it is assumed there are only events capable of causing a real (not accidental)
coincidence in the two detectors, i.e. double-sided events. This includes, for instance, double-diffractive
events or a single particle traveling through both detectors. Single-sided events will be taken into account
later.

First, we consider the probability distribution for the true number of collisions in one crossing, regardless
of whether or not they registered in one or both of the detectors. If there are of order ∼ 1011 protons in each
bunch, the number of possible collisions in one crossing is of order ∼ 1022. Since we know from experience
that the number of collisions actually occurring in each crossing is much less than ∼ 1022 (typically of order
1), we can safely assume the number of collisions follows a Poisson distribution with an average number λ,

PDS(i) =
λie−λ

i!
, (1)

where i is the number of collisions.
For clarity let us suppose we are working with the ”South” detector and give it the label S. Now the

probability for the detector to be hit at kS distinct times (it doesn’t matter if we can’t distinguish them in
practice since we won’t be counting anyway) should be given by

PDS(kS) =

∞
∑

i=kS

(

i

kS

)

ǫkS

S (1 − ǫS)
i−kS PDS(i). (2)
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Here ǫS is the “efficiency” of the detector, which here we take to mean the probability for detecting a collision.
There are appropriate factors for detecting kS collisions and not detecting i− kS others, along with a factor
(

i
kS

)

for the number of ways this can happen. The sum starts at kS since if there are kS distinct hits detected
(neglecting random noise), we can be sure there were at least kS collisions.

By pulling kS factors of λ out of the sum and re-indexing, one can show that the probability for kS

collisions also a Poisson distribution:

PDS(kS) =

∞
∑

i=kS

i!

kS !(i − kS)
ǫkS

S (1 − ǫS)
i−kS

λie−λ

i!

=
1

kS !
ǫkS

S λk
Se−λ

∞
∑

i=kS

1

(i − kS)!
(1 − ǫS)

i−kS λi−kS

=
1

kS !
ǫkS

S λk
Se−λe(1−ǫS)λ

=
(ǫSλ)

kS e−ǫSλ

kS !
. (3)

2.2 A Two-Sided Detector

We can derive the probability PDS(kS , kN ) for a two-sided detector from the one-sided detector result. First,
note that

PDS(kS , kN ) = PDS(kN |kS)PDS(kS) =

(

∞
∑

i=kN

(

i

kN

)

ǫkN

N (1 − ǫN )i−kN PDS(i|kS)

)

PDS(kS). (4)

P (i|kS) is the probability that there were i collisions given that we measured kS hits. Using Bayes’ theorem,
we can express

PDS(i|kS) =
PDS(kS |i)PDS(i)

PDS(kS)
. (5)

PDS(kS |i) is just

PDS(kS |i) =

(

i

kS

)

ǫkS

S (1 − ǫS)
i−kS Θ(i − kS), (6)

where the step function ensures we do not see more distinct hits then there are collisions.
Substituting Equations 5 and 6 into 4, we arrive at

PDS(kS , kN ) =

∞
∑

i=max(kS ,kN )

(

i

kS

)(

i

kN

)

ǫkS

S ǫkN

N (1 − ǫS)
i−kS (1 − ǫN )

i−kN PDS(i). (7)

Note that the step function, along with the original lower limit on the sum of kS , can be accounted for by
setting the lower limit to max(kS , kN ). For the special case PDS(kS = 0, kN = 0) this formula reduces to

PDS(kS = 0, kN = 0) = eǫSǫN λ−ǫSλ−ǫN λ = e−ǫN(1−ǫS)λe−ǫSλ. (8)

2.3 Allowing Single-Sided Events

We now consider single-sided events, which by our definition are only capable of triggering one detector. The
distributions describing the number of such collisions in a crossing are again Poisson, this time with average
numbers λS and λN . The probability of seeing kS distinct time hits in the south detector, for instance, is
the same as before:

