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Abstract

This thesis presents various algorithms which have been developed for on-line event recon-
struction in the CBM experiment at GSI, Darmstadt and the ALICE experiment at CERN,
Geneve.

Despite the fact that the experiments are different — CBM is a fixed target experiment
with forward geometry, while ALICE has a typical collider geometry — they share common
aspects when reconstruction is concerned.

The thesis describes:

— general modifications to the Kalman filter method, which allows one to accelerate, to
improve, and to simplify existing fit algorithms;

— developed algorithms for track fit in CBM and ALICE experiment, including a new method
for track extrapolation in non-homogeneous magnetic field.

— developed algorithms for primary and secondary vertex fit in the both experiments. In
particular, a new method of reconstruction of decayed particles is presented.

— developed parallel algorithm for the on-line tracking in the CBM experiment.

— developed parallel algorithm for the on-line tracking in High Level Trigger of the ALICE
experiment.

— the realisation of the track finders on modern hardware, such as SIMD CPU registers and
GPU accelerators.

All the presented methods have been developed by or with the direct participation of the
author.
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Introduction

Reconstruction of events in High Energy Physics is a complicated task. Modern experi-
ments have to process terabytes of input data produced in particle collisions. This requires
development of fast and effective reconstruction algorithms, especially for the on-line event
reconstruction.

The reconstruction of events includes many different tasks — track search, fit of particle
trajectories, search for primary and secondary vertices, etc. Most of these tasks are fit
problems or they involve the fit problems.

In the CBM and ALICE experiments track and vertex fit is performed by the Kalman filter
method. This method is the main mathematical tool which is used in event reconstruction. It
is also the most complicated and time-consuming tool. Therefore the speed and the accuracy
of the fit mathematics are very important, especially for on-line event reconstruction where
thousands of events per second should be processed.

To develop fast and accurate fit algorithms it was necessary to investigate the base Kalman
filter mathematics and to expand upon it. In order to simplify the reading, all the mathe-
matical investigations of the Kalman filter are contained in Chapter 1.

Chapter 2 describes principles of track fit by the Kalman filter; several important details are
noticed. CBM and ALICE fit algorithms are presented separately with results of their imple-
mentation. The CBM Section includes description of a new method for track extrapolation
in a non-homogeneous magnetic field. In the ALICE Section a new method for correction of
nonlinear operators is presented.

Chapter 3 deals with fit of vertices and decayed particles. First, conventional approaches
for vertex fit are described. Then, new methods are presented which significantly speed up
the processing. A new method for fit of decayed particles is presented in a separate Section.
The results of implementing all these methods in CBM and ALICE are given at the end of
the Chapter.

The developed on-line tracking for CBM and ALICE experiments is presented in the last two
Chapters:

- The 4th Chapter describes on-line event reconstruction in CBM. It includes speed-up of the
Kalman filter using SIMD CPU instructions.

- In the last Chapter on-line event reconstruction in the ALICE High Level Trigger is presented
with a description of the tracking algorithm and of its implementation on the GPU hardware.
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Chapter 1

The Kalman filter method

Event reconstruction includes various tasks: track finding, fit of the particle trajectories,
finding of the event vertex, alignment of detectors and others. Many of those tasks involve
fit problems. Problems of this kind have an exact mathematical solution which can be found
using the Kalman filter method [1, 2].

In short, the fit problem is to find the most probable value of an unknown quantity using a
set of measurements of this quantity. For example, the track fit problem is to estimate the
trajectory of a particle using the information obtained by the tracking detectors.

The Kalman filter method is a powerful technique which solves the fit problem in a very
general way. Therefore it can be applied to any particular fit problem.

In this Chapter the Kalman filter method is described, then the developed modifications
of the conventional filtration procedure are provided: filtration with an extended model of
measurement, filtration with the correlated measurement, and filtration by the best estimator.
These modifications allow the application of the Kalman filter method for fitting of decayed
particles and optimisation of the standard Kalman filter application for the vertex fit.

1.1 Fit problem

Consider the formulation of the problem. The following terms will be used:

xT — denotes the transpose of the vector x.

brackets <> — denote the mathematical expectation value.

covariance matrix cov(x) of a random vector x — matrix of covariances between elements
of the vector:

cov(x) = < (x− < x >) · (x− < x >)T > (1.1)

The covariance matrix is a symmetric non-negative definite matrix.1 Its diagonal elements
are the squared dispersions of the corresponding elements of the vector.

state vector rt — vector of real numbers that represents the unknown quantities to be
estimated ( for example, parameters of a track ).2

1The n × n squared matrix A is called a non-negative definite matrix when xAxT ≥ 0 for all non-zero
vectors x of the size n.

2here the suffix ”t” in rt denotes the true value of the parameters, in contrast to r which is an estimate of
the parameters.
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measurement m — a known (measured) quantity which linearly depends on the state
vector:

m = Hrt + η (1.2)

where H is a (known) linear operator represented as a matrix, called model of measure-
ment;

the variable η is a random (unknown) variable, called measurement error.

It is assumed that the measurement error η is unbiased (its math. expectation is 0) and its
covariance matrix V is known:

< η > = 0
< η · ηT > ≡ V

(1.3)

In case the state vector has several measurements mk, k = 1 . . . n, it is assumed that the
errors of different measurements are uncorrelated:

mk = Hkr
t + ηk

< ηkiηlj > = < ηki >< ηlj > = 0
(1.4)

estimator r (of the state vector rt) – a vector which estimates the value of the (unknown)
state vector according to a given set of measurements. The estimator is called linear esti-
mator when it linearly depends on the measurements.

error of estimator εr — the difference between the estimated and the real value of the
state vector:

εr = r− rt (1.5)

bias of estimator < εr > — the mean value of the estimator error. The estimator is called
unbiased when its bias is 0.

mean squared error (MSE) of estimator σ2r :

σ2r = < εr
T · εr > (1.6)

best [linear unbiased] estimator — a linear estimator which is unbiased and has minimal
MSE among all linear estimators.

With the terms introduced the fit problem is to find the best linear unbiased estimator
of a state vector according to a given set of measurements.

There are two methods to find the best estimator (and thus solve the fit problem): the Least
Squares Method (LSM) [2] and the Kalman Filter Method [2]. Both methods give the same
result. In the LSM method the equations are simpler, while the Kalman filter method is able
to solve a wider range of problems and therefore fits better to practical tasks.

To describe all the features of the Kalman filter it is necessary to extend the fit problem. Let
the state vector rt change from one measurement to the next in a random way:

rtk = Akr
t
k−1 + νk (1.7)

with Ak — a (known) linear operator, called extrapolator;

νk — a random (unknown) variable, called process noise between (k − 1)-th and k-th
measurements.
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It is assumed that the process noise νk is unbiased and its covariance matrix Qk is known:

< νk > = 0
< νk · νTk > ≡ Qk

(1.8)

It is also assumed that the process noise νk is uncorrelated with the process noise νi and
with all the measurement errors ηj .

Since the state vector rt now changes from one measurement to the next, it is necessary to
reformulate the fit problem: now the goal is to find the best estimator rn of the state
vector rtn, which corresponds to the last measurement mn.

1.2 The Kalman filter algorithm

The Kalman filter starts with a certain initial approximation r = r0 and refines the esti-
mator r, consecutively processing one measurement after the other. The best estimator is
obtained when the last measurement mn is processed.

The fit algorithm consists of three steps shown in Figure 1.1:

1. Initialisation step. Choose an approximate value r0 of the state vector. Its covariance
matrix is set to

C0 = I · inf (1.9)

where ”inf” denotes a large positive number.

2. Extrapolation step. When the state vector rt changes between the (k − 1)-th and
the k-th measurement (1.7) then upon transfer to the k-th measurement its current
estimation rk−1 also changes in the same manner:

r̃k = Akrk−1
C̃k = AkCk−1AT

k + Qk
(1.10)

with r̃k — an optimal estimation of the vector rtk according to the first k− 1 measure-
ments. Note that in contrast to the extrapolation operator Ak describing deterministic
changes of the state vector rt between the two measurements, the process noise Qk

describes random deviations of the state vector.

3. Filtration step. This step is the essence of the Kalman filter — here the measurement
information is incorporated into the estimator and its covariance matrix. For each
measurement mk an estimator rk which is the best estimator of the vector rtk according
to the first k measurements is calculated:

Kk = C̃kH
T
k (Vk + HkC̃kH

T
k )−1

ζk = (mk −Hkr̃k)
rk = r̃k + Kk ζk
Ck = C̃k −KkHkC̃k

χ2
k = χ2

k−1 + ζTk (Vk + HkC̃kH
T
k )−1ζk

(1.11)

Here {r̃k, C̃k} denote the best estimator and its covariance matrix, obtained in the previous
step and extrapolated to the k-th measurement; {mk, Vk} are the k-th measurement and
its covariance matrix; ζk called residual; the matrix Hk is the model of the measurement;
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the matrix Kk is so-called gain matrix; the value χ2
k is the total χ2-deviation of the obtained

estimation rk from the measurements m1, . . .mk.

The algorithm steps 2.-3. sequentially repeat n times, for each measurement mk, k = 1, . . . n.
After the filtration of the last measurement mn, the obtained estimator rn is the desired best
estimator with the covariance matrix Cn.

Initialisaton

r0, C0, χ
2
0 = 0

?
Extrapolation

r̃k = Ak−1rk−1

C̃k = Ak−1Ck−1AT
k−1 + Qk

?
Filtration

Kk = C̃kH
T
k (Vk + HkC̃kH

T
k )−1

ζk = mk −Hkr̃k

rk = r̃k + Kkζk

Ck = (I−KkHk)C̃k

χ2
k = χ2

k−1 + ζTk (Vk + HkC̃kH
T
k )−1ζk

6

?

rk, Ck, χ
2
k

?
Fitted parameters

rn, Cn

Noise

Qk
�

Measurement

mk, Hk, Vk

�

Figure 1.1: Scheme of the Kalman filter algorithm

1.3 Nonlinear Kalman filter

In practice, the transport equation (1.7) and the measurement model (1.2) are often nonlinear.
To solve the nonlinear fit problem, one should linearise all the equations before applying the
fitting algorithm, but the algorithm itself does not change.
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When a measurement mk nonlinearly depends on rtk, it is necessary to linearise the model of
measurement. As a point of linearisation a certain state vector rlink is taken:

mk(r
t
k) = hk(r

t
k) + ηk ≈ hk(r

lin
k ) + Hk(r

t
k − rlink ) + ηk (1.12)

where Hk is the Jacobian of hk(rk) at rlink :

Hk (ij) =
∂hk(rk) (i)

∂rk (j)

∣∣∣∣
rk=rlink

(1.13)

In the same way, the nonlinear extrapolation equation 1.7 can be linearised:

r̃tk = ak(r
t
k−1) ≈ ak(r

lin
k−1) + Ak(r

t
k−1 − rlink−1) (1.14)

Ak (ij) =
∂ak(rk−1) (i)
∂rk−1 (j)

∣∣∣∣
rk−1=rlink−1

(1.15)

The Kalman filter with the nonlinear measurement model is called the extended Kalman
filter. Equations of filtration for the extended Kalman filter are the same as for the linear
case (1.11) with an exception for the residual ζk, which is calculated according to the formula:

ζk = mk −
(
hk

(
rlink

)
+ Hk

(
r̃k − rlink

))
(1.16)

The linearised model differs from the original one, therefore the choice of the linearisation
point rlink is important. The usual approach is to take the current estimator r̃k as the point
of linearisation for the k-th measurement. In this case the extended Kalman filter (1.16)
coincides with the linear one (1.11). This type of linearisation is not most accurate because
the current estimator r̃k can be very different from the true value of the state vector rtk,
especially for the first measurements. In order to get more robust and precise results, the
fitting procedure must be repeated several times using the obtained best estimator rn as the
linearisation point for all the measurements in the next iteration.

Since the preliminary linearisation of the model does not change the Kalman filter mathe-
matics, later on all the equations will be considered linear (assuming that the linearisation
has been performed).

1.4 Extensions of the Kalman filter method

In this work three modifications of the conventional filtration procedure have been developed:
filtration with an extended measurement model, filtration with a correlated measurement and
filtration by the best estimator.

The developed modifications allow the application of the Kalman filter method for fitting
decayed particles and the optimisation of the standard Kalman filter approach for the vertex
fit.

1.4.1 Filtration with an extended measurement model

The equations of filtration (1.11) can be extended for the case where the measurement
mk (1.2) is related to the state vector in a more general way:

Gk(mk + ηk) = Hkr
t
k (1.17)
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where Gk is any given matrix. In this case the measurement mk should be processed by the
ordinary filtration procedure (1.11) with the substitution:

mk −→ Gkmk

Vk −→ GkVkG
T
k

(1.18)

The proof:

The proof of the formulae (1.18) is evident: the vector Gkmk is a measurement of the state vector,
with the measurement model Hk and the measurement error (−Gkηk):

(Gkmk) = Hkrtk + (−Gkηk) (1.19)

The measurement error is still unbiased, uncorellated with the estimator of the state vector, and has
the covariance matrix GkVkGT

k :

cov(−Gkηk) = < (−Gkηk) · (−Gkηk)T > = Gkηkη
T
k GT

k = GkVkGT
k (1.20)

Thus proving the statement.

1.4.2 Filtration with a correlated measurement

To construct a simple and fast vertex fitter described in Section 3.3 it was necessary to
generalise the conditions of the conventional Kalman filter to the case where errors of different
measurements are correlated.

Let us examine the k-th step of fitting a state vector rt with the Kalman filter. At this stage
the estimator r̃k with the covariance matrix C̃k being the best estimator of the state vector
rtk according to the measurements m1, . . . ,mk−1 is already produced. Now it is necessary to
improve upon the estimator by using a new measurement mk:

mk = Hkr
t
k + ηk

cov(ηk) ≡ Vk

< ηk > = 0
(1.21)

where as before (1.4) ηk denotes the measurement error, Vk is the covariance matrix of the
error.

In contrast to the conditions of the conventional Kalman filter, let the measurement error ηk
be correlated with the errors of the previous measurements mi<k, and therefore correlated
with the error of the estimator r̃k. Assume the matrix Dk of covariances between the mea-
surement mk and the estimator r̃k is known:3

Dk (i,j) ≡ cov(mk (i), r̃k (j)) (1.22)

In this case the standard equations of the Kalman filter (1.11) are modified as follows:4

Sk =
(

Vk + HkC̃kH
T
k −DkH

T
k −HkD

T
k

)−1

Kk =
(

C̃kH
T
k −DT

k

)
Sk

ζk = mk −Hkr̃k (1.23)

3Note, that the matrix Dk can be a non square matrix.
4The matrix in brackets is a covariance matrix (of Ĥy1; see later) and therefore is invertible.
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rk = r̃k + Kkζk

Ck = C̃k −Kk

(
HkC̃k −Dk

)

χ2
k = χ2

k−1 + ζTk Skζk

Let us note that in the case of the absence of correlations (Dk = O) the formulae (1.23)
coincide with the standard Kalman filter (1.11).

In practice, when the measurement model Hk has many trivial elements (which is the case
for the vertex fit), the modified Kalman filter is useful in order to reduce the calculations by
splitting the multidimensional measurement into parts.

The proof:

Let us recall that the goal is to find the best estimator {rk, Ck} of the state vector rtk according to the
measurement mk and all the previous measurements.

Here the standard Kalman filter procedure can not be used directly, since its conditions are violated: there
are correlations between the measurement error and the error of the current best estimator r̃k.

In order to properly treat the correlations, let us substitute the measurement equation (1.21) by the equivalent
set of two equations:

mk = xt + ηk (1.24)

xt = Hkr
t
k (1.25)

with the introduction of a temporary vector xt.

The first equation (1.24) is the first measurement of the temporary vector xt. On the other hand, the equation
does not include the state vector rtk. Therefore:

• the best estimator of xt, according to all the previous measurements and the measurement (1.24) is:

{x, cov(x)} = {mk, Vk} (1.26)

• the best estimator of rtk, according to all the previous measurements and the measurement (1.24) does
not change with the new measurement:

{r̃k, C̃k} (1.27)

Now let us group the state vector rtk and the temporary vector xt into a combined state vector yt:

yt =

(
rtk
xt

)
(1.28)

Due to (1.26) and (1.27), the best estimator of yt according to all the previous measurements mi, i < k and
the new measurement (1.24) is:

y1 =

(
r̃k
x

)
=

(
r̃k
mk

)
(1.29)

Since by assumption the covariances Dk between r̃k and mk are known, one can write the covariance matrix
of the estimator y1:

Y1 ≡ cov(y1) =

(
C̃k DT

k

Dk Vk

)
(1.30)

At this stage, the combined estimator y1 has been created and it has been proven that it is the best estimator
of the combined state vector yt. The next step of the proof is to update the combined estimator with the
second part (1.25) of the measurement.

Let us rewrite the equation (1.25):

0 = Ĥyt

Ĥ ≡
(

Hk, −I
) (1.31)

One can see that (1.31) is a measurement of the combined state vector yt with the measurement value 0, the

null matrix of errors (since there is no measurement error in the equation) and the measurement model Ĥ.
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Since the error of the measurement (1.31) is null, it does not correlate to the error of the estimator y1. Thus
the conditions of the standard Kalman filter are fulfilled and one can use the ordinary formula to update the
combined best estimator y1 with this measurement.

In order to shorten the text, let us introduce two matrices A and B:

A = HkC̃k −Dk

B = HkDT
k −Vk

(1.32)

and provide several matrices used later:

Ĥ
T

=

(
HT

k

−I

)
ĤY1 =

(
A, B

)
Y1Ĥ

T
=

(
AT

BT

) (1.33)

According to (1.32) and (1.33) let us write down the equations of filtering (1.11) for the combined state
vector yt:

S =
(

O + ĤY1Ĥ
T
)−1

=
(
AHT

k − B
)−1

K = Y1Ĥ
T

S =

(
AT S
BT S

)
ζ = 0− Ĥy1 = mk −Hkr̃k

y2 = y1 + Kζ =

(
r̃k + AT Sζ
mk + BT Sζ

)
Y2 = Y1 −KĤY1 =

(
C̃k DT

k

Dk Vk

)
−
(

AT S
BT S

)(
A, B

)
=

=

(
C̃k −AT SA DT

k −AT SB
Dk − BT SA Vk − BT SB

)
χ2
k = χ2

k−1 + ζT Sζ

(1.34)

After taking parts which correspond to the state vector rtk from the best estimator {y2, Y2}, one obtains the
desired best estimator {rk, Ck} of the state vector rtk according to all the measurements m1, . . . ,mk:

rk = r̃k + AT Sζ = r̃k +
(

C̃kHT
k −DT

k

)
Sζ

Ck = C̃k −AT SA = C̃k −
(

C̃kHT
k −DT

k

)
S
(

HkC̃k −Dk

) (1.35)

Thus proving the statement.
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1.4.3 Filtration with the best estimator

Occasionally it is necessary to fit a part of the state vector separately and then merge the
fitted part with the rest of the state vector. This task appears when a particle needs to be
fitted to its already reconstructed vertex.