PSS(kS) =
(ǫSλS)

kS e−ǫSλS

kS !
. (9)
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Most importantly, the probability for seeing zero hits is e−ǫSλS . The probability of detecting a total of
zero hits in the south detector, both from single and double-sided events, is then

P (kS = 0) = PDS(kS = 0)PSS(kS = 0) = e−ǫS(λ+λS), (10)

where we may, for notational convenience, absorb any difference in ǫSS
S for single-sided events into λS

itself. Note that the samples these two distributions apply to do not overlap and so the (non-)events are
independent. Similarly, the probability of detecting zero collisions in the two-sided detector is given by

P (kS = 0, kN = 0) = PDS(kS = 0, kN = 0)PSS(kS = 0)PSS(kN = 0) = eǫSǫN λ−ǫS(λ+λS)−ǫN (λ+λN ). (11)

2.4 Removing Single-Sided Events

The utility of these three separate probability distributions becomes apparent when we consider the function

ln(P (kS = 0, kN = 0)) − ln(P (kS = 0)) − ln(P (kN = 0)) = ǫNǫSλ, (12)

or, since P (kS = 0) = 1 − PS , P (kN = 0) = 1 − PN , and P (kS = 0, kN = 0) = 1 − POR, where PS , PN , and
POR are the probabilities of south, north, and OR triggers,

ln(1 − POR) − ln(1 − PS) − ln(1 − PN ) = ǫN ǫSλ. (13)

Only events and backgrounds capable of causing true coincidence in the two detectors contribute to this
quantity. Furthermore, it completely takes into account the effects of multiple collisions. If ǫS and ǫN are
not spin dependent (which is an assumption of the present method for calculating relative luminosity) this
quantity can be used to calculate the relative luminosity, although it will not include a vertex cut requirement.

2.5 Measurement and Statistical Uncertainty

As is always the case in experiments, it is not possible to know our true parameters exactly; we must estimate
PN , PS , and POR from the data. The way to do this is to look at a set number of unbiased events (i.e. clock
events) and count the number of triggers within that sample. Since the probability of a trigger in any given
crossing is significant, we can not approximate with a Poisson distribution and must use the full binomial
distribution. The probability distribution for the number of OR triggers in Nclock events, for example, is

P (NOR = n) =

(

Nclock

n

)

Pn
OR (1 − POR)

Nclock−n
. (14)

The standard deviation in this case is
√

NclockPOR(1 − POR), and the mean is NclockPOR. We can see that
estimating the sample mean by the actual number of OR triggers, NOR, is equivalent to estimating POR as

NOR/Nclock. The estimate for the standard deviation of NOR is then
√

NOR(1 − NOR

Nclock
).

In propagating our errors through Equation 13, we should be careful to include correlations between our
samples. We use the general uncertainty propagation formula

(σf(x,y,z))
2 =

(

∂f

∂x

)2

(σx)2 +

(

∂f

∂y

)2

(σy)2 +

(

∂f

∂z

)2

(σz)
2

+ 2

(

∂f

∂x

)(

∂f

∂y

)

ρx,yσxσy + 2

(

∂f

∂x

)(

∂f

∂z

)

ρx,zσxσz + 2

(

∂f

∂y

)(

∂f

∂z

)

ρy,zσyσz (15)

where ρ’s are the Pearson correlation coefficients. With f = ln(1 − NOR

Nclock
) − ln(1− NS

Nclock
)− ln(1− NN

Nclock
),

we need to consider the correlations between the number of S, N, and OR triggered events.
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To see how the terms in the uncertainty formula behave, we can go a step further and insert the partial
derivatives

∂f

∂NOR

= −
1

Nclock
(

1 − NOR

Nclock

)

∂f

∂NS

=
1

Nclock
(

1 − NS

Nclock

)

∂f

∂NN

=
1

Nclock
(

1 − NS

Nclock

) (16)

(note the different sign for the OR term) and standard deviations

σOR =

√

NOR

(

1 − NOR

Nclock

)

σS =

√

NS

(

1 − NS

Nclock

)

σN =

√

NN

(

1 − NN

Nclock

)

.

(17)

Then, in terms of the various counts and correlation coefficients, the uncertainty becomes

(

σf(NOR,NN ,NS)

)2
=

(

1

Nclock

)

∗ {
NOR

Nclock

1 − NOR

Nclock

+

NS

Nclock

1 − NS

Nclock

+

NN

Nclock

1 − NN

Nclock

− 2

√

√

√

√

(

NOR

Nclock

1 − NOR

Nclock

)(

NS

Nclock

1 − NS

Nclock

)

ρNOR,NS

− 2

√

√

√

√

(

NOR

Nclock

1 − NOR

Nclock

)(

NN

Nclock

1 − NN

Nclock

)

ρNOR,NN

+ 2

√

√

√

√

(

NS

Nclock

1 − NS

Nclock

)(

NN

Nclock

1 − NN

Nclock

)

ρNS,NN
} (18)

Note that there are two negative correlation terms involving NOR, which serve to reduce the uncertainty,
and one positive term involving NN and NS which would increase it.

3 Possible Extensions

3.1 Three-Sided Detector

For an “OR” coincidence between a three-sided detector, the probability for zero hits detected is described
by

ln(P (ka = 0, kb = 0, kc = 0)) = ln(1 − NOR

Nclock

) = −ǫaǫbǫcλ + ǫaǫbλ + ǫaǫcλ + ǫbǫcλ

− ǫa(λ + λa) − ǫb(λ + λb) − ǫc(λ + λc). (19)
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This, along with the three possible two-arm results, allows for the extraction of ǫaǫbǫcλ. In certain instances,
this result could be divided by the two-arm results to extract each of the “efficiencies” separately, and,
ultimately, the raw rate λ. This, however, would require that the effective “efficiencies” for each two-arm
detector pair be the same “efficiencies” that show up in the quantity ǫaǫbǫcλ. This amounts to a requirement
that the “efficiency” of detector c be constant over all sub-classes of events with differing product ǫaǫb. For
then

∑

i∈ sub-classes(ǫaǫb)
iǫi

cλi
∑

i∈ sub-classes(ǫaǫb)i
=

ǫc

∑

i∈ sub-classes(ǫaǫb)
iλi

∑

i∈ sub-classes(ǫaǫb)i
= ǫc (20)

To achieve this goal, the three detectors should be as similar as possible.
Obviously this method would not work with a configuration of, say, two arms of the BBC and one of the

ZDC, since there are certainly different classes of double-sided collisions for the BBC with different ZDC
efficiencies (for example, events with forward neutrons versus events without). To use the above extension
for a reasonable estimate of the “efficiencies”, then, it would be necessary to do something like divide the
BBC tubes on each arm into two groups, effectively making the BBC a four-arm detector with each arm
having similar properties.

4 Star Scalers/GL1p Counts QA

Runs were removed in the cases where there were no Star Scalers or GL1p data, no BBC raw recorded
data, obvious inconsistencies between the Star Scalers and GL1p counts, or where the Star Scalers were not
properly timed in Crossings were not removed from the crossing block analysis, but were in the bunch fitting
analysis when there were no Star Scaler or GL1p counts, a bad spin pattern given by the Spin database, or
an asymmetry between Star Scaler and GL1p counts of greater than 95%. Some bunches were also explicitly
removed: bunch 20, the steering bunch; bunches 38-39, 78-79, and 111-119, the gaps; and bunch 1, where
the GL1p boards don’t count.

5 Results of Crossing Block Analysis

5.1 Introduction

In order to study rate effects with high statistical accuracy run-by-run, a “crossing block” analysis was done
using data recorded by the Star Scalers during Run 09 200 GeV. Existing Star Scaler counts for hits in the
N and S detectors, as well as counts complied from the files for the “OR” and other measures of coincidence,
were summed into “crossing blocks,” in this case, blocks of counts between all empty bunches (0:0-37, 1:40-
77, and 2:80-110). In addition to increasing the statistical accuracy for the study, another benefit of the
“crossing block” analysis is that it washes out any effects from Star Scaler counts spilling from one crossing
to the next, which was possible in Run 09 200 GeV since they weren’t properly timed. From these summed
counts, the quantity ǫN ǫSλ was calculated for the BBC and ZDC.