To perform the merging, it is necessary to update the current best estimator with the fitted
part, which plays the role of a measurement of the whole state vector. The error of the
estimator and the error of the measurement are correlated in this situation, furthermore the
correlation matrix is not known. Therefore neither the ordinary equations of filtration (1.11)
nor the developed equations for the correlated measurement (1.23) can be used. This neces-
sitates the development of a special filtering equations for this particular case.

Let the {r̃, C̃, χ̃2} be the best estimator of a state vector rt according to a set of measure-
ments M̃. Let the {m, V} be the best estimator of another state vector mt:

mt = Hrt (1.36)

according to a larger set of measurements M : M̃ ⊂ M.

Then the best estimator {r, C, χ2} of the state vector rt, according to the measurements {M̃,m}
is evaluated as follows:

K = C̃HT
(

HC̃HT
)−1

ζ = m−Hr̃
r = r̃ + K ζ

C = C̃−K
(

HC̃HT −V
)

KT

χ2 = χ̃2 + ζT
(

HC̃HT −V
)−1

ζ

(1.37)

Note that the equations (1.37) differ from the standard filtering equations (1.11) because here
the errors of estimators r̃ and m are correlated.

The proof:

By the conditions of the filtration procedure (1.37), any random vector can be used as a measurement of
the state vector, in particular an estimator of another state vector. The Kalman filter equations need to be
reworked only when the errors of both estimators are correlated, which is the case.

To prove the equations (1.37) let us introduce a measurement {m0,V0}— the best estimator of mt according

to the set of measurements M0 = M − M̃. In the other words, {m0, V0} is the estimator of mt, which, when

updated with {r̃, C̃}, gives the best estimator {m,V}.

To shorten the text, let us introduce several temporary matrices:

A = HC̃HT

S =
(
A+ V0

)−1 (1.38)

The desired estimator {r, C, χ2} is obtained by the filtering r̃ with the measurement m0, using the ordinary
filtration procedure (1.11):

K1 = C̃HT S
ζ1 = (m0 −Hr̃)
r = r̃ + K1 ζ1

C = C̃−K1HC̃
χ2 = χ̃2 + ζT

1 Sζ1

(1.39)

To exclude the unknown quantities {m0, V0} from Eqs. (1.39) it is sufficient to express S and ζ1 through the
known quantities {m,V}.
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Similar to (1.39), the estimator {m, V} can be obtained by filtering {m0,V0} with the measurement {r̃, C̃},
using the extended filtration procedure, described in Section 1.4.1:

K2 = V0(HC̃HT + V0)−1 = V0S
ζ2 = (Hr̃−m0) = −ζ1

m = m0 + K2 ζ2 = m0 −K2 ζ1

V = V0 −K2V0

(1.40)

Transforming the expressions for m and V from Eqs. (1.40):

m = m0 −V0
(
A + V0

)−1
ζ1 = m0 − (V0 + A−A)

(
A + V0

)−1
ζ1

= m0 − (I−A
(
A + V0

)−1
) (m0 −Hr̃)

= Hr̃ + AS ζ1

V = V0 −V0
(
A + V0

)−1
V0 = V0 − (V0 + A−A)

(
A + V0

)−1
V0

= V0 − (I−A
(
A + V0

)−1
)V0 = A

(
A + V0

)−1
(V0 + A−A)

= A−A
(
A + V0

)−1
A = A−ASA

(1.41)

one obtains the required expressions for ζ1 and S:

ζ1 = S−1A−1 (m−Hr̃)
S = A−1 (A−V) A−1 (1.42)

Now one can substitute ζ1 and S from (1.42) into (1.39):

r = r̃ + C̃HT Sζ1 = r̃ + C̃HT A−1 (m−Hr̃)

C = C̃− C̃HT SHC̃ = C̃− C̃HT A−1 (A−V) A−1HC̃

χ2 = χ̃2 + ζT
1 Sζ1 = χ̃2 + (m−Hr̃)T A−1 (A + V) A−1 (m−Hr̃)

= χ̃2 + (m−Hr̃)T (ASA)−1 (m−Hr̃)

= χ̃2 + (m−Hr̃)T (A−V)−1 (m−Hr̃)

(1.43)

(In the last equation, the statement ASA = A−V is taken from (1.41) )

After introducing a matrix K and a vector ζ (by analogy to the notations of the ordinary filtration):

K = C̃HT
(

HC̃HT
)−1

ζ = m−Hr̃
(1.44)

and substituting them into Eqs. (1.43), one obtains the required equations of filtration (1.37). Thus proving

the statement.
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1.4.4 Subtraction of a measurement

Sometimes it is necessary to remove a wrong measurement which was previously added to
a state vector. The procedure will be called subtraction of the measurement. This problem
appears in the primary vertex reconstruction where some of the tracks are first contributed
to the vertex fit, but afterwards they are recognised as non-primary tracks and have to be
excluded from the already fitted vertex.

Equations for the measurement subtraction look like inverse filtering equations. Using nota-
tions of the filtering equations (1.11) but avoiding indices, let us extract pre-filtered values
{r̃, C̃, χ̃2} from the measurement {m, V} and the filtered values {r, C, χ2}:

K = CHT (V−HCHT )−1

ζ = (m−Hr)
r̃ = r−K ζ

C̃ = C + KHC

χ̃2 = χ2 − ζT (V−HCHT )−1ζ

(1.45)

Remark: the equations above are only valid when the matrix of measurement errors V is
invertible (which is normally the case).

The proof:

Let us recall the equation of filtration (1.11) of the covariance matrix:

C = C̃− C̃HT (V + HC̃HT )−1HC̃ (1.46)

From (1.46) it follows that:

HC = HC̃−HC̃HT (V + HC̃HT )−1HC̃

= HC̃−
(

HC̃HT + V−V
)(

V + HC̃HT
)−1

HC̃

= V
(

V + HC̃HT
)−1

HC̃ ;

(1.47)

HCHT = V
(

V + HC̃HT
)−1

HC̃HT

= V
(

V + HC̃HT
)−1 (

HC̃HT + V−V
)

= V−V
(

V + HC̃HT
)−1

V

(1.48)

Equations (1.47) and (1.48) give the following expressions for the pre-filtered covariance matrix C̃:(
V + HC̃HT

)−1

= V−1
(
V−HCHT

)
V−1 (1.49)

HC̃ = V
(
V−HCHT

)−1
HC

C̃HT = CHT
(
V−HCHT

)−1
V

(1.50)

Substituting (1.49) and (1.50) into expression (1.46):

C = C̃−
(

CHT
(
V−HCHT

)−1
V
) (

V−1
(
V−HCHT

)
V−1

) (
V
(
V−HCHT

)−1
HC
)

= C̃− CHT
(
V−HCHT

)−1
HC;

C̃ = C + CHT
(
V−HCHT

)−1
HC

(1.51)

Thus the expression for the covariance matrix C̃ in the statement (1.45) is proven.

Now let us recall the equation of filtration (1.11) for the state vector:

r = r̃ + C̃HT
(

V + HC̃HT
)−1

(m−Hr̃) (1.52)

17



Multiplying the state vector by H:

Hr = Hr̃ +
(

HC̃HT + V−V
)(

V + HC̃HT
)−1

(m−Hr̃)

= m−V
(

V + HC̃HT
)−1

(m−Hr̃)
(1.53)

and taking into account (1.49) one gets the expression for (m−Hr̃):

(m−Hr̃) =
(

V + HC̃HT
)

V−1 (m−Hr)

= V
(
V−HCHT

)−1
(m−Hr)

(1.54)

Substitution of (1.49), (1.50) and (1.54) into the expression for the filtered state vector (1.52):

r = r̃ + C̃HT
(

V + HC̃HT
)−1

(m−Hr̃)

= r̃ +
(

CHT
(
V−HCHT

)−1
V
) (

V−1
(
V−HCHT

)
V−1

)(
V
(

V + HC̃HT
)−1

(m−Hr)

)
= r̃ + CHT

(
V−HCHT

)−1
(m−Hr) ;

r̃ = r− CHT
(
V−HCHT

)−1
(m−Hr)

(1.55)

proves the statement (1.45) for the state vector.

Expression for the pre-filtered χ̃2 value is proven in the same manner, by substitution of (1.49) and (1.54) into
the χ2-part of the filtering equation (1.11):

χ2 = χ̃2 + (m−Hr̃)T (V + HC̃HT )−1 (m−Hr̃)

= χ̃2 +
(

(m−Hr)T
(
V−HCHT

)−1
V
) (

V−1
(
V−HCHT

)
V−1

) (
V
(
V−HCHT

)−1
(m−Hr)

)
= χ̃2 + (m−Hr)T

(
V−HCHT

)
(m−Hr) ;

χ̃2 = χ2 − (m−Hr)T
(
V−HCHT

)
(m−Hr)

(1.56)

Thus proving the statement (1.45).
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1.4.5 Constrained fit with the Kalman filter

In some cases, the estimator of the state vector can be improved by taking into account several
assumptions on the state vector. These assumptions are expressed in terms of constraints (or
penalties) on the state vector parameters. Constraints are used, for example, in the secondary
vertex fit when the fitted mother particle is required to have a certain invariant mass (so-called
mass constraint) or to be pointed to the primary vertex (topological constraint) [2, 12, 7, 11].

A widely used method for applying constraints on the state vector is the Lagrange method [2,
11]. In this Section first the Lagrange method is described. Then it is proven that the
constraints can be treated also by the Kalman filter as ordinary measurements of the state
vector, given the same result as the Lagrange method.

Lagrange method

Let us denote the state vector before the addition of a penalty as r and after a penalty as rc,
and the covariance matrices as C and Cc respectively.

A constraint is an equation on the state vector parameters that has to be satisfied:

H · rc = 0 (1.57)

This kind of penalty will be called hard constraint. For determining rc it is necessary to
minimise χ2(rc) with the fulfilment of (1.57):

{
χ2(rc) = (rc − r)TC−1(rc − r) −→ min

H · rc = 0
(1.58)

In the Lagrange method a new function χ2
L is constructed:

χ2
L(rc,µ) = χ2(rc) + 2µTHrc −→ min (1.59)

where µ is called Lagrange multiplier.5 The function χ2
L is then minimised with respect to

rc and µ.

The function χ2
L satisfies two conditions:

• χ2
L coincides with χ2 when the constraint is fulfilled;

• the constraint H · rc = 0 is fulfilled at the point of the χ2
L minimum.

The χ2
L minimisation:

To minimise χ2
L one uses partial derivatives of χ2

L with respect to rc and µ:

1

2

∂χ2
L

∂rc
= C−1(rc − r) + HTµ = 0 (1.60)

1

2

∂χ2
L

∂µ
= Hrc = 0 (1.61)

Multiplying the first equation with HC and subtracting the second equation yields

−Hr + HCHTµ = 0 (1.62)

5The coefficient 2 is undertaken to simplify further formulae.
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Assuming the matrix HCHT is non-singular one can express µ:

µ = (HCHT )−1Hr (1.63)

and substituting into (1.60) one obtains the desired state vector rc:

rc = r− CHT (HCHT )−1Hr (1.64)

Let us denote
K = CHT (HCHT )−1 (1.65)

Since rc = (I−KH)r, the covariance matrix Cc is equal

Cc = (I−KH)C(I−KH)T (1.66)

Let us rewrite and simplify it:

Cc = (I−KH)C− (C(KH)T −KHC(KH)T ) (1.67)

Taking into account the fact that

KHC(KH)T = KHCHT KT = CHT (HCHT )−1HCHT (HCHT )−1HC

= CHT (HCHT )−1HC = C(KH)T

one obtains
Cc = (I−KH)C (1.68)

Substituting (1.64) into (1.57), one obtains the χ2(rc) value:

χ2(rc) = (CHT (HCHT )−1Hr)T C−1(CHT (HCHT )−1Hr)

= (Hr)T ((HCHT )−1HC)C−1(CHT (HCHT )−1)(Hr)

= (Hr)T (HCHT )−1(Hr)

(1.69)

Summarising all the results:
K = CHT (HCHT )−1

rc = r−KHr

Cc = C−KHC

χ2
c = χ2 + (Hr)T (HCHT )−1(Hr)

(1.70)

Treatment of constraints with the Kalman filter

A more convenient and general way of adding penalties to the state vector is the use of the
Kalman filter [12, 7, 11]. Let us first consider the case when the penalty is applied with a
certain error (soft constraint):

H · rc + η = 0 (1.71)

Here the random variable η is unbiased and has a known covariance matrix Vc:

Vc ≡< η ηT > (1.72)

As can be seen from (1.71), the soft constraint is a measurement of the state vector with the
value of measurement 0, the measurement matrix H, and the covariance matrix of error Vc.
Therefore, the best estimator of the state vector after applying the soft penalty is given by
the equations (1.11) of the Kalman filter:

K = CHT (Vc + HCHT )−1

rc = r−KHr
Cc = C−KHC

χ2
c = χ2 + (Hr)T (Vc + HCHT )−1(Hr)

(1.73)
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One can see that Eqs. (1.73) of the Kalman filter coincide with Eqs. (1.70) of the Lagrange
method if Vc = O. Therefore, the equations of the Kalman filter remain valid also when
Vc = O.

Thus, the Kalman filter method is the general method to impose penalties, where the hard
constraint is treated as a particular case of the soft constraint, being considered as a mea-
surement with the null error.

In the case of nonlinear constraints the equation of penalty first is linearised as any other
measurement, then the filtering equations (1.73) are applied.
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Chapter 2

Track fit with the Kalman filter

The most typical application of the Kalman filter in high-energy physics is a fit of particle tra-
jectories, called tracks. This is an interesting and non-trivial task where one can appreciate
all the advantages of the method.

When a charged particle moves in a detector, its trajectory gets under the influence of several
physical effects, such as the multiple scattering in the detector material, the energy losses, and
a non-homogeneity of the magnetic field. These various effects make the fit of the trajectory
complicated. With the LSM method it is practically impossible to take all the effects into
account, especially the multiple scattering effect, as the calculations become too complicated
and too slow. On the contrary, these effects can be easily treated by the Kalman filter
method, thus making use of this method natural for the track fit.

2.1 The principles

The general principles of the track fit can be well understood by an examination of the simple
fit of a two-dimentional straight line considered below.

Track model

To perform the fit it is necessary, first of all, to create the track model — a set of parameters
that describes the particle trajectory. It is preferable1 to choose a track model that:

• explicitly contains coordinates of some reference point on the described trajectory;

• allows any point of the trajectory to be a reference point.

Having this kind of track model, the Kalman filter has a possibility to change the reference
point during the process of fitting, which makes the fit simple. The change of the reference
point called extrapolation, propagation or transport procedure.

For the straight line track the model

{x, y, t} (2.1)

1Use of this kind of model is very convenient but is not necessary — any track model can be used.
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presented below satisfies the criteria and will be used in the considering example. In this
model, the trajectory is defined as the set of points {xp, yp} which satisfy the equation:

yp = t · (xp − x) + y (2.2)

The model is presented in Figure 2.1. The first parameter x is used as a fixed reference, while
the pair {y, t} defines the trajectory — y coordinate and the slope of the track at the given x
reference. The state vector will be:

r =

(
y
t

)
(2.3)

The parameter x is not included in the state vector since it is a reference which can be chosen
arbitrarily and thus can not be fitted. In the other words: the parameter x is not a property
of the trajectory but a property of the model.

Extrapolation

Once the track model is chosen it becomes necessary to describe the extrapolation procedure
for the model. In the example considered the extrapolation of the state vector from the
reference x to another reference x̃ is defined by:

x̃ = x+ ∆x
ỹ = y + t ·∆x
t̃ = t

(2.4)

One can see that after the extrapolation the new set of parameters {x̃, ỹ, t̃} describes the
same trajectory as the original parameters {x, y, t}. Formulae (2.4) implies the simple ex-
trapolation formula for the state vector (2.3):

r̃ = Ar

A ≡
(

1 x̃− x
0 1

)
(2.5)

In real applications the extrapolation is usually not that trivial. When a particle has to be
transported in a magnetic field, the extrapolation becomes the most complicated part of the
track fit.
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Measurements

Next, the measurements should be described for the chosen track model (2.3). In the example
considered, the y coordinate of the track will be measured at various x positions {x1, . . . , xn},
as it is shown in Figure 2.2. These measurements are one-dimensional, with the measurement
values mk and the measurement errors σ2k. Supposing the track is parametrised at some x,
the measurement model is:

mk = Hkr
t
k + ηk

Hk ≡ (1, xk − x)
σ2k ≡ cov(ηk) = < η2k >

(2.6)

With the Kalman filter it is possible to simplify the measurement model (2.6) by use of
the extrapolation step (1.7) of the algorithm. This is a useful advantage of the method. It
allows one to separate the transport of a particle in the space from the measurement of its
position, simplifying the calculations. In order to use this advantage, the track estimator will
be preliminary extrapolated to the position xk of each measurement. Under this convention
the measurement model (2.6) becomes trivial:

Hk ≡ (1, 0) (2.7)

as the further calculations do.

Noise in the model

To imitate the multiple scattering in detectors, the track slope will be randomly changed at
each plane x = xk (detector planes):

ttk = ttk−1 + νk
qk ≡ cov(νk) = < ν2k >

(2.8)

as it is shown in Figure 2.2.

It is important to note that the presence of kink points (2.8) deforms the track. In this
situation the chosen track model can not describe the real trajectory anymore.

To describe the whole trajectory — before and after the kink point — one needs to know how
it changes at this point. It implies the inclusion of extra parameter νk to the model. As a
result, the state vector will grow with the number of kink points. Moreover, the calculations
will grow quadratically making the fit implementation very slow.

The problem of kink points is solved in an elegant way by use of a feature of the Kalman
filter. Considering the kink point νk as a noise in the track model, the algorithm processes
this noise at the extrapolation step; the noise covariance is simply added to the covariance
matrix of the state vector. Though the value of νk is not fitted in this approach, the fit result
(being the optimal estimator) is equivalent to the result of a complete fit with all the kink
points included.

The ability to treat a noise in the model is the main advantage of the Kalman filter method.
It lets the track model have as many kink points as the physical trajectory has, without the
overgrow of the state vector or any complication of the algorithm.
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The algorithm

When the track model, the extrapolation procedure, the measurements and the noise are
described one can apply the Kalman filter algorithm (Sec. 1.2) for the track fit.

Acording to (2.4, 2.6, 2.8), for the presented example the following matrices should be substi-
tuted to the algorithms equations (1.10) and (1.11):

Ak =

(
1 xk − xk−1
0 1

)

Qk =

(
0 0
0 qk

)

Hk =
(

1 0
)

Vk = σ2k

(2.9)

In the application to the track fit, the algorithm scheme (Sec. 1.2) is the following:

First, all the measurements are ordered along the expected trajectory. In the case considered
they are ordered in x direction.2

Second, some arbitrary initial values are set to the track estimator (initialisation step (1.9)
of the Kalman filter). The initial errors in the covariance matrix should reflect the uncertainty
of the initial parameters. Therefore it is preferable to set the initial parameters close to the
expected ones in order to keep the numbers in the covariance matrix reasonably small, in
order to avoid numerical problems.