5.2 Results and Conclusions

Results are shown versus both rate proxies and versus runnumber, in Figures 1 through 4. From the plots

versus rate proxies, it is clear that the ratio (ǫN ǫSλ)ZDC

(ǫN ǫSλ)BBC
does not suffer the same rate effect as the traditional

ratio NZDC

NBBC
. However, the spread in the values is quite large. This can be attributed to some run or time-

depended effect, as shown in the plots versus runnumber. The values tend to rise over time, which points to

some effect equivalent to a rise in the ratio (ǫN ǫS)ZDC

(ǫN ǫS)BBC

We can also measure how much we undercount or overcount using simple detector coincidence (with no
vertex cut), by comparing the “AND” of the two arms with ǫN ǫSλ. Figures 5 and 6 show this comparison
for the BBC and ZDC.
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Figure 2:

It is interesting that the BBC coincidence undercounts, while the ZDC overcounts. This is likely due to
the high single-sided event rate in the ZDC, which (see Section 7), is proportional to λ.

6 Results of Bunch-Fitting Analysis

6.1 Technique

In past Runs, in order to look for a possible bias in measuring Relative Luminosity (R) in the BBC, a
comparison was made to the ZDC, the idea being that since the two detectors sit at different rapidity and
are sensitive to different physics, they are unlikely to be biased in the same way. The raw asymmetry

ǫLL ≡ r++ − r+−

r++ + r+−
, r =

NZDC

NBBC

(21)
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Figure 3:
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Figure 4:
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Figure 5: Measure of the fraction of “undercounting” in the BBC when using the simple coincidence of the
two arms.

is measured by fitting across bunches in individual runs or fills, and then these values are combined to give
an overall asymmetry. This value is scaled up by the polarizations of the beams to reflect the fact that it
may be due to physics. There are four possible scenarios in which to draw conclusions from the final result:

• The BBC is unbiased.

In this case, we can re-express the raw asymmetry in the form

ǫLL =
N++

ZDC − N
++

BBC

N
+−

BBC

N+−

ZDC

N++
ZDC +

N++

BBC

N
+−

BBC

N+−

ZDC

(22)

Then the BBC measurement serves as the Relative Luminosity, and our result gives us the + + / + −
asymmetry (physics or otherwise) for detection by the ZDC.

• The ZDC is unbiased.

Similar to the first case, here we get the asymmetry for detection by the BBC.

• Both detectors are biased in the same direction.

In this case, our measure of the bias reflects neither the BBC or ZDC asymmetry, and in fact is smaller
than either bias alone. Recall that our assumption is that both detectors are unlikely to be biased in
the same way. Assuming the detectors not to be biased in the same direction is a stronger assumption.

• Both detectors are biased in the opposite direction.

In this case, our result is greater than the actual bias of either detector.
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Figure 6: Measure of the fraction of “overcounting” in the ZDC when using the simple coincidence of the
two arms.

6.2 Chi-Squared Bunch Fitting

We do a chi-squared fit to the equation
(

NZDC

NBBC

)

i

≡ r±i = c(1 ± ǫLL), (23)

where the sign ± depends on the helicity of the bunches ({++} = +, {+−} = −). This procedure gives ǫLL

equivalent to Equation 21.
Chi-squared is given by

∑

i+

(c(1 + ǫLL) − r+
i )2

σr
+

i

+
∑

i−

(c(1 − ǫLL) − r−i )2

σr
−

i

. (24)

Taking the derivatives with respect to c and ǫLL and setting them to zero results in

∂χ2

∂ǫLL

= 0 =
∑

i+

2c(c(1 + ǫLL) − r+
i )

σr
+

i

−
∑

i−

2c(c(1 − ǫLL) − r−i )