After the track is initialised, the fit procedure starts. The initial estimator is extrapolated to
the first measurement and the multiple scattering is added to the covariance matrix (extrap-
olation step (1.10)). Then the estimator is updated with the first measurement (filtration
step (1.11)). After that the estimator is extrapolated to the position of the second detector
and the procedure repeats for the second measurement, and so on.

The fit procedure is schematically shown in Figure 2.3. One can see that the current track
estimator rk is initially very far from the real track, but gradually improves while process-
ing the measurements. The final best estimator of the track parameters is obtained after
processing the last measurement.

2The order of the measurements is only important in the case of presence of the multiple scattering or other
random contributions to the trajectory. Without these random contributions the fit result does not depend
on the order of measurements.
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While the actual conditions (the track model, the extrapolation formula, the measurements
and the noise) differ in different experiments, the general scheme of the track fit presented
above always stays the same.

Nonlinearity

When applying the above algorithm to a real experiment, two problems arise:

- First, the track extrapolation is usually nonlinear.

- Second, the noise covariance matrix and, sometimes, the measurement covariance ma-
trix are not constant but depend on the track parameters.

To resolve these problems one estimates roughly track parameters and uses them to calculate
the covariance matrices and to linearise the extrapolation formula. This estimate for track
parameters is called linearisation point and will be marked as rlin.

The closer the linearisation point to the real track is, the better the fit result. Therefore the
most precise information about the track should be put to the linearisation point.

There are two types of linearisation — implicit and explicit.

The implicit linearisation, being commonly used, sets the linearisation point to the current
track estimator (rlink = rk). Thus the linearisation point does not explicitly appear in the
equations. The disadvantage of this approach is that it can be very imprecise. Since the
estimator rk is defined by only k measurements, it can be far away from the real trajectory,
as one can see in Figure 2.3. Moreover, the linearisation point can not be improved by using
of better initial parameters, because the initial information is lost already at the second step.

The more accurate approach is the explicit linearisation, where the linearisation point rlin is
explicitly set. This approach allows one to iterate the fit, using the best estimate from the
previous iteration as the linearisation point for the next iteration. The explicit linearisation
makes the fit accurate and does not cost extra time or complexity within one iteration.

The equations for the Kalman filter with explicit linearisation point can be found in sec-
tion 1.3.

Check of the fit quality

The quality check is performed on simulated tracks by comparing the fitted track parameters
to the simulated ones. For each parameter two histograms are produced: the residual and
the pull.

The residual is the difference between the fitted and the simulated value. The pull is the
same difference but normalised to the expected error, taken from the covariance matrix of
the fitted track. It shows how the expected error corresponds to the real error. For every
parameter p:

residual ≡ p− pt, pull ≡ (p− pt)/σp (2.10)

The residual has the dimension of the parameter, the pull is dimensionless. The dispersion
of the residual is called resolution. Since the errors of the fitted track are defined by
measurement errors and amount of material, the resolution characterises the detector rather
than the fit algorithm.
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Figure 2.4: STS + MVD detector system in CBM.

When the algorithm works ideally, the mean value of the residual and the pull must be 0
while the dispersion of the pull should be 1. Deviations from these values show the quality
of the fit.

2.2 Track fit in CBM

2.2.1 Overview

CBM is a fixed target experiment where charged particles are emitted from a target within a
narrow cone in the beam direction. To separate the particles in the space, a strong magnetic
field is introduced right after the target. The tracking system is placed inside the magnet;
thus the reconstruction of events is performed in the z-region 5 cm–1 m (see Fig. 2.4). The
tracking detectors are designed highly granular and to have low mass in order to track up to
1000 particles in a single event and to achieve a momentum resolution down to 1%.

The main tracking detector is the Silicon Tracking System. It consists of eight micro-strip
stations. Each strip sensor is double-sided; the front and the back sensors are rotated by a
stereo angle of ±7.5 and have a strip pitch of 60µm. The silicon thickness is 300µm.

An additional Micro-Vertex Detector (MVD) can be optionally placed in the target region.
The MVD is a pixel detector based on Monolithic Active Pixel Sensors (MAPS). It consists
of two stations, both have a pixel resolution < 5µm and a material thickness of about 50µm.

The detector geometry is illustrated in Figure 2.4. The granularity of the detectors is so fine
that the uncertainty of fitted track parameters is not defined by the measurement resolution,
but is dominated by the multiple scattering in the material.

The track model used is typical for fixed-target experiments:

z, {x, y, tx, ty, q/p} (2.11)

where x, y, z are the track position, tx ≡ dx/dz, ty ≡ dy/dz are the slopes, and q/p is the
particle charge divided by its momentum. The z coordinate is a reference, other parameters
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are to be fitted. This parametrisation is convenient for the track extrapolation, since the
target and the detectors are referenced by the z coordinate.

The track fit is performed by the scheme described in Section 2. The measurement model
and the description of the material are standard; details of the implementation can be found
in [12].

A feature of the fit is extrapolation of tracks in a magnetic field. Due to the geometry of
the magnet, the magnetic field is strongly non-homogeneous and no simple extrapolation can
be applied. Therefore a special analytic formula was developed for the extrapolation, which
allows one to vary the complexity of calculations, thus the CPU time, in accordance with
the required precision of extrapolation. The standard Runge-Kutta extrapolation (described
further) was also implemented and is used as a reference. Details of the track extrapolation
are described in the next section.

Resolution Pull
δp/p[%] x[µm] y[µm] tx[·10−3] ty [·10−3] q/p x y tx ty

0.64 27 24 1.5 1.5 1.18 1.05 1.00 1.02 1.00

Table 2.1: Resolutions and pulls (normalised residuals) of the fitted track at the event vertex.

The performance of the fit is given in Table 2.1. One can see that the momentum pull is only
18% underestimated3 and the other pulls are close to ideal.

The developed track fit is used for the event reconstruction in all the detectors, including
the muon chambers and the transition radiation detector, and for the physical analysis. It is
heavily used by the on-line reconstruction, which was significantly accelerated when a special
SIMDised version of the fit was developed (the SIMDised track fit is described in Section 4.2).

2.2.2 Track extrapolation in an inhomogeneous magnetic field

This Section gives an overview of the developed extrapolation method which is used in CBM.
A detailed description of the method can be found in [10, 14].

The motion of a charged particle in a magnetic field obeys the differential equation, defined

3The underestimation of the momentum error is typical. The track momentum is the parameter which is
most sensitive to all local uncertainties in the fit, because it is an invariant parameter for the whole track.
During the fit, insignificant uncertainties in the momentum estimation are not neglected by multiple scattering,
but are summed up along the trajectory. That is why the estimation of the momentum error is usually less
accurate than the estimation of the other errors.

Specifically in the CBM fit, the reason for the underestimated momentum error is underestimation of the
multiple scattering effect. For the multiple scattering the standard approximate formula [12] is used, which
describes only the central part of the distribution of the scattering angle. Since the track error is a weighted
sum of gaussian measurement errors and non-gaussian scattering angles, the distribution of the track error is
a combination of these two different distributions. As a result, the tails from the scattering angle distribution
appears in the central part of the track error distribution. This general effect becomes particularly visible in
the silicon detectors, where the multiple scattering significantly contributes to the track error.
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by the Lorentz force. For the CBM track model (2.11) the equation of motion becomes:

dr(z)

dz
=




tx
ty

κ · (q/p) ·
√

1 + t2x + t2y ·
(
txty ·Bx −

(
1 + t2x

)
·By + ty ·Bz

)

κ · (q/p) ·
√

1 + t2x + t2y ·
( (

1 + t2y
)
·Bx − txty ·By − tx ·Bz

)

0




(z) (2.12)

where the dimensions are: the particle momentum p[GeV/c], the signed charge q[e], the mag-
netic field B[kG] and the coefficient κ[(GeV/c)kG−1cm−1] = 2.99792458 · 10−4.

There are several methods [2, 16] of solving the equation of motion in an inhomogeneous
magnetic field. The one most widely used is the Runge-Kutta extrapolation.4 This method
extrapolates a track r to another z position by solving the ordinary differential equation,
given by (2.12):

dr(z)

dz
= f(z, r) (2.13)

with the fourth-order Runge-Kutta method.5 The equation is solved numerically in four
iterations. The derivatives of the extrapolated parameters are also calculated iteratively.

The method provides a high quality of the track extrapolation in an inhomogeneous magnetic
field. It is implemented in CBM and is used as a reference.

Although the Runge-Kutta extrapolator is precise, its precision can not be increased or
decreased when necessary, and its iterative structure is not optimal for the CPU computation.
An additional disadvantage is that it does not provide any formula for the extrapolated track
parameters, since it is a numerical method.

At the same time, the on-line tracking requires a fast and simple transport routine offering the
possibility of varying the extrapolation precision in order to reach a deliberate compromise
between the speed and the quality of the track fit at different stages of the reconstruction.
Apart from the track fit, the track finder also needs a simple polynomial track model to group
measurements into tracks.

For these purposes an exact analytic extrapolation formula was developed. In contrast to
the iterative numerical methods the proposed formula performs a direct calculation of the
extrapolated parameters:

tx(ze) = tx(z0) +
n∑
k=1

∑
i1,...,ik=x,y,z

txi1...ik (z0) ·
(
ze∫
z0

Bi1(z1) . . .
zk−1∫
z0

Bik(zk)dzk . . . dz1

)

ty(ze) = ty(z0) +
n∑
k=1

∑
i1,...,ik=x,y,z

tyi1...ik (z0) ·
(
ze∫
z0

Bi1(z1) . . .
zk−1∫
z0

Bik(zk)dzk . . . dz1

)

x(ze) = x(z0) +
ze∫
z0

tx(z)dz

y(ze) = y(z0) +
ze∫
z0

ty(z)dz

(2.14)
whereas the coefficients txi1...ik(z0), tyi1...ik(z0) are functions, calculated from tx(z0), ty(z0)
at the initial position z0, while the magnetic field is integrated along the particle trajectory.

4The fourth-order Runge-Kutta method is used by GEANT, for example.
5Fourth-order method means that the precision of the method depends on the step size to the fifth power.

Runge-Kutta methods of any order exist but the fourth-order method is the optimal one with respect to CPU
time consumption.
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The explicit view of the coefficients is given in [10]. The extrapolation has an error in the
order of (n+ 1):

O
(
(κB(q/p)(ze−z0))n+1

(n+1)!

)
(2.15)

The analytic formula has been derived under very general assumptions on a magnetic field.

It expands the extrapolated track parameters in a power series of the magnetic field com-
ponents. Such a representation gives the possibility to evaluate only those terms which are
significant with respect to a chosen precision making the transport routine fast and precise.

As the simplest case of the formula a parabolic track model for pattern recognition can be
constructed [10] which takes into account local inhomogeneity of the magnetic field.

The analytic formula is also used in the final track fit procedure where high accuracy (similar
or even better than provided by the fourth-order Runge-Kutta method) is crucial.

Despite the fact that the general formula is a bit cumbersome, it becomes simple in the
practical implementation where a particular magnetic field makes many of the field integrals
negligible.

Details of implementation

The field integrals in (2.14) are calculated along the true particle trajectory which is un-
known. To solve this problem, the trajectory is first approximated using the second-order
formula. Then the field values for a given z are taken at the (x, y) position of the approximate
trajectory:

(Bx(z), By(z), Bz(z)) ≡ B(xtrue(z), ytrue(z), z) = B(xapprox(z), yapprox(z), z) (2.16)

More precise approximation is not necessary, since the CBM field is smooth enough in the
XY projection at a given z.

Performance

The analytic formula has been implemented in the Kalman filter routine [12] and tested
on 1000 events of central Au+Au collisions at 25 AGeV beam energy in the asymmetric
inhomogeneous magnetic field. Table 2.2 contains results of tests using different extrapolators.
Residuals are given as RMS of the distributions, while values of pulls are RMS of the Gaussian
fits to the normalised residuals distributions.

The first line of the Table gives residuals and pulls of the track parameters obtained using
the fourth-order Runge-Kutta method as the extrapolator. The fitting routine based on
the Kalman filter with the fourth-order Runge-Kutta extrapolator has been well tested and
provides good estimations of the track parameters. This can be seen, for instance, from the
pull distributions. All the distributions have a Gaussian shape with RMS close to unity. Only
the momentum estimation can still be improved and has to be further analysed in the future.

The simulation program GEANT uses the fourth-order Runge-Kutta extrapolator to trans-
port particles through the detector volume. It is not possible to reproduce the Monte Carlo
data due to measurement errors, different step size and other effects, but it is reasonable
to expect that the Runge-Kutta extrapolator will provide the best (or close to the best)
reconstruction results on simulated data.

Thus the existing Kalman filter fitting routine with the Runge-Kutta extrapolator can be
used as a good reference for the tests.
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Figure 2.5: Profile of the magnetic field components.

Residuals Pulls

Method δp/p x y tx ty q/p x y tx ty
Runge-Kutta–4 0.64 27 24 1.5 1.5 1.17 1.05 1.01 1.02 1.00
Analytic–3 0.64 27 24 1.5 1.5 1.18 1.05 1.00 1.02 1.00
Analytic–2 0.68 27 24 1.5 1.5 1.30 1.08 1.01 1.03 1.00
Analytic–1 0.94 30 25 1.5 1.5 1.90 1.37 1.03 1.10 1.02

Analytic–light 0.64 27 24 1.5 1.5 1.19 1.05 1.00 1.02 1.00
Analytic–central 2.49 38 25 1.7 1.5 3.77 2.23 1.03 1.33 1.00

LSM triplet 3.00 38 23 1.7 1.5 1.46 1.74 1.85 3.18 4.87

Table 2.2: Residuals (δp/p[%], (x, y)[µm], (tx, ty)[·10−3]) and normalised residuals (pulls) of
the track parameters after the Kalman filter fitting routine using different extrapolators.
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Figure 2.6: The magnetic field components at the beam line.

The analytic formula (2.14) expands the extrapolated track parameters in a power series of the
magnetic field components. Having a small parameter (2.15) one can neglect the higher-order
terms in the series. For instance, using terms up to the third order the extrapolator should
be similar to the fourth-order Runge-Kutta method. Results (see the Table) of fitting with
this Analytic–3 extrapolator demonstrate that the performance is practically identical to the
Runge-Kutta method. Keeping only the terms up to the second order will give the Analytic–2
extrapolator which provides slightly worse estimations of the track parameters. Finally, the
Analytic–1 extrapolator shows a further decrease of the resolution, but still provides good
estimations.

cx = 1.13e-04 cy = 5.64e-03 cz = 3.09e-04

cxx = 3.72e-07 cxy = 2.57e-06 cxz = 1.25e-06
cyx = 3.95e-06 cyy = 2.39e-04 cyz = 3.04e-05

czx = 5.21e-07 czy = 4.64e-06 czz = 3.74e-06

cxxx = 5.15e-09 cxxy = 2.47e-08 cxxz = 8.73e-09
cxyx = 3.36e-08 cxyy = 3.83e-07 cxyz = 6.57e-08
cxzx = 5.28e-09 cxzy = 3.20e-08 cxzz = 1.78e-08
cyxx = 4.81e-08 cyxy = 5.46e-07 cyxz = 9.34e-08
cyyx = 7.67e-07 cyyy = 5.85e-05 cyyz = 3.75e-06
cyzx = 1.30e-07 cyzy = 1.35e-06 cyzz = 4.03e-07
czxx = 8.33e-09 czxy = 3.35e-08 czxz = 1.47e-08
czyx = 4.76e-08 czyy = 8.63e-07 czyz = 1.33e-07
czzx = 1.59e-08 czzy = 9.91e-08 czzz = 5.49e-08

Table 2.3: Mean values of the field integrals of the Analytic–3 extrapolator.

Because in the power series terms of the same order differ significantly from each other,
for an efficient realisation of the analytic formula one keeps only a few major terms within
the same power. There are two possible ways to analyse the field integrals: estimating
them from the formula or evaluating them numerically. Results of the numerical evalua-
tion of the field integrals of the Analytic–3 extrapolator are given in Table 2.3. Based on
the Table one can construct a light extrapolator with only 6 the most important integrals
(cx, cy, cz, cyy, cyz, cyyy). Importance of these particular coefficients can be understood
from relative comparison of the magnetic field components (see Figures 2.5 and 2.6). As
expected, the Analytic–light extrapolator used in the Kalman filter fitting routine provides
practically the same results as the full Analytic–3 extrapolator (see Table 2.2) but is much
simpler.

The Analytic–central extrapolator takes the field integrals along the beam line, thus forcing
the magnetic field to be constant at each detector plane and equal to the central value at z
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Figure 2.7: Geometry of a TPC sector.

position of a detector. With this approximation the field integrals are calculated only once
for the given positions of the detectors making the algorithm extremely simple and fast. The
performance of the Kalman filter fitting routine with the Analytic–central extrapolator (see
Table 2.2) shows that this extrapolator is acceptable for the track finding stage. It allows
reconstruction of the particle momentum with a relative error of 2.5%, while the position error
is about twice as high as for the Runge-Kutta method. On the other hand, together with
the decrease of the precision of the track parameter estimation the quality of the covariance
matrix also degrades (see pulls part of the Table). One can see in the Table that errors of
the x position and the momentum are significantly underestimated.

Note that the normalised residuals (pulls) significantly correlate with the quality of the meth-
ods as clearly seen in Table 2.2. Without pulls it is not possible to judge whether or not the
maximum precision of the reconstruction has been reached.

2.3 Track fit in ALICE High Level Trigger

The main tracking detector in ALICE is the Time Projection Chamber (TPC) detector, which
is a large cylindrical drift detector with two readout planes at the end-caps. The ionisation
electrons drift towards the readout end-caps which are subdivided into 36 trapezoidal readout
sectors. The geometry of a TPC sector is illustrated in Figure 2.7. The measurements
provided by the TPC are spatial points placed at certain x positions of the TPC rows. The
ALICE magnetic field is oriented along the Z axis. The field value is close to a constant in
the main tracker, therefore particle trajectories are helices.

The ALICE track model is chosen with respect to the cylindrical geometry of the experiment.
Tracks have local (with respect to a current TPC sector) parametrisation with 5 variable
parameters at a certain x position:

x, {y, z, sinφ, λ, q/pt} (2.17)
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with the current track position defined by x, y, z, the sin of the polar angle φ, the tan of the
azimutal angle called λ, and the signed inverse transverse momentum q/pt.

Resolution Pull
δpt/pt[%] y[mm] z[mm] sinφ[·10−3] λ[·10−3] q/pt y z sinφ λ

0.74(+0.21) 0.39 0.44 1.48 0.97 1.29(+0.37) 1.23 0.93 1.22 0.71

Table 2.4: Resolutions and pulls (value(±bias)) for the standard ALICE track fit.

The off-line track fit in ALICE is performed by the conventional Kalman filter. The same
fit was implemented in the High Level Trigger as a first approach. Although the quality of
the standard ALICE track fit is considered to be acceptable, it is not perfect. In Table 2.4
one can see that there is a significant bias in the reconstructed transverse momentum (pt),
which is the most important parameter for physics. Also the pulls shows that the standard
fit procedure can be improved.

For this propose the standard fit has been investigated. As the track fit is a complicated
process, it is necessary to isolate different parts of the procedure and to test each part
individually. Therefore the investigation of the fit has been split into several steps. In the
first step the fit task was maximally simplified:

• Use of an ideal track finder. The measurements are assigned to tracks with respect to
their Monte-Carlo id’s.

• Use of ideal measurements. In order to protect the fit from possible problems in the
TPC cluster finder, the TPC clusters are replaced by corresponding Monte-Carlo points.
The points are smeared by ideal Gaussian.

• Use of a constant 5 kG magnetic field.

• No physical effects in simulation. In particular, no multiple scattering, no energy losses
and no energy loss fluctuations.

• Use of the Monte-Carlo trajectory for the initial approximation.

• Use of the Monte-Carlo trajectory as a linearisation point for the transport equation.

In the transport routine some uncertainties were found already in the first step. After the
problems were resolved all the pulls became ideal, as can be seen in the first row of Table 2.5.
The second step was a test of stability of the track model with respect to uncertainty of the
linearisation point:

• Use of non-ideal linearisation. The fit is performed in several iterations, using the fitted
trajectory as a linearisation point for the next iteration.

The second step shows biases of up to 4% in both pulls and resolutions. The problem was
solved by developing a second-order correction, described in the next Subsection. The pulls
before and after applying the correction are presented in Table 2.5. One can see in the Table
that the correction reduces the biases significantly. The correction found is very general and
may be applied for any linearised equation in any fit routine.

Having fit mathematics that works correctly, the non-constant magnetic field was introduced
in the next step. Then all the physical effects were included one after another. There were
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q/pt y z sinφ λ

Ideal linearisation 1.001(-0.000) 1.001( 0.001) 1.001(-0.002) 1.001( 0.000) 1.002( 0.002)
Real linearisation 1.014( 0.043) 1.003( 0.002) 1.003(-0.006) 1.009(-0.025) 1.002( 0.012)
After correction 1.005( 0.002) 1.002(-0.002) 1.001(-0.008) 1.004( 0.004) 1.002( 0.005)

Table 2.5: Pulls (value(±bias)) for non-ideal linearisation before and after applying the
second-order correction to the transport equation.

some corrections applied in these steps as well. In particular, it was found that applying
the energy loss before extrapolation produces a notable bias, which can be fixed by applying
the energy loss in the middle of the extrapolated trajectory. For this propose the sequence
”energy loss / extrapolation” was changed to ”half energy loss / extrapolation / half energy
loss”.

q/pt y z sinφ λ

standard fit 1.29(+0.368) 1.23 0.93 1.22 0.71
new HLT fit 1.02(+0.001) 1.01(+0.003) 1.03(+0.013) 1.01(-0.010) 1.03(-0.019)

Table 2.6: Pulls for the new HLT track fit.

The final result is presented in Table 2.6. One can see that all the pulls are close to ideal.
The resolutions are not shown in the Table because for a moment the new fit has slightly
different input due to use of ideal clusters and the resolutions may not be directly compared
with the standard fit.

The actual HLT fit includes:

• The explicit linearisation of equations, described in Section 2.

• A more accurate extrapolation formula.

• A more accurate energy loss formula inspired by GEANT.

• Smooth energy loss correction, described above.

• A more accurate multiple scattering formula [17].

• A second-order correction of equations, described in the next Section.

However, the investigation is not finished and the new HLT fit is at the development stage.
The next steps will involve applying the real TPC clusters instead of ideal measurements
(which could require some work on the calibration and on the clusterfinder) and porting the
developed code to the HLT reconstruction repository (which necessarily includes speed-up
and simplification of the code).

2.3.1 Second-order correction for linearised operators

The Kalman filter theory assumes that all operators in a fit are linear. But in practice the
operators are nonlinear and have to be linearised before the fit mathematics can be applied.
For this reason the quality of the fit always depends on the linearisation uncertainty.
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Although the uncertainty of the linearisation is usually known, it is never used in the fit. The
following investigation shows how fit mathematics can be improved by taking the espected
linearisation uncertainty into account.

In order to shorten the text, a one-dimensional operator will be considered.

Let x be a state vector which has to be fitted (for example, a vector of track parameters).

Let F (x) be a nonlinear operator which appears in the fit (for example, a track extrapolator).
To perform the fit, the operator F is linearised at a certain x0 value.

Let Lmc(x) be an ideal linearisation of F (x) at the true value xmc (linearisation around the
simulated Monte-Carlo track). Use of the Lmc(x) in the fit gives an ideal result.

Let L0(x) be a non-ideal linearisation of F (x) at some linearisation point x0.

Let ε = xmc − x0 be a linearisation error: < ε >= 0; < ε2 > is known (for example, x0 could
be a fitted track with a known covariance matrix).

By definition:
Lmc(x) = F (xmc) + F ′(xmc)(x− xmc)
L0(x) = F (x0) + F ′(x0)(x− x0) (2.18)

The expression (2.18) for the Lmc can be expanded as the following:

Lmc(x) = F (xmc) + F ′(xmc)(x− xmc)
= [F (x0) + F ′(x0)ε+ F ′′(x0)ε2/2] + [F ′(x0) + F ′′(x0)ε](x− xmc) +O(ε3 + ε2(x− xmc))
= F (x0) + F ′(x0)ε+ F ′′(x0)ε2/2 + F ′(x0)(x− xmc) + F ′′(x0)ε(x− xmc) +O()
= F (x0) + F ′(x0)ε+ F ′′(x0)ε2/2 + F ′(x0)(x− x0 − ε) + F ′′(x0)ε(x− xmc) +O(. . .)
= [F (x0) + F ′(x0)(x− x0)] + F ′′(x0)ε2/2 + F ′′(x0)ε(x− xmc) +O(ε3 + ε2(x− xmc))
= L0(x) + F ′′(x0)ε2/2 + F ′′(x0)ε(x− xmc) +O(ε3 + ε2(x− xmc))

(2.19)

From the equation (2.19) it follows:

< Lmc(x) > = < L0(x) > +F ′′(x0) < ε2 > /2 +O(ε3) (2.20)

The equation (2.20) shows that the linearisation L0 has the second-order statistical bias
(F ′′(x0) < ε2 > /2). As the value of < ε2 > is given, the operator L0 can be corrected with
respect to this value.

Similar calculations can be performed for the multidimensional operator L0.
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Chapter 3

Reconstruction of vertices and
decayed particles

Figure 3.1: Schematic view of event vertices and a decayed particle.

3.1 Introduction

Reconstruction of a physical event does not finish with the reconstruction of the detected par-
ticle trajectories (tracks). The complete reconstruction task includes also finding of primary
event vertex as well as secondary vertices and trajectories of (short-lived) decayed particles
(Fig. 3.1). These tasks are performed after all the tracks are found and fitted.

The search for a common production point of the majority of particles in an event is called
primary vertex search. The combinatorial part of the problem is to define the group of
primary tracks. This task is usually rather simple. Then the primary vertex fit is performed
with rejection of wrongly assigned tracks.

Search for secondary vertices and trajectories of decayed particles is carried out at the level
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of physics analysis. The combinatorial part of the task is performed by an analysis routine,
where candidates for daughter particles are selected and corresponding particle hypotheses
are assigned to the selected candidates. Then the secondary vertex is fitted using the daughter
particles as measurements. At the same time parameters of daughter particles are corrected
by fitting them to the common vertex. Parameters of the mother particle usually are not fitted
directly, but are evaluated from the secondary vertex position and parameters of daughter
particles after the fit.

Various algorithms have been developed for the primary and secondary vertex fit [2, 6, 7, 3, 4],
the most commonly used of them are based on the Kalman filter method.

This Chapter includes a description of the traditional applications of the Kalman filter method
for the primary (3.2.1) and secondary (3.2.2) vertex fit, and also the developed modifications
of the standard methods (3.3, 3.4). In Section 3.5 a new algorithm for direct reconstruction
of decayed particles is presented.

Results of the implementation of the developed algorithms in the CBM and the ALICE
experiments can be found in Sections 3.6 and 3.7.

The algorithms use mathematical extensions of the Kalman filter method described in Sec-
tion 1.4.

3.2 Standard approach for vertex reconstruction

3.2.1 Reconstruction of a primary vertex

The goal of a vertex fit is to obtain the vertex position and the associated covariance matrix
using a set of track estimates and their covariance matrices. This Section is dedicated to the
primary vertex fit problem which is characterised by high track multiplicity and the absence
of additional physical constraints on the vertex tracks.

vertex
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Figure 3.2: Vertex reconstruction problem.

Let us denote (see also Fig. 3.2):

v = (xv, yv, zv)
T , Cv — the vertex position and its covariance matrix;

tk = (ak, bk, (q/p)k)
T , Ctk — the directions and the inverse momentum of the k-th track,

originating from the vertex v, and covariance matrix for these parameters;

Measurement mk = (xk, yk, txk, tyk, (q/p)k)
T — the k-th track estimate, parametrised at a

certain zref ;
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Vk — the covariance matrix of the k-th track estimate;

hk(v, tk) — parameters of the k-th track, extrapolated from zv to zref .

Each track estimate mk is considered a measurement of the corresponding track tk.

The measurement model which associates the track tk with its estimate mk is:

mk = hk(v
t, ttk) + ηk

< ηk · ηTk > = Vk
(3.1)

The measurement model (3.1) is nonlinear in v, tk and, therefore, should be linearised at
certain values (v0, t0k):

hk(v, tk) ≈ hk(v
0, t0k) +

∂hk(v, tk)

∂(v, tk)

∣∣∣∣
v0,t0k

(
v − v0, tk − t0k

)
(3.2)

The most general and accurate way to fit the vertex [2] is the direct use of the extended
Kalman filter (1.16) with the state vector r:

rk = (v, tk) (3.3)

and the model of measurement (3.2).

Each time the next track is added to the vertex, the parts of the state vector and the
covariance matrix corresponding to the tk component of the state vector are reinitialised:

rk−1 →
(
vTk−1, t

0
k

)T

Ck−1 →
(
Cvk−1 O

O I · inf

)
(3.4)

The serious disadvantage of the basic method is that it requires too many calculations. Since
the state vector has a dimension of 3 × 3 = 6 and each measurement has a dimension
of 5, complicated matrix operations must be performed at each step. In particular, at each
filtration step it is necessary to invert 5 × 5 matrices. Moreover, an additional Kalman
Smoother procedure [2] is needed in order to define the track approximation t0k, demanding
an additional expense of time and memory.

Various fast algorithms for the vertex fit [6, 7, 3, 4] can be considered simplified versions of the
basic method. However, these simplifications result in a loss of accuracy which is considered
negligible.

For speeding up the calculations the following simplifications of the problem are usually
applied: neglect of the magnetic field in the vertex region when tracks are considered to be
straight lines [6, 7], fixation of track directions and momenta neglecting uncertainties of these
parameters [3, 4], use of initial track parameters for linearisation at each iteration [3].

However, as it will be shown further (Sec. 3.3), the standard algorithm can be significantly
simplified without any loss of accuracy.

3.2.2 Reconstruction of a secondary vertex

The reconstruction of secondary vertices is more complicated than the primary vertex recon-
struction. Aside from the parameters of the vertex, it is necessary to obtain parameters of all
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vertex tracks and the complete covariance matrix. This matrix contains covariances between
different tracks and covariances the between tracks and the vertex.

Keeping in mind the notations of Section 3.2.1, let a vertex (xv, yv, zv) be composed of n
tracks with slopes ak, bk and signed inverse momenta (q/p)k. In contrast to the primary
vertex fit (3.3), let us arrange the parameters of the vertex and the parameters of all vertex
tracks in a (3 + 3n)-dimensional state vector r:

r = (v, t1, . . . tn) (3.5)

Let us subdivide the measurement model (3.1) into coordinate and momentum parts:

hk(v, tk) ≡
(

hxyk (v, tk)

habpk (v, tk)

)
(3.6)

For a new state vector (3.5) the model of the k-th measurement is:

hk(r) =

(
hxyk (v, tk) O · · ·O O O · · ·O

O O · · ·O habpk (v, tk) O · · ·O

)
(3.7)

Since the k-th vertex track is measured by the k-th track estimate mk only; before the k-th
measurement the covariance matrix C has the following form:

Ck−1 =




C(00) · · · C(0,3k) 0 · · · 0
...

. . .
... 0 · · · 0

C(3k,0) · · · C(3k,3k) 0 · · · 0

0 0 0 inf 0 0
...

...
... 0

. . . 0
0 0 0 0 0 inf




(3.8)

Therefore, there is no need to evaluate the part of the state vector and the covariance matrix
related to the remaining k + 1, . . . , n vertex tracks at the k-th step. Due to this fact, the
dimensionality of the state vector rk will be considered 3+3k and will increase proportionally
to the addition of the measurements:

rk−1 →
(
rTk−1, a

0
k, b

0
k, (q/p)

0
k

)T

Ck−1 →
(
Ck−1 O

O I · inf

) (3.9)

In the standard approach [2] the state vector rk−1 (3.9) is filtered by the measurement mk (3.7)
in accordance with the formulae (1.11, 1.16) for the extended Kalman filter.

Although the standard approach for the secondary vertex fit is easy to implement, it is very
time-consuming because of the large size of the state vector (3.5). On top of that, all discussed
disadvantages of the primary vertex fit (Sec. 3.2.1) remain true for the secondary vertex fit.

The modified Kalman filter, constructed in Section 1.4.2, facilitates substantial simplification
of the calculations for the secondary vertex fit (Sec. 3.4).
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3.3 Fast reconstruction of a primary vertex

The goal of the vertex fit is to obtain the vertex position and the associated covariance matrix
using a set of track estimates and their covariance matrices. This Section is dedicated to the
primary vertex fit problem which is characterised by high track multiplicity and the absence
of additional physical constraints on the vertex tracks.

A special feature of the presented algorithm is the extrapolation of the track estimates to
the vertex linearisation point r0. This approach makes it possible to fit the vertex without
including the track parameters into the vertex state vector and to maximally simplify the
calculations. In particular, only two divisions are performed for each track, while in the
standard approach two-fold inversion of a 5× 5 matrix is required.

Let hxyk (r, tk) be a coordinate part of the model of measurement hk(r, tk):

hxyk (r, tk) =

(
xv + ak · (zref − zv) +O

(
(zref − zv)2

)

yv + bk · (zref − zv) +O
(
(zref − zv)2

)
)

(3.10)

Here the term O
(
(zref − zv)2

)
describes the deviation of the track from a straight line in a

magnetic field (see details in [14, 10]).

The linearised measurement model is:

hxyk (r, tk) ≈
(
xv + a0k(zref − zv) + ak(zref − z0v) +O((zref − z0v)2)
yv + b0k(zref − zv) + bk(zref − z0v) +O((zref − z0v)2)

)
(3.11)

Let us extrapolate all the track estimates to z0v (setting zref = z0v). In this case the linearised
model of measurement is:

hxyk (r, tk) ≈
(
xv + a0k(z

0
v − zv)

yv + b0k(z
0
v − zv)

)
(3.12)

In the linearised model (3.12) the values ak, bk, (q/p)k do not influence the measurement of
the vertex position rk with the track estimate mk and, therefore, there is no need to fit these
values at the k-th step of the Kalman filter.

The vertex fit is performed according to Eq. (1.11) of the Kalman filter with the state vector
r = (xv, yv, zv)

T and the measurement model Hxy
k :

Hxy
k =

(
1 0 −a0k
0 1 −b0k

)

Sk = (Vxy
k + Hxy

k CkH
xyT
k )−1

Kk = CkH
xyT
k Sk

ζk = mxy
k −Hxy

k (rk−1 −




0
0
z0v


)

rk = rk−1 + Kkζk
Ck = Ck−1 −KkH

xy
k Ck

χ2
k = χ2

k−1 + ζTk Skζk

(3.13)

Here the two-dimensional measurement mxy
k and the matrix Vxy

k denote the x and y compo-
nents of the track estimate mk and the corresponding part of its covariance matrix Vk.
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The directions a0k, b
0
k in Eq. (3.13) are determined by fitting the track estimate mk to the

vertex guess r0 used in the linearisation. For that, one step of filtration with the vertex
(x0v, y

0
v) as the measurement and with the null matrix of measurement errors is performed:

H̃k =

(
1 0 0 0 0

0 1 0 0 0

)

K̃k = VkH̃
T

k (O + H̃kVkH̃
T

k )−1

ζ̃k = (x0v, y
0
v)
T − H̃kmk

m0
k = mk + K̃kζ̃k

a0k = m0
k (2)

b0k = m0
k (3)

(3.14)

Here m0
k denotes the track estimate fitted to the r0 vertex from which the directions a0k, b

0
k

are taken. Note, that there is no need to calculate the momentum (q/p)0k of the vertex track.

Additionally, the χ2 distance between the track estimate and the vertex guess r0 is calculated
in order to reject wrong association of tracks to vertex:

χ2
k = ζ̃

T

k (C0 + H̃kVkH̃
T

k )−1ζ̃k (3.15)

where C0 is the covariance matrix of the vertex guess r0.

The complete algorithm for the primary vertex fit is following:

1. Set first approximation of the vertex r = (x0v, y
0
v , z

0
v), C corresponding to the search

area.

2. Do several iterations of the vertex fit:

(a) Initialisation:

• Storing of the vertex from the previous iteration: r0 = r, C0 = C.

• Taking the initial vertex state vector from the previous iteration r = r0.

• Setting the initial covariance matrix is to C = I · inf.

• Initialisation of the vertex χ2 and number of degrees of freedom.

(b) Filtration (repeats for every track estimate):

• Extrapolation of the track estimate mk to z0v .

• Calculation of the χ2-distance of the k-th track estimate from the vertex r0 (3.15).

• Calculation of the parameters of the k-th vertex track a0k, b
0
k (3.14).

• Updating of the state vector r with the Kalman filter formalism (3.13).

(c) Filtration of the next track, e t.c.

3. Make the next iteration of the complete fitting routine from step 2.

4. Store r, C.

Note that the algorithm described is also valid for the secondary vertex fit for cases where
only the vertex position is to be determined.
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3.4 Fast reconstruction of a secondary vertex

In this Section the secondary vertex fit with the Kalman filter is considered, where besides
the parameters of the vertex it is also necessary to obtain the parameters of all vertex tracks
and the complete covariance matrix, which contains the covariances between the different
tracks and between the tracks and the vertex.

The conventional approach [2] to the secondary vertex fit is described in Section 3.2.2. Here
a modification of the standard algorithm is presented.

To simplify the conventional algorithm, the Kalman filter mathematics have been extended
for the case of correlated errors of measurements ( Section 1.4.2). The use of the modified
Kalman filter made it possible to exclude matrix operations completely and, as a result, to
simplify the algorithm of the secondary vertex fit substantially.

3.4.1 Geometrical fit of secondary vertex

The modified Kalman filter constructed in Section 1.4.2 makes it possible to simplify the
calculations.