σr
−

i

,

∂χ2

∂c
= 0 =

∑

i+

2(1 + ǫLL)(c(1 + ǫLL) − r+
i )

σr
+

i

+
∑

i−

2(1 − ǫLL)(c(1 − ǫLL) − r−i )

σr
−

i

These equations can be conveniently rewritten using the following definitions:

S+ =
∑

i+

1

σ2
r
+

i

,

S− =
∑

i−

1

σ2
r−

i

,

S+
r =

∑

i+

r+
i

σ2
r+

i

,

S+
r =

∑

i−

r−i
σ2

r
−

i

.

With these definitions we have (dividing out the common factors of 2 and 2c)

0 = c(1 + ǫLL)S+ − c(1 − ǫLL)S− − S+
r + S−

r ,

0 = c(1 + ǫLL)2S+ + c(1 − ǫLL)2S− − (1 + ǫLL)S+
r − (1 − ǫLL)S−

r . (25)
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We now solve both of these equations for c. We get

c =
(1 + ǫLL)S+

r + (1 − ǫLL)S−
r

(1 + ǫLL)2S+ + (1 − ǫLL)2S−
,

c =
S+

r − S−
r

(1 + ǫLL)S+ − (1 − ǫLL)S−
. (26)

Setting the two equations equal, we can solve for ǫLL:

ǫLL =
S+

r S− − S−
r S+

S+
r S− + S−

r S+
(27)

which when substituted into the above equation for c yields:

c =
S+

r S− + S−
r S+

2S+S−
(28)

We now calculate the uncertainty in each of these parameters. To do this, note that derivatives with
respect to r+

i only affect S+
r , and r−i S−

r . Also, by the chain rule,

∂S+
r

∂r+
i

=
1

σ2
r
+

i

, (29)

and similarly for −. Using this, we find

σ2
c =

1

4

(

1

S+
+

1

S−

)

(30)

σ2
ǫLL

=
4(S+S−)2

(S+
r S− + S−

r S+)4

(

(S+
r )2S− + (S−

r )2S+
)

. (31)

6.3 Results and Conclusions

Figures 7 and 8 show the results of the bunch fitting analysis, performed both in the usual way with GL1p
scaler data, and also with the results ǫN ǫSλ using Star Scalers data. For the parameter c, we see a clear rise

over the Run in both cases, which amounts to a rise in the ratio (ǫN ǫS)ZDC

(ǫN ǫS)BBC
.

In both ǫLL plots we see evidence of positive asymmetries of comparable size. This result should be
taken with a grain of salt since both chi-squareds are unreasonable. However, it should be noted that in the
case of a full analysis that takes into account the effect of ZDC vertex-smearing (see AN 881), the GL1p
result is essentially the same. Also, the chi-squared of the Star Scalers analysis is artificially low due to not
accounting for correlation between N, S, and OR counts (which should reduce the uncertainty and increase
chi-squared). Furthermore, since the Star Scalers analysis has no vertex cut, it should not suffer a ZDC
vertex-smearing effect. For these reasons, we might take the ǫLL results as evidence that the ZDC-BBC
asymmetry is not affected by rate.

7 Behavior Single Sided Event Rates

7.1 Fraction of Accidental Coincidences

The probability for the “AND” of a two-armed detector can be expressed as

PAND = 1 − P (kN = 0, kS = 0) − P (kN > 0, kS = 0) − P (kN = 0, kS > 0)

= 1 + P (kN = 0, kS = 0) − P (kN = 0) − P (kS = 0)

= 1 + eǫN ǫSλ−ǫN (λ+λN )−ǫS(λ+λS) − eǫN (λ+λN ) − eǫS(λ+λS). (32)
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Figure 7: Results for the constant term in the bunch fitting described in the text.

(Here we again write ǫSS = ǫ, although as in the above the results are equally valid without this assumption,
since any difference may be absorbed into λN and λS .)