To do so, let us split the measurement mk into two parts — a momentum part mabp
k and a

coordinate part mxy
k :

mxy
k =

(
mk (0), mk (1)

)T
mabp
k =

(
mk (2), mk (3), mk (4)

)T

Vxy
k =

(
Vk (00) Vk (01)

Vk (10) Vk (11)

)
Vabp
k =




Vk (22) Vk (23) Vk (24)

Vk (32) Vk (33) Vk (34)

Vk (42) Vk (43) Vk (44)




(3.16)

and consecutively add these measurements by the modified Kalman filter.

The reason for such a subdivision of mk is that the momentum part mabp
k of the track estimate

measures only new parameters ak, bk, pk of the state vector. These new parameters are not
yet correlated with the rest of the state vector, therefore treatment of the measurement mabp

k

does not change other parameters of the state vector and can be simplified.

For this reason, the measurement mabp
k which measures the directions and the momentum of

the k-th vertex track is added first. The corresponding part of the measurement model (3.7)
is:

Habp
k =




0 · · · 0 1 0 0
0 · · · 0 0 1 0
0 · · · 0 0 0 1


 (3.17)

Since the initial values of the parameters of the k-th track have infinite covariances (3.9),

the filtration of the state vector rk−1 (3.9) by the measurement mabp
k (3.16) is equivalent to

simply copying the measurement into the state vector (the new state vector is denoted as r̃k):

r̃k =
(
rTk−1,m

abp T
k

)T

C̃k =

(
Ck−1 O

O Vabp
k

) (3.18)

The value of χ2 does not change at this point, because the new parameters ak, bk, pk do not
differ from the measurement mabp

k yet and the rest of the state vector is not changed. The
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number of degrees of freedom does not change either, since the introduction of three more
parameters is compensated by the additional three dimensional measurement.

Now let us add the remaining coordinate part mxy
k of the measurement mk into the state

vector r̃k:

Hxy
k =

(
1 0 −a0k 0 · · · 0
0 1 −b0k 0 · · · 0

)
(3.19)

Since the measurement mxy
k is correlated with the measurement mabp

k , it is also correlated with
the state vector r̃k (3.18). Let us denote the matrix of covariances between the measurement
mxy
k and the state vector as Dk (1.22):

Dk =

(
0 · · · 0 Vk (02) Vk (03) Vk (04)

0 · · · 0 Vk (12) Vk (13) Vk (14)

)
(3.20)

Let us use the modified Kalman filter (1.23, 1.16). Taking into account the fact that
Hxy
k DT

k = O and DkH
xy T
k = O, one obtains the following equations of the geometrical fit

of secondary vertex:

Sk =
(

Vxy
k + Hxy

k C̃kH
xy T
k

)−1

Kk =
(

C̃kH
xy T
k −DT

k

)
Sk

ζk = mxy
k −Hxy

k

(
r̃k −

(
0, 0, z0v

)T)

rk = r̃k + Kkζk

Ck = C̃k −Kk

(
Hxy
k C̃k−1 −Dk

)

χ2
k = χ2

k−1 + ζTk Skζk

(3.21)

3.4.2 Constrained fit of the secondary vertex

Precision of the secondary vertex parameters obtained in the geometrical vertex fit can be
improved by taking into account several assumptions on the tracks associated to the vertex [2,
12, 7, 11]. These assumptions are expressed in terms of constraints on the state vector
parameters.

In the secondary vertex fit every constraint is treated by the Kalman filter (Sec. 1.4.5,
Eq. 1.73) as a one-dimensional measurement with null error. Since the constraints are applied
after the geometrical fit, additional steps of the Kalman filter algorithm with the correspond-
ing measurement models are implied.

Two types of constraints have been included into the vertex fit package: a topological con-
straint and a mass constraint. In both constraints the following values and their derivatives
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are used:

pzk =
1

|(q/p)k|
√

1 + a2k + b2k

∇pzk =

(
−akpzk

1 + a2k + b2k
,

−bkpzk
1 + a2k + b2k

,
−pzk

(q/p)k

)

pxk = akp
z
k ∇pxk =

(
pzk + ak

∂pzk
∂ak

, ak
∂pzk
∂bk

, ak
∂pzk
∂(q/p)k

)

pyk = bkp
z
k ∇pyk =

(
bk
∂pzk
∂ak

, pzk + bk
∂pzk
∂bk

, bk
∂pzk
∂(q/p)k

)

Ek =

√
1

(q/p)2k
+m2

k ∇Ek =

(
0, 0,

−1

Ek(q/p)
3
k

)

(3.22)

where mk is the mass hypothesis of the k-th particle. Here the gradient ∇ denotes the vector
of the derivatives ∇f = (∂f/∂ak, ∂f/∂bk, ∂f/∂(q/p)k) for a certain variable f . Parameters
of the mother particle will be also used:

px =
n∑

k=1

pxk py =
n∑

k=1

pyk pz =
n∑

k=1

pzk E =
n∑

k=1

Ek (3.23)

The state vector obtained after the geometrical fit is used in both constraints as the point of
linearisation r0.

Topological constraint

Topological constraint is used to align a mother particle with the (already) known primary
vertex.1 The mother track ends at the secondary vertex v = (xv, yv, zv) with momentum
p = (px, py, pz) and has to originate from the primary vertex vpv = (xpv, ypv, zpv).

Here only the case when the trajectory of the mother particle is a straight line (the mother
particle is either not charged or its decay has occurred close to the primary vertex and the
curvature of the trajectory in a magnetic field can be neglected) is considered. In this case
primary and secondary vertices are connected with a straight line

v − p · t = vpv (3.24)

with an additional parameter t denoting the trajectory length of the mother particle, nor-
malised to its momentum. The requirement (3.24) can be re-written as a set of three inde-
pendent constraints:

0 = ∆x− px · t
0 = ∆y − py · t
0 = ∆z − pz · t

(3.25)

with notations ∆x = (xv − xpv), ∆y = (yv − ypv), ∆z = (zv − zpv).
Since in the CBM experiment all particles have non-zero z-momentum, then also for the
mother particle pz 6= 0. Therefore the calculation of t can be avoided by expressing it from
the third equation in (3.25):

t = ∆z/pz (3.26)

1This is also true for the parent vertex in a decay chain.
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and substituting it into the first two equations.

Finally, the topological constraint consists of two independent one-dimensional constraints:

0 = ∆x · pz −∆z · px
0 = ∆y · pz −∆z · py (3.27)

The constraint can be included directly into the Kalman filter as a set of two independent
measurements with null values and null errors. As a result, the mother track will point
exactly to the primary vertex.

The primary vertex errors can also be taken into account. The most elegant way to do this
is to add the primary vertex parameters into the state vector [7]:

r = (xv, yv, zv, a1, b1, p1, . . . an, bn, pn, xpv, ypv, zpv) (3.28)

with the primary vertex covariance matrix included in the extended covariance matrix of the
state vector.

Two constraints (3.27) are added one by one. For the first constraint the linearised measure-
ment matrix Hx is:

Hx =

(
pz, 0, −px,

· · · ,∆x∂p
z
k

∂ak
−∆z

∂pxk
∂ak

, ∆x
∂pzk
∂bk
−∆z

∂pxk
∂bk

, ∆x
∂pzk
∂(q/p)k

−∆z
∂pxk
∂(q/p)k

, · · · ,

−pz, 0, px

)

(3.29)

The constructed topological constraint is used by the Kalman filter as an one-dimensional
measurement with the measured value equal to 0, the null error and the linearised measure-
ment matrix Hx:

0 = ∆x · pz −∆z · px + Hx(rt − r0) (3.30)

The second constraint in (3.27) is treated in the same way:

Hy =

(
pz, 0, −py,

· · · ,∆y ∂p
z
k

∂ak
−∆z

∂pyk
∂ak

, ∆y
∂pzk
∂bk
−∆z

∂pyk
∂bk

, ∆y
∂pzk
∂(q/p)k

−∆z
∂pyk
∂(q/p)k

, · · · ,

−pz, 0, py

)

(3.31)
0 = ∆y · pz −∆z · py +Hy(rt − r0) (3.32)

Mass constraint

The mass constraint can be applied in the case when one or several combinations of particles
in the vertex are known to originate from a narrow width mass state. Here the case of a single
mass constraint is considerd, since multiple mass constraints can be treated in a similar way.
Let all the tracks required by the mass constraint form the invariant mass M .
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The mass constraint reads
M2 = E2 −

(
px 2 + py 2 + pz 2

)
(3.33)

Taking the partial derivatives of M2 one can calculate a linearised matrix HM of the mass
measurement:

HM =

(
0, 0, 0, · · ·

2E
∂Ek
∂ak

− 2px
∂pxk
∂ak
− 2py

∂pyk
∂ak
− 2pz

∂pzk
∂ak

,

2E
∂Ek
∂bk
− 2px

∂pxk
∂bk
− 2py

∂pyk
∂bk
− 2pz

∂pzk
∂bk

,

2E
∂Ek
∂(q/p)k

− 2px
∂pxk
∂(q/p)k

− 2py
∂pyk
∂(q/p)k

− 2pz
∂pzk
∂(q/p)k

,

· · ·
)

(3.34)

The mass constraint is used by Kalman filter as an ordinary one-dimensional measurement
with the measured value M2, null error and the measurement matrix HM :

M2 = E2 −
(
px 2 + py 2 + pz 2

)
+ HM (rt − r0) (3.35)

3.4.3 Complete reconstruction scheme

The algorithm proceeds track by track and finally obtains the estimates of the vertex position
and parameters of the tracks composing the vertex together with the corresponding covariance
matrix. Finally, the scheme of the geometrical vertex fit algorithm is the following:

• First approximation of the state vector r = (x0v, y
0
v , z

0
v , . . . , a

0
k, b

0
k, (q/p)

0
k . . .).

• Several iterations of the vertex fit:

1. Initialisation:

– The initial vertex state vector is taken from the previous iteration r = r0.

– The initial covariance matrix is set to C = I · inf.

– Initialise the vertex χ2 and the number of degrees of freedom.

2. Filtration (repeats for every track estimate):

– Extrapolate the track estimate mk to z0v .

– Update the state vector r with the Kalman filter formalism:

∗ Copy the track parts of the track estimate mk into the state vector r and
the covariance matrix C (3.16, 3.18).

∗ Filter the state vector by the (x, y)-component of the track estimate
mk (3.16, 3.19, 3.20, 3.21).

3. Filtration of the next track, etc.

• Add constraints if they are required.

• Make the next iteration of the fitting routine.
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The fitting algorithm obtains the optimal state vector and its covariance matrix, from which
the required output values are extracted. Besides the position of the vertex and parameters of
the vertex tracks the reconstruction package also includes the procedures for the calculation
of the mass and the parameters of the mother particle.

The vertex parameters are simply copied from the state vector together with the covariance
matrix:

(xv, yv, zv) = (r(0), r(1), r(2)) ,

Cv =




C(00) C(01) C(02)

C(10) C(11) C(12)

C(20) C(21) C(22)


 .

(3.36)

Parameters for the k-th vertex track are given in the conventional parametrisation (x, y, tx,
ty, (q/p)). They are combined from the vertex position and from the momentum part of the
k-th track:

Tk =
(
r(0), r(1), r(3k), r(3k+1), r(3k+2)

)T (3.37)

The track Tk is parametrised at zref = zv ≡ r(2).

Note that in the track parametrisation the position zref is supposed to be a fixed value while
the vertex position zv, taken as zref , is a random variable which has an error. Due to this
fact the covariance matrix Ck of the track cannot simply be copied from the matrix C but
needs a special correction. Let us extrapolate the track Tk from zv to a certain zref and
calculate the Jacobian of the extrapolation at zref = zv. In accordance with (3.17, 3.19) the
Jacobian Jk of the transformation Tk(r) is equal to:

Jk =




1 0 −r(3k) 0 · · · 0 0 0 0 0 · · · 0
0 1 −r(3k+1) 0 · · · 0 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 0 · · · 0
0 0 0 0 · · · 0 0 0 1 0 · · · 0




(3.38)

The covariance matrix Ck of the k-th track is equal to:

Ck = JkCJTk (3.39)

Parameters of the mother track Tm = (x, y, tx, ty, (q/p))
T are also given in the conventional

CBM parametrisation. They are calculated from the momentum (px, py, pz) of the mother
particle:

Tm =
(
r(0), r(1), p

x/pz, py/pz, 1/p
)T (3.40)

The Jacobian Jm of the transformation Tm(r) is the following (taking into account the error
of zv):

Jm =




1 0 −px/pz 0 · · · 0
0 1 −py/pz 0 · · · 0

(pz∇px − px∇pz) /pz 2
(pz∇py − py∇pz) /pz 2

− (px∇px + py∇py + pz∇pz) /p3




(3.41)

The covariance matrix of the mother track is equal to:

Cm = JmCJTm (3.42)
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In the absence of the mass constraint it is possible to calculate the mass of the mother particle
and the error of the mass. Using the notations of Section 3.4.2:

M2 = E2 −
(
px 2 + py 2 + pz 2

)

σ2M2 = HMCHM T
(3.43)

It follows:
M =

√
M2

σM =
σM2

2M

(3.44)

Note that in the case of the secondary vertex fit with a mass constraint the fitted mass will
coincide with the value of the constraint.

3.4.4 Advantages of the method

The presented algorithm of the secondary vertex fit provides the optimal estimation of the
vertex position and the parameters of the vertex tracks. Its advantage in comparison with
other known applications of the Kalman filter [2] is speed and simplicity of calculations.

This was possible due to:

1. Replacement of the 5-dimensional measurement (3.7) by the 2-dimensional measure-
ment (3.16) using the modified Kalman filter. In this case the number of calculations
is substantially decreased, for example, the filter executes one operation of division
instead of inversion of a 5× 5 matrix in the standard approach.

2. Extrapolation of the track estimates mk to the point z0v of the vertex linearisation. As
a result the measurement model Hxy

k (3.19) contains only two non-trivial elements, and
matrix operations with the matrix Hxy

k are reduced to arithmetical operations.

Avoiding matrix inversions in the implementation improves the robustness of the covariance
computations against rounding errors.

In contrast to the primary vertex fit [8], in the secondary vertex fit the vertex coordinates
and the track parameters are treated in common.

Both algorithms provide not only the optimal vertex position, but also optimal estimations
of the track parameters, including their momenta. The algorithm of the secondary vertex
fit calculates the complete covariance matrix, which includes the dependency of the vertex
position on the track parameters and also between tracks. The presence of the complete
covariance matrix after the geometrical fit makes it possible to refine the vertex position
and the track parameters applying additional physical penalties on the tracks, such as the
topological and mass constraints.

In the absence of constraints there is no need for the complete covariance matrix. In this case
the primary vertex fit method described in [8] can be used to fit a secondary vertex providing
the same optimal solution.
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3.5 Reconstruction of decayed particles

KK  --

ππ++

Primary
tracks

Event
vertex

DD00
Decay
vertex

Figure 3.3: Schematic view of D0 decay.

In modern high-energy physics experiments the most interesting physics is often extracted
from the properties of (short lived) decayed particles which are not detected by the detector
system and have to be reconstructed from their daughter particles (Fig. 3.3).

The existing reconstruction packages [2, 3, 5, 6, 7, 8, 9, 11] are only focused on reconstruction
of production and decay vertices of decayed particles without direct estimation of particle
parameters.

This Section describes a new method of reconstruction of the decayed particle parameters and
associated covariance matrix using a set of daughter tracks estimates and their covariance
matrices.

The developed algorithm is based on the Kalman filter method [2]. The standard Kalman
filter approach has been modified in order to operate with an extended model of measure-
ments (Sec. 1.4.1) and to filter by the best estimator (Sec. 1.4.3).

The algorithm uses a natural particle parametrisation r = (x, y, z, px, py, pz, E, s)
T which

makes the algorithm independent on the geometry of the detector system. After estimating
the parameters of the particle, additional physical parameters which are not explicitly in-
cluded into the state vector (the particle momentum P , the invariant mass M , the length of
flight L in the laboratory coordinate system, and the time of life of the particle cT in its own
coordinate system) are easily calculated.

The algorithm has been successfully tested on simulated data of the CBM and the ALICE
experiments [12, 13].

3.5.1 Construction of the mother particle at the decay vertex

The first task in the reconstruction of the mother particle is the determination of its position,
momentum and energy at the decay vertex by the modified Kalman filter (1.18), using the
estimates of the daughter particles obtained after the track fit.

50



Let the mother particle be decayed into n daughter particles. The parameters of the mother
particle reconstructed from the first k daughter particles are arranged in a 7-dimensional
state vector rk:

rk ≡ (x, y, z, px, py, pz, E)T (3.45)

or

rk ≡
(

vk
p
k

)
(3.46)

where vk — the coordinate of the particle at the decay vertex, and p
k

— its 4-momentum.
Let us denote the covariance matrix of the state vector as Ck and the assumed position of
the decay vertex, used for the linearisation of equations, as v0. Let us transport all daughter
particles into the region of v0.

Let the parameters of the k-th daughter particle be denoted by rdk:

rdk ≡
(

vdk
pd
k

)
(3.47)

and the covariance matrix be denoted by Cdk .

For measuring the mother particle it is necessary to transport a daughter particle along its
trajectory into the decay vertex. The parameters of a daughter particle at the decay vertex
are denoted by mk:

mk = rdk +




pdk
pdk ×B · qk
0


 · sdk +O

(
sd 2k
)

< sdk > = 0
σ2
sdk

= inf

(3.48)

where sdk = ldk/p
d
k — the unknown length of the trajectory ldk from the parametrisation point

of the daughter particle vdk to the decay vertex vk, normalised by the momentum of the
daughter particle; σ2

sdk
— the error of the parameter sdk; B— the magnetic field value at the

point vdk; qk — the charge of the daughter particle; the term O
(
sd 2k
)

describes the higher
order deviations of the daughter particle’s trajectory from a straight line in a magnetic field
(see details in [14]).

Linearising (3.48) at sdk = 0, one obtains the measurement of the daughter particle’s param-
eters at the decay vertex:

mk = rdk

Vk = Cdk +




pd

pd ×B · qk
0






pd

pd ×B · qk
0



T

· σ2
sdk

(3.49)

where Vk — the covariance matrix of the daughter particle parameters at the decay vertex.

The mother and daughter particles are related via the following measurement equation:

(I,O) mt
k = (I,O) rtk−1 (3.50)
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which is filtered by the modified Kalman filter (1.18) substituting:

r̃k ≡ rk−1
C̃k ≡ Ck−1
mk ≡ rdk
Gk = Hk ≡ (I,O)

rk ≡ rfk−1
Ck ≡ Cf

k−1

(3.51)

Let us write the equations of filtration in detail. In order to simplify the calculations, the
covariance matrix is split into the coordinate and the momentum part:

Ck−1 ≡
(

Cv
k−1 Cvp T

k−1
Cvp
k−1 Cp

k−1

)
, Vk ≡

(
Vv
k Vvp T

k

Vvp
k Vp

k

)
(3.52)

And a temporary matrix Sk is introduced:

Sk =
(
Cv
k−1 + Vv

k

)−1 (3.53)

In these notations the equations of filtration (1.18, 1.17) can be written as:

Kk =

(
Cv

k−1

Cvp
k−1

)
Sk Km

k =

(
Vv

k

Vvp
k

)
Sk

ζk = mv
k − vk

rfk−1 = rk−1 + Kkζk =

(
vk−1 + Cv

k−1Skζk

p
k−1

+ Cvp
k−1Skζk

)

mf
k = mk −Km

k ζk =

(
vd
k −Vv

kSkζk

pd
k
−Vvp

k Skζk

)

Cf
k−1 = Ck−1 −Kk

(
Cv

k−1, Cvp T
k−1

)
=

(
Cv

k−1 − Cv
k−1SkCv

k−1 Cvp T
k−1 − Cv

k−1SkCvp T
k−1

Cvp
k−1 − Cvp

k−1SkCv
k−1 Cp

k−1 − Cvp
k−1SkCvp T

k−1

)

Vf
k = Vk −Km

k

(
Vv

k, Vvp T
k

)
=

(
Vv

k −Vv
kSkVv

k Vvp T
k −Vv

kSkVvp T
k

Vvp
k −Vvp

k SkVv
k Vp

k −Vvp
k SkVvp T

k

)

Df
k = Km

k

(
Cv

k−1, Cvp T
k−1

)
=

(
Vv

kSkCv
k−1 Vv

kSkCvp T
k−1

Vvp
k SkCv

k−1 Vvp
k SkCvp T

k−1

)

χ2
k = χ2

k−1 + ζT
k Skζk

ndfk = ndfk−1 + 2
(3.54)

After the filtration the 4-momentum of the daughter particle is added to the 4-momentum
of the mother particle:

rk = rfk−1 +Akm
f
k

Ck = Cf
k−1 + AkD

f
k + Df T

k AT
k + AkV

f
k AT

k

(3.55)

with the matrix Ak:

Ak =

(
O O
O I

)
(3.56)

After substituting the expressions for rfk−1,m
f
k ,C

f
k−1,V

f
k and Df

k from (3.54) into (3.55), one
obtains the final equations for the update of the state vector of the mother particle by the
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k-th daughter particle:

Sk =
(
Cv

k−1 + Vv
k

)−1

rk =

(
vk−1 + Cv

k−1Sk

(
vd
k − vk−1

)

p
k−1

+ pd
k

+
(
Cvp

k−1 −Vvp
k

)
Sk

(
vd
k − vk−1

)
)

Ck =

(
Cv

k−1 − Cv
k−1SkCv

k−1 Cvp T
k−1 − Cv

k−1Sk

(
Cvp

k−1 −Vvp
k

)T

Cvp
k−1 −

(
Cvp

k−1 −Vvp
k

)
SkCv

k−1 Cp
k−1 + Vp

k −
(
Cvp

k−1 −Vvp
k

)
Sk

(
Cvp

k−1 −Vvp
k

)T

)

χ2
k = χ2

k−1 +
(
vd
k − vk−1

)T
Sk

(
vd
k − vk−1

)

ndfk = ndfk−1 + 2
(3.57)

For a more accurate linearisation of the measurement mk (3.49), the filtration is performed
twice: first, according to (3.54) an approximate momentum pd 0 of the daughter particle is
calculated:

pd 0
k

= pd
k
−Vvp

k (Vv
k)
−1 (vdk − v0

)
(3.58)

then pd 0 is substituted into the matrix Vk (3.49), and the filtration (3.57) is carried out.

If it is necessary to select daughter tracks the χ2 probability of the fact that the k-th particle rdk
is a daughter particle is calculated according to (3.54) :

χ2
d =

(
vdk − v0

)T (
Cv0

+ Vv
k

)−1 (
vdk − v0

)
(3.59)

with Cv0
— the assumed error of the initial approximation v0. Then, only the particles

passing the χ2 cut are added to the mother track.

3.5.2 Measurement by a production vertex

After the particle is reconstructed at the decay vertex, a new parameter s can be added into
the state vector, which is equal to the length of the particle trajectory from its production
vertex to the decay vertex, normalised to the particle momentum:2

s =
l

p
(3.60)

with l — the length of the trajectory in the laboratory coordinate system, p — the particle
momentum.

The parameter s is set initially to an approximate value s0 (which is estimated from the
distance to the given production vertex) and the corresponding element of the covariance
matrix is initialised by the value σ2s = inf:

r −→
(

r
s0

)

C −→
(

C 0
0 σ2s

) (3.61)

Now the complete state vector is:

r = (x, y, z, px, py, pz, E, s)
T (3.62)

2This normalisation is convenient, because in the employed parametrisation the direction of the particle
motion is assigned to the momentum vector.
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After introducing the parameter s, all parameters of the particle are transported from its
decay vertex to its production vertex. There the particle parameters are filtered using a
given production vertex as a measurement for the Kalman filter.

Let us denote the operator for the transport of the particle parameters into the production
vertex as f :

f(r) ≡ f(v,p, s) = r−




p
p×B · q
0


 · s+O

(
s2
)

(3.63)

The operator f is linearised with respect to the parameter s:

f(r) = f(v,p, s0)−




p
p×B · q
0


 ·

(
s− s0

)
(3.64)

It is convenient to split the transport to the production vertex into two steps, corresponding
to the terms in (3.64): the transport of the particle position to the fixed value s = s0

and the subsequent correction of the covariance matrix taking into account the error of the
parameter s.

Since the transport to the fixed value s0 will be done only when the parameter s is either
already optimal or when it is equal to s0, the linearisation is always done at the current value
s0 = s.

Generally, the transport takes place in a magnetic field [14]. Here the transport in a special
case will be illustrated, when the mother particle is not charged or there is no magnetic field
and the transport is accomplished along a straight line. The transported particle position is:

v̂ = v − s0 · p (3.65)

The other components of the state vector do not change. The Jacobian Ft of the transport
along a straight line is:

Ft =




1 0 0 −s0 0 0 0
0 1 0 0 −s0 0 0
0 0 1 0 0 −s0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




(3.66)

and the transported particle r̂ and its covariance matrix Ĉ are:

r̂ = Ftr

Ĉ = FtCFTt
(3.67)

Since s0 = s, the state vector does not change during the correction. However, since s has
an error, the covariance matrix will change. Let us consider the general case of the operator
f for the charged particle in a magnetic field:

r̃ = r̂−




p̂0

p̂0 ×B · q
0
0


 ·

(
s− s0

)

s0 = s

(3.68)
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The Jacobian Fc of the correction is:

Fc =




1 0 0 0 0 0 0 −p̂0x
0 1 0 0 0 0 0 −p̂0y
0 0 1 0 0 0 0 −p̂0z
0 0 0 1 0 0 0 −(p̂0yBz − p̂0zBy) · q
0 0 0 0 1 0 0 −(p̂0zBx − p̂0xBz) · q
0 0 0 0 0 1 0 −(p̂0xBy − p̂0yBx) · q
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




(3.69)

where B — the magnetic field at the production vertex, q — the particle charge.

The corrected values of the state vector and of the covariance matrix are:

r̃ = r̂

C̃ = FcĈFTc
(3.70)

After the transport of the particle into the production vertex, its position is measured by the
Kalman filter using the given production vertex as a measurement. It is assumed that the
optimal position vp of the production vertex is already known and it does not change when
fitting the particle to the vertex.3 Since the optimal value of the vertex is given, the filtration
is accomplished by the modified Kalman filter (1.37), where the production vertex vp is
considered as measurement with the measurement model Hp:

mf ≡ vp

Vf ≡ Cp

Hp = (I, O)

(3.71)

The measurement of the production vertex completes the reconstruction procedure.

3.5.3 The complete reconstruction scheme

Below the complete scheme of reconstruction of the particle parameters

r = (x, y, z, px, py, pz, E, s)
T (3.72)

and its covariance matrix according to the daughter particles rdk, k = 1 . . . n is given.

Since the problem is nonlinear, the complete procedure of reconstruction is processed several
times, where each iteration consists of the following steps:

1. Choice of the initial approximation v0, initialisation of χ2
0 = 0 and ndf0 = −3.

2. Transport of the k-th daughter particle rdk, Cd
k into the initial vertex position v0, con-

struction of the parameters mk of the daughter particle at the decay vertex:

mk ≡
(

vdk

pd
k

)
= rdk

Vk ≡
(

Vv
k Vvp T

k

Vvp
k Vp

k

)
= Cd

k +




pdk
pdk ×B · qk
0






pdk
pdk ×B · qk
0



T

· σ2s
(3.73)

3Either this is the primary event vertex, or, in the case of a decay chain, the production vertex is first fitted
using the particle, then the particle is fitted to the reconstructed vertex.
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It is sufficient to take 10-times the distance between v0 and vdk divided by the momen-
tum pdk as σs.

3. When it is necessary to select daughter tracks the χ2 probability of the fact that the
k-th particle rdk is a daughter particle is calculated:

χ2
d =

(
vdk − v0

)T (
Cv0 + Vv

k

)−1 (
vdk − v0

)
(3.74)

4. Calculation of the approximated momentum pd 0
k

of the daughter particle:

pd 0
k

= pd
k
−Vvp

k (Vv
k)
−1 (vdk − v0

)
(3.75)

and refinement of the matrix Vk:

Vk = Cd
k +




pd 0k
pd 0k ×B · qk
0






pd 0k
pd 0k ×B · qk
0



T

· σ2s (3.76)

5. Measurement of the state vector rk−1 by the daughter particle mk adding the 4-
momentum of the daughter particle to the 4-momentum of the mother particle:

Sk =
(
Cv

k−1 + Vv
k

)−1

rk =

(
vk−1 + Cv

k−1Sk

(
vd
k − vk−1

)

p
k−1

+ pd
k

+
(
Cvp

k−1 −Vvp
k

)
Sk

(
vd
k − vk−1

)
)

Ck =

(
Cv

k−1 − Cv
k−1SkCv

k−1 Cvp T
k−1 − Cv

k−1Sk

(
Cvp

k−1 −Vvp
k

)T

Cvp
k−1 −

(
Cvp

k−1 −Vvp
k

)
SkCv

k−1 Cp
k−1 + Vp

k −
(
Cvp

k−1 −Vvp
k

)
Sk

(
Cvp

k−1 −Vvp
k

)T

)

χ2
k = χ2

k−1 +
(
vd
k − vk−1

)T
Sk

(
vd
k − vk−1

)

ndfk = ndfk−1 + 2
(3.77)

Since at the first measurement the parameters of the mother particle have not yet been
determined, the equations of filtration (3.77) are simplified and the measurement m1

is directly copied into the state vector r1:

r1 = m1

C1 = V1

χ2
1 = 0

ndf1 = −1

(3.78)

6. Repeating step 2 for the next daughter particle, until all the daughters are treated.

7. Improvement of the precision of the particle parameters after the fit in the case of
invariant mass M of the particle is known:

M2 = E2 −
(
p2x + p2y + p2z

)
(3.79)

In this case the parameters of the particle are measured by the conventional Kalman
filter (1.11) using a one-dimensional measurement. The measurement has the value
M2, the null error, and the measurement model HM2 :

HM2 = (0, 0, 0,−px,−py,−pz, E, 0) (3.80)
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8. Measurement of a production vertex when it is given. The constructed mother particle
is transported to the production vertex and then is filtered using the production vertex
as a measurement:

r =

(
vp

p̃ + C̃
vp
(

C̃
v
)−1

(vp − ṽ)

)

C =


 Cp Cp

(
C̃
v
)−1

C̃
vp T

C̃
vp
(

C̃
v
)−1

Cp C̃
p − C̃

vp
(

C̃
v
)−1 (

C̃
v − Cp

)(
C̃
v
)−1

C̃
vp T




∆χ2 = (vp − ṽ)T
(

C̃
v − Cp

)−1
(vp − ṽ)

∆ndf = 2
(3.81)

In all the iterations, except the last one, the particle is transported back into the
decay vertex by changing −s to s in equations (3.69, 3.70), in order to determine the
linearisation point v0 for the next iteration.

The reconstructed state vector and its covariance matrix contain all necessary information
about the particle both at the production vertex and at the decay vertex. Therefore after
the reconstruction of the parameters, the particle can be transported to the decay vertex or
to the production vertex, as it is described in Section 3.5.2.

After the estimation of the parameters of the particle, additional physical parameters which
are not explicitly included to the state vector can be easily calculated, such as: the particle
momentum P , the invariant mass M , the length of flight L in the laboratory coordinate
system, and the time of life of the particle cT in its own coordinate system:

P =
√
p2x + p2y + p2z σ2P = HPCHT

P

M =
√
E2 − P 2 σ2M = HMCHT

M

L = s · P σ2L = HLCHT
L

cT = s ·M σ2cT = HcTCHT
cT

(3.82)

with
HP = ( 0, 0, 0, px, py, pz, 0, 0 )/P
HM = ( 0, 0, 0, −px, −py, −pz, E, 0 )/M
HL = ( 0, 0, 0, spx, spy, spz, 0, P 2 )/P
HcT = ( 0, 0, 0, −spx, −spy, −spz, sE, M2 )/M

(3.83)

3.5.4 Advantages of the method

The chosen parametrisation of the decayed particle contains all necessary information about
the particle both at the point of its production and at the point of its decay. Therefore, the
developed method is suitable for both the complete reconstruction of decayed particles and
the reconstruction of vertices only. In the second case, the state vector can be reduced to v
and all operations with p and s are removed. Then the algorithm is similar to the approach
for the primary vertex fit (Section 3.3).

The choosen parametrisation is also physically natural and, therefore, is convenient for fur-
ther physical analysis. Table 3.4 shows resolutions and pulls of D0 physical parameters re-
constructed by the algorithm. The algorithm provides, for instance, estimations of the time
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of life of the particle and the decay length together with the corresponding errors. Here the
time of life cT is reconstructed with an accuracy of 9.8 µm, showing that the reconstructed
D0 particles are well separated from the event primary vertex.

The developed algorithm has significantly reduced the amount of calculations compared to the
standard approach of vertex fitting. The state vector has a fixed size and does not grow when
the number of daughter particles increases. There were no inversions of 5× 5 matrices in the
modified equations of filtration, thus improving the robustness of the covariance computations
with respect to rounding errors.

The algorithm extrapolates the track estimates rdk to the point v0 of the vertex linearisation.
As a result, the measurement model Hk (3.51) is trivial and does not require matrix opera-
tions. The linearisation of all measurements remains correct even when a magnetic field is
present.

There is no filtration of the first daughter track. This feature reduces twice the amount of
calculations in the case of two-prong decays . Furthermore, this avoids large initial values in
the covariance matrix making the algorithm numerically stable.

The reconstructed mother particle can be treated as an ordinary track. For instance, the
algorithm is able to transport the charged mother particle in a magnetic field. It is also
possible to add measurements to the reconstructed mother particle, which is important when
the decay has occurred at a considerable distance from the production vertex, and the mother
particle itself has been registered by the detector system.

3.6 Implementation in the CBM experiment

The developed algorithms have been successfully implemented in the CBM experiment [12].
The algorithms are highly accurate and is suitable for further implementation at the trigger
level.

3.6.1 Reconstruction of the primary vertex

Parameter Resolution (µm) Pull

xv 0.67 1.08
yv 0.64 1.11
zv 3.62 1.10

Table 3.1: Residuals and normalised residuals (pulls) of the primary vertex parameters ob-
tained from 10, 000 simulated central Au+Au collisions at 25 AGeV.

Table 3.1 gives the precision of the primary vertex reconstruction obtained from 10, 000
simulated central Au+Au collisions at 25 AGeV. The algorithm proves to be highly accurate:
the residuals of the xv and yv positions of the primary vertex are less than 1 µm, and the
zv position is reconstructed with an accuracy better than 4 µm. The normalised residuals
(pulls) are close to unity. A little increase of the pulls is probably due to the inclusion of
some secondary tracks into the primary vertex fit.

The total number of reconstructed tracks used in the primary vertex fitting routine (Fig. 3.4)
is quite large. In order to investigate the dependence of the vertex resolution on this number,
the primary vertex fitting routine has been applied to smaller subsets of tracks (Fig. 3.5).
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Figure 3.4: Number of reconstructed tracks
per event used by the primary vertex fit al-
gorithm for central Au+Au collisions at 25
AGeV.
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Figure 3.5: Primary vertex position resolu-
tions versus number of tracks used in the pri-
mary vertex fit (the scale for zv is shown on
the right side).

It shows a 1/
√
N behaviour which allows a significant speed-up of the fitting routine in

case the maximal precision of the primary vertex is not necessary. This will be especially
important for on-line event selection where time consumption is crucial.

3.6.2 Reconstruction of secondary vertices

Constant  228.9
Mean      0.9169
Sigma     44.62
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Figure 3.6: Residuals and normalised residuals (pulls) of the secondary vertex z-position
obtained from 104 D0 decays in the non-homogeneous magnetic field by applying the full se-
quence of the vertex fitting routines: the geometrical fit and the fits with mass and topological
constraints.

Table 3.2 and Figure 3.6 show residuals and normalised residuals of the D0 decay vertex
parameters obtained at different stages of the vertex fitting procedure. One can see that the
mass constraint mainly improves the z-position of the vertex while the topological constraint
increases the resolution of the transversal parameters of the vertex.

The best resolution is reached by applying both mass and topological constraints. The longi-
tudinal resolution is improved compared to the geometrical fit and now equals 44.6 µm. The
pull of the secondary vertex z-position shows that the vertex parameters are well estimated.

Particle hypothesis have been used during the track fits to account for multiple scattering
effects properly. Additionally they were used in the vertex fit procedure to apply the con-
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Parameter G G+M G+T G+M+T

xv 8.1 7.8 2.1 2.0
yv 8.1 8.0 2.0 2.0
zv 49.5 47.5 45.8 44.6

Table 3.2: Accuracy (in µm) of the secondary vertex parameters obtained from 104 D0 decays
in the inhomogeneous magnetic field by applying different sequences of the vertex fitting
routines: the geometrical (G) fit and the fits with mass (M) and topological (T) constraints.

straints.

Parameter S S+G S+G+M S+G+T S+G+M+T

pπ+ 0.68 0.68 0.44 0.65 0.42
pK− 0.69 0.68 0.54 0.66 0.52

Table 3.3: Relative momentum resolution δp/p (in %) of the secondary tracks obtained from
104 D0 decays in the inhomogeneous magnetic field by applying different sequences of the
track and vertex fitting routines: the standalone (S) track fit, the geometrical (G) vertex fit
and the vertex fits with mass (M) and topological (T) constraints.

Table 3.3 shows the relative momentum resolutions of the secondary tracks at different stages
of the event reconstruction. The mass constrained secondary vertex fit gives the most sig-
nificant improvement of the momentum resolution for both particles. The difference in the
momentum resolution behavior of π+ and K− is probably due to their masses.