If we expand to first order in λ’s and second order in ǫ’s, we get simply

PAND ≈ ǫNǫSλ. (33)

Expanding to second order in λ’s and second order in ǫ’s gives an additional term:

PAND ≈ ǫN ǫSλ + ǫN(λ + λN )ǫS(λ + λS)

= ǫN ǫSλ + ǫNǫSλ2 + ǫN ǫSλλN + ǫN ǫSλλS + ǫN ǫSλNλS . (34)

From this equation we can pick out a contribution from accidental coincidence with, or involving only,
single-sided events, which we define as PSS

AND:

PSS
AND ≈ ǫN ǫSλλN + ǫN ǫSλλS + ǫN ǫSλNλS . (35)

What we would like to estimate is

f ≡ PSS
AND

PAND

, (36)

the fractional contribution of single-sided events to the total coincidence rate.

7.2 Dependence of Single-Sided Rates on the Double-Sided Rate

Other quantities of interest would be

dN ≡ λN

λ

dS ≡ λS

λ
, (37)

since they tell us how the single-sided events behave as a function of rate.
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Figure 8: Results ǫLL from bunch fitting.

7.3 Estimating f and d

We can express the quantity f of Equation 36 in terms of the unknown quantity ǫNǫS . To do this first we
make the definitions

R2 ≡ ǫN ǫSλ

RN ≡ ǫNλ + ǫNλN = ln(1 − NN

Nclock

)

RS ≡ ǫSλ + ǫNλS = ln(1 − NS

Nclock

) (38)

Then we note that

PSS
AND = RNRS − ǫN ǫSλ2 = RNRS − R2

2

ǫNǫS

, (39)

in which case

f =
Nclock

NAND

∗
(

RNRS − R2
2

ǫN ǫS

)

(40)

In order to estimate d, if we make the quantity

ǫS ∗ RN

R2
− 1 = ǫS

ǫNλ + ǫNλN

ǫN ǫSλ
− 1 =

λN

λ
, (41)

we can isolate the ratio λN

λ
if we know ǫS . A similar expression holds for the South detector

Thus, in order to estimate f and d, we must have estimates for the ǫ’s. Figures 9 through 20 show what
the quantities would be for different guesses of ǫ, assuming when necessary ǫN = ǫS .

One important conclusion that can be drawn from these plots is that λN

λ
is constant. This means that

the rate of single-sided events is proportional to the rate of double-sided events, which implies that most of
the background is beam-related.
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Figure 9: f for the BBC (see text) for assumptions (a) ǫ = 0.74 and (b) ǫ = 0.80.
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Figure 10: f for the BBC (see text) for assumptions (a) ǫ = 0.90 and (b) ǫ = 0.99.

8 Other Rate-Related Issues

8.1 Multiple Collisions and Z-vertex determination

Here we derive the z-vertex distribution arising from incorrectly-paired multiple collisions: In general, for
the arrival time of light signals in the N and S detectors, we have

tN = (l − zN ) + t0,N

tS = (l + zS) + t0,S , (42)

where l is the distance between the detectors, z is the location along the beam line of the collision, and t0
is the collision time relative to the beam clock tick. Here we have set the speed of light c = 1.

In the case where both signals come from the same vertex, the z’s and t0’s are equal, and we can find z
from (tS − tN )/2. In the case of signals from different vertices, however, if we try to construct z in the same
way we get zfake = (zS + zN + (t0,S − t0,N))/2. Whether the zfake distribution is wider or narrower than
the zreal distribution depends on the relative size of σz and σt0 . In fact, if z and t0 are Gaussian distributed
random variables, we have

µzfake
=

µzN
+ µzS

+ (µt0,S
− µt0,N

)

2

σ2
zfake

= (
σzN

2
)2 + (

σzS

2
)2 + (

σt0,N

2
)2 + (

σt0,S

2
)2.