3.6.3 Reconstruction of decayed particles

For these studies central Au+Au collisions at 25 AGeV have been simulated. In the simu-
lations the main tracking detector of 7 silicon pixel stations positioned at 10, 20, 30, 40, 60,
80 and 100 cm from the target was used. The first two stations had a thickness of 150 µm,
while the other stations had a thickness of 400 µm. All detectors have idealised response (no
fake hits, efficiency losses, pile-up etc.). The non-homogeneous active magnetic field has been
used to trace particles through the detector.

For tests of the developed algorithm D0 mesons have been reconstructed. They are generated
at the event primary vertex and then decay into π+ and K− particles. Since a D0 meson has
a very short lifetime, it is not detected by the detector system, while its daughter particles
are well within the detector acceptance.

The ideal4 track finder has been used to group hits into tracks. The track fitting routine
realises the Kalman filter in its conventional approach. The default π particle hypothesis has
been used for all tracks. For the π+ and K− daughter particles the correct particle hypothesis
have been used during the track fit in order to properly account for multiple scattering effects,
and in the reconstruction procedure to calculate the π+ and K− energy.

In the tests the algorithm first reconstructs the event production vertex using all reconstructed
tracks, then D0 mesons are reconstructed from their two daughter particles π+ and K− using
the event primary vertex as the production vertex.

4It uses Monte-Carlo information.
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Figure 3.7: Residuals and normalised residuals (pulls) of the D0 physical parameters P , M ,
L and cT .
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Production Vertex[µm] Decay Vertex[µm] Physical Parameters

x y z x y z P[%] M[MeV/c] L[µm] cT[µm]

Accuracy 0.81 0.73 5.50 2.64 2.64 63.88 0.79 11.34 64.10 9.81

Pull 1.14 1.10 1.11 1.13 1.13 1.10 1.20 1.19 1.11 1.11

Table 3.4: Resolutions and pulls of the decayed particle parameters obtained from 104 D0

decays in central Au+Au collisions at 25 AGeV.

Table 3.4 shows, that the algorithm provides a very high accuracy for the event vertex: the
resolutions of the x and y positions of the D0 production vertex are less than 1 µm, and the
z position is reconstructed with an accuracy 5.5 µm. The resolution of the D0 decay vertex
is 2.64 µm for x and y, and 63.88 µm for z. The normalised residuals (pulls) are close to
unity, thus showing that all parameters are well estimated.
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Figure 3.8: Distribution of the D0 life time.

In addition, Figure 3.7 gives distributions of residuals and normalised residuals (pulls) of the
D0 physical parameters. The RMS of the Gaussian fits to the residual and normalised residual
distributions are also given. A measure of the reliability of the fit is the pull distribution of
the fitted parameters. All pulls are centered at zero indicating that there is no systematic
shift in the reconstructed track parameter values. The distributions are well fitted using
Gaussian functions with small tails caused by the various non-Gaussian contributions to the
fit.

Figure 3.8 gives the distribution of the D0 life time with the fitted mean life (122.1 ± 2.2) µm,
which is close to the D0 mean life cτD0 = 122.9 µm [15] used in the simulations.

3.7 Implementation in the ALICE experiment

The algorithm for reconstruction of decayed particles, described in Section 3.5, has been
implemented in the ALICE experiment. Here the method is used for off-line and on-line
physics analysis and for the primary vertex reconstruction in the High Level Trigger.

Since the method uses physical particle parametrisation, there were no special mathematics
developed for ALICE: the exactly same mathematical core is implemented in both the CBM
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Figure 3.9: Schematic view of D0 decay in
ALICE.

KK  --
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Figure 3.10: Systematic bias of the event pri-
mary vertex due to inclusion of D0 daughters
to the primary vertex fit.

and the ALICE reconstructions. Specifically, the original CBM code was simply copied to
the ALICE software repository with renaming classes with respect to the ALICE naming
convention. A simplified extrapolation method which is specific for the ALICE magnetic
field has been implemented afterwards. In addition, some interfaces to ALICE classes have
been developed.

Production Vertex[µm] Decay Vertex[µm] Physical Parameters

106 events x y z x y z P[%] M[MeV/c] L[µm] cT[µm]

Accuracy 49.1 48.8 67.4 75.4 75.0 88.6 0.75 9.9 165.5 100.4

Pull 0.95 0.95 0.98 0.92 0.92 0.97 0.92 0.94 0.93 0.93

Table 3.5: Resolutions and pulls of the decayed particle parameters obtained from D0 decays
in proton-proton collisions at 14 TeV.

The fit quality was tested on D0 decay using simulated ALICE proton-proton events. Initially,
all the residuals and pulls were accurate except of the reconstructed decay length which
appeared to be systematically smaller than the generated value.

An investigation showed that the event primary vertex is systematically biased in the direction
of D0 decay vertex. This bias was caused by inclusion of D0 daughters to the primary vertex
fit, as it is shown in Figure 3.10. Thus the problem is not specific for the D0 analysis but is
more general.5

To solve the problem it is necessary to exclude daughter tracks from the primary vertex
when creating a decayed particle. It can be easily done without vertex re-fit by use of the
measurement subtraction procedure described in Section 1.4.4.

The final pulls and resolutions for the D0 decay are summarised in Table 3.5. The residual and
pull distributions for the most important parameter – the mass – are presented in Figure 3.11.
One can see that the pull is close to unity showing no bias.

Additionally, simple analysis macro was provided to show the package functionality. In this

5Interesting that the primary vertex bias was never seen in the CBM D0 analysis because of a much higher
number of tracks contributing to the CBM vertex.
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Figure 3.11: Residual and pull of the
D0 mass.
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Figure 3.12: Test of the decayed particle reconstruc-
tion on simulated ALICE p-p events.

test for each pair of positive and negative particles a mother particle is created and constrained
to the primary vertex. True Monte-Carlo PID is set to the daughter particles, but no other
Monte-Carlo information is used. In the case when the created mother particle passes a χ2

cut, its mass is put into a histogram. The resulting invariant mass distribution is shown in
Figure 3.12. One can see narrow mass peaks which correspond to various V 0 decays and low
background from false combinations of daughter particles.
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Figure 3.13: HLT K0
s and Λ0 finders. Real data, run 00010480 (2009).

A real analysis of the decayed particles is implemented in the High Level Trigger. Some of
the V 0 decays, such as K0

s -, Λ0-, and γ-decay are monitored on-line in order to check the
quality of the data and the consistency of the HLT reconstruction chain (see Fig. 3.13 ).

In addition, the Armenteros-Podolanski plot [19] is displayed (see Fig. 3.14). The plot is a
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Figure 3.14: HLT Armenteros-Podolanski plot. Real data, run 00010480 (2009).

convenient way of identifying V 0 decays without taking any assumption on the masses of the
decay products. It is a two dimensional plot of transverse momentum pt of the oppositely
charged decay products with respect to the V0 momentum versus the longitudinal momentum
asymmetry α = (p+l − p−l )/(p+l + p−l ). The largest ellipse in Figure 3.14 is K0

S decay. It is
centred about α = 0.0 as the decay particles are two pions which have the same mass and
therefore carry similar momenta. The centres of the Λ and Λ̄ bands are shifted to α = +0.7
and α = −0.7 respectively due to the asymmetry between the masses of the decay products.

The both Figures 3.13 and 3.14 show the first ALICE physics obtained by the HLT in the
first collision runs in late 2009.

3.7.1 Reconstruction of primary vertex in the High Level Trigger

It has been pointed out in Section 3.5 that the method of reconstruction of decayed particles
can be applied for the vertex reconstruction as well. In this approach, a phantom mother
particle for all the primary tracks is reconstructed. The position of the mother particle at
its decay point gives the desired vertex position while other parameters of the reconstructed
particle are meaningless.

Despite mathematical correctness, the method is not optimal in the sense of computing time,
as it evaluates eight particle parameters while only three of them are needed. Therefore
an extra code for the vertex reconstruction has been developed, where the calculations are
reduced to the reconstruction of the particle position only.

Reconstruction of the primary event vertex is more than the fit of the vertex position. It is
also necessary to determine which of the tracks belong to the vertex (primary tracks) and
which are not (secondary tracks). Therefore the primary vertex reconstruction is usually
performed iteratively:

1. It starts with preliminary selection of primary tracks.

2. The vertex is fitted with the selected tracks.
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3. Those primary tracks which are too far (in the terms of χ2) deviated from the vertex
are removed.

4. The vertex is re-fitted, and so on from step 3.

The developed decayed particle mathematics allows one to skip the iterations. A track can
be excluded from the fitted vertex by use of the formula for the measurement subtraction,
given in Section (1.4.4). Having both filtering and subtraction operations implemented, one
can add or remove tracks from the vertex at any time in an arbitrary order, making the fit
iterations unnecessary.
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Figure 3.15: HLT primary vertex distribution. Real data, run 00010485 (2009).

Parameter Resolution (µm) Pull

xv 100 1.07
yv 102 1.12
zv 138 1.11

Table 3.6: Residuals and normalised residuals (pulls) of the primary vertex parameters ob-
tained from 1, 000 simulated proton-proton collisions at 14 TeV.

Performance of the primary vertex fit in the High Level Trigger for 1, 000 simulated proton-
proton events is given in Table 3.6. The obtained vertex resolutions are 100 µm for x and y
coordinates and 138 µm for the z coordinate, the pulls are close to unity. The speed of the
algorithm is 1, 000 events per second, thus only one CPU is needed to reconstruct 14 TeV
proton-proton data on-line.
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The algorithm is used for the on-line reconstruction of the real data. Figure 3.15 shows an
example of the primary vertex distribution, obtained by the HLT during first collision runs
in the late 2009.
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Chapter 4

On-line event reconstruction in the
CBM experiment

Figure 4.1: Simulated Au+Au event in
CBM.

Figure 4.2: Geometry of the STS+MVD de-
tectors in CBM.

4.1 Overview

The interaction rates in the CBM experiment are up to 10 MHz (minimum bias events) which
corresponds to a beam intensity of 109 beam particles per second with 1% interaction target.
Particle trajectories are detected by the Silicon Tracking System (STS) which is placed inside
the magnet (Fig. 4.2). Large track densities (on average 500 tracks in the inner tracker in a
typical central Au+Au collision, see Figure 4.1 as an example) together with the presence of
a non-homogeneous magnetic field make the event reconstruction in STS complicated.

The reconstruction of tracks is based on the Cellular Automaton method. This method
creates short three-hit track segments (tracklets) in neighbouring detector planes and links
them into long tracks (see an illustration in Figure 4.3). The algorithm scheme is the following:

• First, the algorithm generates tracklets for each group of three consecutive STS stations.
Cuts are applied to create only reasonable tracklets. To each tracklet a counter is
assigned, which marks tracklet position on a track (initially the counter is set to 1— the
first tracklet of a track).
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Figure 4.3: Construction of tracklets. Figure 4.4: Illustration of the cellular au-
tomaton algorithm.

• In the second step, all the tracklets are extrapolated to the next STS station in the
target direction.

• Then, each tracklet finds its neighbours among the tracklets, extrapolated from the
previous station. The neighbours are possible tracklet continuations according to the
track model. If there are neighbours found, the counter of the tracklet is incremented
with respect to the largest neighbour’s counter: counter = countermaxneighb + 1, as it is
illustrated in Figure 4.4.

After proceeding the above steps for all the STS stations, the algorithm builds track can-
didates out of the tracklets. It starts with the tracklets having the largest counter (in
Figure 4.4 countermax = 4). For each of these tracklets it takes a neighbour which has a
(counter = countermax − 1). In case there are several neighbours which satisfy this con-
dition, corresponding combinatorial branches are created. Then the algorithm follows the
counters (e.g. goes from 4 to 3, but not 2) further, and finally keeps the best (χ2) track for
each initial tracklet with the largest counter.

Then, a selection of the created track candidates is performed. The algorithm starts with the
best (in terms of χ2) track and flags all hits of the track as “used”. It continues with the next
track candidate (with higher χ2), checks if the number of its ”used” hits (the hits which are
already used by the other tracks) is acceptable and flags its hits (or deletes the candidate).
Then it proceeds with the next track candidate, etc.

The algorithm repeats collecting tracks decrementing the maximal counter until the shortest
tracks are collected.

Then, in case of a significant detector inefficiency the algorithm merges short tracks (clones)
into long tracks using the track model.

Finally, the algorithm applies extra cuts to kill ghost tracks. Ghost tracks are mostly short
tracks which are not pointed to the interaction point.

Being essentially local and parallel, the cellular automaton method avoids exhaustive com-
binatorial searches, even when implemented on conventional computers. Since the algorithm
operates with highly structured information, the amount of data to be processed in the course
of the track search is significantly reduced.

For evaluation purposes all simulated and reconstructed tracks are subdivided into several
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Figure 4.5: Track reconstruction efficiency as
a function of momentum.

categories: one set for reference tracks, one for clone tracks, one for ghost tracks, and one
extra set for non-reference tracks, and also clone and ghost tracks [12]. The reference and the
extra tracks compose the set of all reconstructible tracks.

By definition, a track from the all set should intersect the sensitive regions of at least four
stations. In addition, a reference track should have a momentum greater than 1 GeV/c .
The reference set of tracks also includes tracks of particular interest to physics: secondary
tracks from interesting decays; primary tracks coming from the target region. In addition to
these tracks, an extra set of tracks is considered, containing tracks in the all set which are
not reference tracks.

Track category Efficiency, %

Reference set 99.45
All set 96.98
Extra set 89.46
Clones 0.01
Ghost 0.61

Table 4.1: Tracking efficiency for different sets of tracks.

A reconstructed track is assigned to a generated particle, if at least 70% of its hits have been
caused by this particle. A generated particle is regarded as found, if it has been assigned
to at least one reconstructed track. If the particle is found more than once, all additionally
reconstructed tracks are regarded as clones. A reconstructed track is called ghost when it is
not assigned to any generated particle (70% criteria).

The efficiency of track reconstruction for particles detected in at least four stations is pre-
sented in Fig. 4.5 and Table 4.1. Tracks of high momentum particles are reconstructed very
well with efficiencies of 99.45%, while multiple scattering in detector material leads to a lower
reconstruction efficiency of 89.46% for slow particles from the extra set of tracks.

The total efficiency for all tracks with a large fraction of soft secondary tracks is 96.98%. The
clone rate of the algorithm is 0.01% and the ghost rate 0.61%.

The track and the vertex fit in CBM is performed by the Kalman filter, described in Sec-
tion 2.2. As the fit is applied already at the level of tracklet creation, the speed of the fitter
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is very important for the on-line data processing.

Starting from the conventional Kalman filter with a Runge-Kutta extrapolator, the fit was
improved by developing a special analytic extrapolator, described in Section 2.2.2. Next, the
fit was sped up by a factor of 10, 000 by memory optimisation (in particular, by introducing
a polynomial approximation of the magnetic field) and by use of SIMD CPU instructions.
The optimisation of the track fit is described in the next Section.

4.2 Fast SIMDised Kalman filter

To achieve high track-finding efficiency, the Kalman filter fitting algorithm is extensively used
withing the track finder. Therefore the speed of the Kalman filter is of crucial importance in
on-line data reconstruction.

Having SIMD instructions implemented in Pentium 4 processors allows one to increase the
speed of the Kalman filter by rewriting the algorithm in terms of vectors instead of scalars.
The vectorisation will become even more important in the near future when Cell processor
based PCs become widely used in data processing.

In order to speed up the on-line CBM reconstruction, the track fitter was first modified to use
the SIMD unit of the Pentium 4 processor [20] and then ported to the Cell processor [21, 22]
which is considered a candidate for the L1 hardware [26].

4.2.1 SIMD architecture

Figure 4.6: Four concurrent add operations [22].

There are three important classes of computer architectures based upon the number of con-
current instruction and data streams:

• Single instruction, single data stream (SISD) — a single instruction stream on scalar
data.

• Single instruction, multiple data streams (SIMD) — multiple data streams against a
single instruction stream to perform operations which may be naturally parallelised.
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• Multiple instruction, multiple data (MIMD) — many functional units perform different
operations on di erent data.

The basic data unit of SIMD is the vector, which is why SIMD computing is also known
as vector processing. A vector is a row of individual numbers or scalars. A regular CPU
operates on scalars, one at a time. A vector processor, on the other hand, lines up a whole
row of these scalars, all of the same type, and operates on them as an unit.

These vectors are represented in packed data format. Data is grouped into bytes (8 bits) or
words (16 bits) and packed into a vector to be operated on.

The vector size defining the number of scalars processed in parallel is one of the most critical
design aspects of SIMD implementations. For instance, using a 4-element, 128-bit vector one
can do four-way single-precision (32-bit) foating-point calculations in parallel (see Fig. 4.6).

Today, SIMD instructions can be found on most CPUs, including the PowerPC’s AltiVec,
Intel’s MMX, SSE, SSE2, SSE3 and SSE4 as well as AMD’s 3DNow!

A flexible C++ interface to the SIMD instructions has been developed for the CBM on-
line framework. The interface allows one to run the same source code on different SIMD
architectures as well as on scalar CPUs.

4.2.2 Cell Broadband Engine

Figure 4.7: Cell Broadband Engine overview [22].

Cell1 is a microprocessor architecture developed jointly by a Sony, Toshiba, and IBM al-
liance known as STI. Cell combines a general-purpose Power-architecture core of modest

1Cell is a shorthand for Cell Broadband Engine Architecture, commonly abbreviated CBEA in full or
Cell BE in part.
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performance with multiple streamlined co-processing elements which greatly accelerate mul-
timedia and vector processing applications, as well as many other forms of dedicated compu-
tation. [21, 22]

The resulting architecture emphasizes efficiency/watt, prioritises bandwidth over latency, and
favors peak computational throughput over simplicity of program code. For these reasons,
Cell is widely regarded as a challenging environment for software development.

The major commercial application of Cell is in Sony’s PlayStation 3 game console. Although
the Cell Broadband Engine was initially intended for applications in game consoles and media-
rich consumer-electronics devices, such as high-definition televisions, the architecture and the
Cell Broadband Engine implementation have been designed to enable fundamental advances
in processor performance.

The Cell Broadband Engine (Fig. 4.7) is a single-chip multiprocessor with nine processors
operating on a shared, coherent memory. The Cell processor can be split into four compo-
nents:

• the main processor called the Power Processing Element (PPE) (a two-way SMT multi-
threaded Power 970 architecture compliant core),

• eight fully-functional co-processors called the Synergystic Processing Elements (SPEs),

• a specialised high-bandwidth circular data bus connecting the PPE, input/output ele-
ments and the SPEs, called the Element Interconnect Bus (EIB),

• external input and ouput structures.

The first type of processor — the PPE — is not intended to perform all primary processing
for the system, but rather to act as a controller for the other eight SPEs, which handle
most of the computational workload. The PPE is fully compliant with the 64-bit PowerPC
Architecture and can run 32-bit and 64-bit operating systems and applications.

The second type of processor — the SPE — has RISC architecture with a fixed-width 32-bit
instruction format. It is optimised for running compute-intensive applications, and it is not
optimised for running an operating system. The SPEs are designed for vectorised floating
point code execution.

In one typical usage scenario, the system loads the SPEs with small programs, chaining the
SPEs together to handle each step in a complex operation. Another possibility is to partition
the input data set and have several SPEs performing the same kind of operation in parallel.