12



eelambda_ZDC[0]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-310×

(Z
D

C
_C

lo
ck

[0
]/

Z
D

C
_N

aS
[0

])
*(

el
am

b
d

a_
S

_Z
D

C
[0

]*
el

am
b

d
a_

N
_Z

D
C

[0
] 

- 
p

o
w

(e
el

am
b

d
a_

Z
D

C
[0

],
2)

/p
o

w
(0

.0
7,

2)
)

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

(ZDC_Clock[0]/ZDC_NaS[0])*(elambda_S_ZDC[0]*elambda_N_ZDC[0] - pow(eelambda_ZDC[0],2)/pow(0.07,2)):eelambda_ZDC[0] {QA_bit==0}

eelambda_ZDC[0]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-310×

(Z
D

C
_C

lo
ck

[0
]/

Z
D

C
_N

aS
[0

])
*(

el
am

b
d

a_
S

_Z
D

C
[0

]*
el

am
b

d
a_

N
_Z

D
C

[0
] 

- 
p

o
w

(e
el

am
b

d
a_

Z
D

C
[0

],
2)

/p
o

w
(0

.4
0,

2)
)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(ZDC_Clock[0]/ZDC_NaS[0])*(elambda_S_ZDC[0]*elambda_N_ZDC[0] - pow(eelambda_ZDC[0],2)/pow(0.40,2)):eelambda_ZDC[0] {QA_bit==0}

(a) (b)

Figure 11: f for the ZDC (see text) for assumptions (a) ǫ = 0.07 and (b) ǫ = 0.40.
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Figure 12: f for the ZDC (see text) for assumptions (a) ǫ = 0.70 and (b) ǫ = 0.99.

Taking the means and variances for the z’s, as well as for the t0’s, to be equal results in

µzfake
= µzreal

(43)

σ2
zfake

=
σ2

zreal
+ σ2

t0

2
. (44)

9 Loose Ends

There are two important points for further effort in the future

• Correlations

In order to make the ǫNǫSλ calculations useful for determining/correcting relative luminosity, corre-
lations should be properly taken into account so that chi-squared results are sensible. To measure
the correlation experimentally, it would be necessary to bin results according to both some rate proxy
and Nclock, since results should come from similar underlying probability distributions to make sense.
Alternatively, the correlations might be calculated using Monte-Carlo techniques.

• Z-vertex cut
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Figure 13: d for the BBCN (see text) for assumptions (a) ǫS = 0.74 and (b) ǫS = 0.80.
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Figure 14: d for the BBCN (see text) for assumptions (a) ǫS = 0.90 and (b) ǫS = 0.99.

To make any rate correction on GL1p scaler counts, or to make the ǫSǫNλ relative luminosity correspond
to measurements with a z-vertex cut, we must determine the fraction of events within a specified range
in z. This could be done in an unbiased way using clock data, although the uncertainty might be
unfeasibly large. Also, as shown in Section 8.1, multiple collisions change the observed z-vertex,
although since this effect is contained in multiple collisions, it might effectively be a correction on a
correction.
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(a) (b)

Figure 15: d for the BBCS (see text) for assumptions (a) ǫN = 0.74 and (b) ǫN = 0.80.
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Figure 16: d for the BBCS (see text) for assumptions (a) ǫN = 0.90 and (b) ǫN = 0.99.
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Figure 17: d for the ZDCN (see text) for assumptions (a) ǫS = 0.068 and (b) ǫS = 0.40.
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Figure 18: d for the ZDCN (see text) for assumptions (a) ǫS = 0.70 and (b) ǫS = 0.99.
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(a) (b)

Figure 19: d for the ZDCS (see text) for assumptions (a) ǫN = 0.068 and (b) ǫN = 0.40.
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((-0.990*elambda_S_ZDC[0]/eelambda_ZDC[0])-1):eelambda_BBC[0] {QA_bit==0 && (-elambda_S_ZDC[0]/eelambda_ZDC[0]-1)<20 && (-elambda_S_ZDC[0]/eelambda_ZDC[0]-1)>-5
}

(a) (b)

Figure 20: d for the ZDCS (see text) for assumptions (a) ǫN = 0.70 and (b) ǫN = 0.99.

16