4.2.3 Speed-up of the Kalman filter algorithm

Being the core part of the reconstruction software of the CBM experiment, the Kalman filter
track fit procedure has been chosen for investigation of its vectorisation ability and further
implementation in the Cell processor.

The track fitting routine in the CBM experiment realises the Kalman Filter in its conventional
approach. All variables in the routine are scalars and most of them have floating point
representation in double precision.

In the first stage, the memory access in the algorithm has been optimised, because operating
data in the main memory is significantly slower compared to working within the cache. This
is especially true for the Cell processor with the size of the local storage of SPEs comparable
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with the cache size, where unpredictable access to the main memory of the PPE is a blocking
process which stalls the algorithm.

Figure 4.8: The most significant (By) component of the magnetic field in the middle of the
detector system (z = 50 cm) calculated using the polynomial approximation (left) and the
difference between two alternative field representations (right).

The original fitter permanently accesses the main memory, as it needs to read the non-
homogeneous magnetic field which is stored in a 70-MByte large map. The access to the field
map was avoided by the use of a local polynomial approximation of the field due to the fact
that the field is relatively smooth in XY -slices.

For the propagation step of the Kalman filter it was found to be sufficient to use a polynomial
of the 4-th order to approximate the field in STS stations (see Fig. 4.8 for comparison of two
alternative field representations and Fig. 4.2 to recall the STS geometry).

The field behaviour in the space between the STS stations is approximated for every tracklet
individually as a parabola, calculating parabola coefficients from the field taken at the track
hits, since only the field value along the track is needed [10]. Track parameters taken with
the polynomial approximation of the magnetic field are as good as those calculated using the
magnetic field map showing no degradation at all.

At the second optimisation stage the fit algorithm has been signifcantly modified in two
directions: changing variables in the algorithm from double to single precision and using a
computationally optimised implementation of the Kalman filter method.

Operating with data in single precision has several advantages. First, memory requirements
are reduced by 50%. This results in faster memory access, since twice as much data can be
read into the cache of a conventional CPU or into local storage of the SPE. Second, twice the
amount of data can be packed into a vector, thus automatically doubling the speed of the
SIMDised algorithm. Third, the current implementation of the Cell processor is optimised
for SIMD operations in single precision. Therefore, performing double precision operations
is an order of magnitude slower [21].

Changing the precision of all floating point variables from double to single precision, it has
been realised that 32 bits of single precision is not enough for the conventional Kalman filter
to be numerically stable. The outcome is unacceptable due to poorer quality of the track
parameters and bad numerical properties of the covariance matrix. In particular, the matrix
has negative diagonal elements, which theoretically cannot be and makes the results useless.

It is possible to keep some variables (such as the covariance matrix) in double precision and
also process critical calculations in double precision. However, operations in double precision
on SPE have significant extra charge. Therefore it was decided to find a numerically stable
and accurate single precision approach of the Kalman filter.
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Step Description Timing, %

1 Initialisation 11
2 Prediction 45
3 Process noise 8
4 Filtration 36

Table 4.2: Timing (in %) for different steps of the Kalman filter.

There are several methods to improve the numerical quality of the conventional Kalman
filter [24]. One of the best numerically stable single precision approaches is the square root
implementation of the Kalman filter [24, 25], where calculations are performed using the
square root of the covariance matrix (Ck = SkS

T
k ). Although algebraically equivalent to

the conventional approach, the square root filter exhibits improved numerical characteristics,
providing the same accuracy in single precision as the conventional Kalman filter in double
precision. The square root filter includes extra transformations and therefore requires about
30% more processing time. Such an overhead is usually considered acceptable for the benefit
of improved numerical stability.

The square root filter was implemented first. Then a comprehensive analysis showed that
the only source of the Kalman filter instability is the filtration of the first measurements. At
this sage errors of the initial track parameters are several orders of magnitude larger than
errors of the measurements. It causes significant rounding errors (see eqs. 1.11) and loss of
precision in the calculations. A reduction of the initial track errors makes the calculations
stable, but degrades the quality of the track parameters, as they become biased to the initial
values.

The dilemma was resolved by splitting the filtration mathematics into two branches.

The covariance matrix is updated in the conventional way, while the track parameters are
evaluated differently for the case when the track errors are much bigger than the measurement
error. In this case the filtering equations for the state vector are simplified by eliminating
the measurement error. This approach keeps the algorithm stable and accurate in single
precision. In contrast to the square root filter, this method requires only negligible amount
of extra calculations. Therefore it has the same speed as the original Kalman filter algorithm.

When the numerically stable approach was found, the Kalman filter was mathematically op-
timised. Originally it started with arbitrary initial track parameters and a large covariance
matrix, and then iterated the whole fit several times in order to converge to the optimal
solution. A preliminary estimation of the track parameters from the input data reduced the
number of necessary iterations to one. Furthermore, as a result of the polynomial approx-
imation of the magnetic field, the propagation step of the Kalman filter can be performed
directly from measurement to measurement without the necessity of additional intermedi-
ate steps. Other optimisations have also been implemented, like the replacement of matrix
multiplications by direct operations on non-trivial matrix elements only.

The algorithm has also been extensively analysed with respect to its numerical optimisation,
for instance: most of the loops have been unrolled in order to provide additional instructions
for interleaving; most branches have been eliminated from the algorithm to avoid branch
misprediction penalties; calculations have been reordered for a better use of the processor
pipeline.

Table 4.2 gives the relative timing for different steps (see Section 1) of the Kalman filter
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routine. One can see that even without reading the magnetic field map the propagation of
the track parameters (the prediction step) is still the most time consuming part of the fit
procedure because of the complexity of the propagation in a non-homogeneous magnetic field.

At the third optimisation stage the algorithm has been vectorised. The parallelisation scheme
of the track fit is simple: corresponding parameters of four tracks are packed into a vector.
Denoting the parameters of the four original tracks as

T1 = {p11, p21, p31, p41, p51}
T2 = {p12, p22, p32, p42, p52}
T3 = {p13, p23, p33, p43, p53}
T4 = {p14, p24, p34, p44, p54}

(4.1)

the SIMDised track is
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(4.2)

Even such a simple vectorisation scheme requires preliminary sorting of the tracks according
to their length in order to avoid branches in the vectorised algorithm. The problem of having
branches can be very non-trivial for more complicated algorithms, like a track finder with a
lot of combinatorial analysis. In some of the cases one should not be restricted to using the
vertical vector operations, but should also use horizontal operations to exchange the content
of different vectors, avoiding the algorithm branches within a vector.

After the parallelisation scheme was developed and tested, the track fit algorithm was adopted
to use the SSE2 instruction set. The problem is that the vector instructions look completely
different from the corresponding scalar instructions: for instance, the scalar operation c = a+b
becomes c = vec add(a, b). Re-writing the code using vector instructions would require
support for both – scalar and vector – versions, in particular, duplicating modifications in
both versions and initiating an extra loop of debugging and testing. Therefore, it was decided
to implement the SSE2 vector instruction set in a header file, overloading all operands and
inlining several functions.2 In this way the same source code is used in scalar and vector
implementations and possible changes in the code are valid for both versions. The quality of
the track parameters and the covariance matrix of the SIMDised version and of the scalar
version are identical.

At the fourth stage of the optimisation the algorithm has been ported into the Cell simulator
and run on the PPE processor. For that the AltiVec instruction set of the PPE was imple-
mented in a header file. It was still possible to run both – scalar and vector – versions on the
PPE examining the consistency of the results.

In the last step the code was ported to the SPE processor. Again, this was accomplished by
writing another header, which implements the specialised SIMD instruction set of the SPE.
In addition, the code was slightly modified in order to provide communication between the
PPE and the SPE and to exchange data between the main memory and the local store of
the SPE. Because the total size of the SPE code is only 50 kB, the code fits very well in the
local store of the SPE leaving the remaining 200 kB for data.

The SPU statistics of the Cell simulator is given in Fig 4.9. It shows that the algorithm
achieves a very good overall cycles per instruction (CPI) performance of 1.03. It has 15.5%

2In case no SIMD instruction set is supported by a computer, the vector type is substituted by the pseu-
dovector array of four scalars.
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Figure 4.9: A dynamic timing analysis of the SPE using the IBM Full System Simulator for
the Cell Broadband Engine.
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dual-issue (odd and even pipeline use) rates, almost no stall due to branch misses (1.9%) and
low dependency stalls (19.3%). This is an excellent result for such a complicated algorithm.
It is also important that all of the 128 registers have been used.

After extensive tests on the simulator, the algorithm ran on a Dual Cell-Based Blade computer
running at 2.4 GHz. There were no significant problems observed at this stage.

At the last stage of testing all 16 SPEs of the two Cell processors available on the Cell Blade
where running in parallel to process different data samples.

4.2.4 Performance of the SIMDised track fit

Constant  384.9
Mean      -0.9129
Sigma     28.18

m]µ) [mc-xreco Residual (x
-200 -150 -100 -50 0 50 100 150 2000

50

100

150

200

250

300

350

400

Constant  384.9
Mean      -0.9129
Sigma     28.18

Constant    496
Mean      -0.03113
Sigma     1.113

 Pull x 
-10 -8 -6 -4 -2 0 2 4 6 8 100

100

200

300

400

500

Constant    496
Mean      -0.03113
Sigma     1.113

Constant  340.9
Mean      0.01177
Sigma     0.3006

) [mrad]mc
x- treco

x
 Residual (t

-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

50

100

150

200

250

300

350

400

450

Constant  340.9
Mean      0.01177
Sigma     0.3006

Constant  472.8
Mean      0.03089
Sigma      1.15

 x Pull t
-10 -8 -6 -4 -2 0 2 4 6 8 100

100

200

300

400

500

Constant  472.8
Mean      0.03089
Sigma      1.15

Constant   1065
Mean      0.000301
Sigma     0.00515

mc)/pmc- preco Resolution (p
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.10

200

400

600

800

1000

Constant   1065
Mean      0.000301
Sigma     0.00515

Constant  440.1
Mean      0.01204
Sigma     1.234

 Pull q/p
-10 -8 -6 -4 -2 0 2 4 6 8 100

100

200

300

400

500

Constant  440.1
Mean      0.01204
Sigma     1.234

Figure 4.10: Residuals and normalised residuals (pulls) of the estimated track parameters at
the production vertex for central Au+Au collisions at 35 AGeV in the approximated magnetic
field of the CBM experiment obtained on the Cell Blade computer.

The Kalman filter based track fit has been tested on simulated data of the CBM experiment.
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Stage Description Time/track Speed-up factor

Initial scalar version 12 ms
1 Approximation of the magnetic field 240 µs 50
2 Optimisation of the algorithm 7.2 µs 35
3 Vectorisation 1.6 µs 4.5
4 Porting to SPE 1.1 µs 1.5
5 Parallelisation on 16 SPEs (2 Cells) 0.1 µs 10

Final SIMDised version 0.1 µs 120000

Table 4.3: Summarised stages of the optimisation procedure.

In the CBM experiment with forward geometry the natural choice of the state vector3 is:

r = {x, y, tx, ty, q/p}

where x and y are track coordinates at the reference z-plane, tx = tan θx is the track slope
in the xz plane, ty = tan θy is the track slope in the yz plane, and q/p is the inverse particle
momentum signed according to its charge.

Quality of the track parameters was monitored at all stages of the optimisation of the algo-
rithm. Figure 4.10 shows residuals and normalised residuals (pulls) of the track parameters
at the production vertex obtained on a Cell Blade computer.

The residuals of fitted track parameters, for instance, of the x-coordinate, are determined as:

ρx = xreco − xmc

where xreco — reconstructed and xmc — true Monte-Carlo values of the x-coordinate.

The normalised residual (pull) distributions of the fitted track parameters are a measure of
the reliability of the fit. Normalised residuals are determined according to the formula:

P (x) =
ρx√
Cxx

where Cxx — the corresponding diagonal element of the covariance matrix, obtained in the
track fit. In the ideal case the normalised error distributions of the coordinates and slopes of
the track should be unbiased and Gaussian distributed with width of 1.0.

To get the parameters and the covariance matrix of a track at a vertex where the track
originates, the fitted track was propagated to its Monte-Carlo vertex, taking into account the
remaining traversed material.

Figure 4.10 gives also the RMS of the Gaussian fit of the residuals and pulls. All the pulls
are centered at zero indicating that there is no systematic bias in the reconstructed values.
The pull distributions are well fitted by a Gaussian with small tails caused by the various
non-Gaussian contributions to the fit. The q/p pull shows slightly underestimated errors.
This could be the result of several approximations made in the fitting procedure, mainly in
the part of the material treatment.

Table 4.3 summarises all stages and gives a timing analysis and the speed-up factors after
each development stage. One can see that the elimination of the magnetic field map (thus
elimination of the access to main memory during the fit) boosts the speed of the Kalman

3The z-coordinate points downstream the spectrometer axis, and x and y are transverese coordinates.
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filter 50-fold. A further 35-fold increase in speed was achieved by the code optimisations.
The vectorisation of the code at the next stage of the development improved the speed by
a factor of 4.5.4 In contrast to pure software improvements at the first two stages, the
vectorisation required both software and hardware changes. Porting to the SPE at the next
stage resulted in a 1.5-fold boost of the speed with respect to the Pentium 4 processor used
at the previous stages, probably due to a higher number of registers in the SPE. At the last
stage, the implementation was multi-threaded using all 16 SPEs of the Cell Blade computer.
This boost performance 10-fold over a single SPE. In total, the Kalman filter was sped up
by a factor of 120, 000.

An extra benchmark of the SIMDised version of the Kalman has been done on three different
computers based on:

• Two Intel Xeon Processors with Hyper-Threading enabled and 512 kB cache at 2.66
GHz; 5

• Two Dual Core AMD Opteron Processors 265 with 1024 kB cache at 1.8 GHz; 6

• Two Cell Broadband Engines with 256 kB local store at 2.4 GHz. 7

Both Intel and AMD based personal computers are treated by the operating system as having
four processors each.

Processing Unit Clock Time/track kCycle/track

Intel Xenon 2.66 GHz 1.47 µs 3.91
AMD Opteron 1.80 GHz 1.86 µs 3.35
Cell SPE 2.4 GHz 0.87µs 2.09

Table 4.4: Real-time performance of the SIMDised version of the Kalman filter fit for a single
track, fitted on three different CPU families.

Table 4.4 gives real-time performance for the fit of a single track on different computers. Only
one processing unit (CPU or SPU) is active, while others are in the idle state or running the
operating system. Since only one track of about 0.5 kB size is fitted, all computations are
located within the cache or the local memory. The Cell Blade computer has the fastest
performance requiring half clocks per track with respect to the Intel Xeon based computer.

Figure 4.11 gives real time per track for the SIMDised version of the Kalman filter for the
Intel Xeon, AMD Opteron and Cell based computers running a different number of processes
in parallel. A very large sample of tracks exceeding many times the size of the cache or the
local store has been processed in order to include the effect of communication to the main
memory. Compared to Table 4.4 one can see that for all computers there is a little overhead of
about 10% for reading data from the main memory. It is also clear that the hyper-threading
of the Intel Xeon processor does not contribute in this particular case of the fit procedure, in
contrast the dual core technology of the AMD Opteron processor which shows the stability of
the timing performance due to its architecture (four full cores). In the Cell Blade computer
all 16 SPEs work in parallel completely independently. They have the constant speed of the

4The SIMDised code uses special CPU instructions, like fast inversion, which are not available for scalar
registers.

5lxg1411 at the Gesellschaft fur Schwerionenforschung mbH, 64291 Darmstadt, Germany.
6eh102 at the Kirchho Institute for Physics, University of Heidelberg, 69120 Heidelberg, Germany.
7blade11bc4 at the IBM Laboratory Boblingen, Schonaicher Str. 220, 71032 Boblingen, Germany.
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Figure 4.11: Fit time per track of the SIMDised version of the Kalman filter measured in real
time for the Intel Xeon, AMD Opteron and Cell based computers running different number
of processes in parallel.

algorithm per processing unit up to 11 processes, then slightly reducing the speed probably
due to large data flow through the element interconnect bus.

Having significant differences in the architectures and clock rate all computers have shown
similar speed8 of the algorithm per processing unit. The reason may be that the final algo-
rithm does not require large memory and most of the calculations are done within the cache
or the local store. Second, the algorithm implements the Kalman filter technique in the same
source code, which after compilation by a gcc compiler produces executables with similar
performances.

The local store of the SPE requires special consideration, but can give more freedom to the
developer compared to the cache in Intel or AMD processors. The vector instruction set SSE2
has relatively limited capabilities to operate with the cache. In contrast, the instruction set
of the SPE has a considerable number of operands for (non-blocking) operation with the local
store. In our case, the track fit algorithm does not require a large exchange of data between
the local store and the main memory, therefore this difference between the processors has not
been observed.

8It should be noted, that there are processors with higher clock rates available.
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Chapter 5

On-line event reconstruction in the
ALICE High Level Trigger

Figure 5.1: The ALICE spectrometer at LHC.

5.1 Overview

The ALICE High-Level Trigger [27, 28] processes proton-proton collisions at 2 kHz and heavy
ion collisions at 300 Hz; with an average of 25 tracks in each proton-proton event and up
to 25, 000 tracks in the heavy ion events corresponding to an input data stream of 30 GB/s.
Figures 5.2 and 5.3 show complexity of both types of events to be reconstructed in real-time.

In recent years, the increase in processor clock speed has stagnated. Instead a new trend to
multi- and many-core chips has developed. It is evident that, for raw computation power, the
best approach is a big set of small and simple cores as it has been realized within graphics
cards for many years now.

While at first they could only be used for very special problems using algorithms that had
to be developed with a particular architecture in mind, there are frameworks available today
to run general purpose code written in high level languages on GPUs with little changes.
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Figure 5.2: Proton-proton event in the
ALICE TPC detector, reconstructed by
HLT.
Real data, run 00010480 (2009).

Figure 5.3: Heavy ion event in the ALICE
TPC detector, reconstructed by HLT (TPC
clusters are not shown).
Real data, run 00137124 (2010).

The Cellular Automaton tracking algorithm [29, 30] used in the ALICE HLT for online
reconstruction has been developed with multi-core support in mind. All steps of the algorithm
can easily be spread over many independent processors. Primarily targeted at processing Pb-
Pb events, with up to 25, 000 tracks and several million clusters (Fig. 5.3), the tracker was
adjusted to run on GPUs. A framework being able to run the same source code on a CPU as
well as a GPU was developed, where the same source files are included in wrappers for both
processor types. This assures that code maintainability does not suffer.

5.2 HLT Reconstruction Scheme

The Time Projection Chamber (TPC) detector, which is shown on Figures 5.1, 5.2, 5.3,
is the main tracking detector of the ALICE experiment. It consists of 18 sectors on either
Z-side. The detector measures the track positions in 159 rows as shown in Figure 5.5.

The overall reconstruction scheme is presented in Figure 5.4. It starts with the TPC cluster
finder, which finds the hits by identifying localised clusters and computing their centre of
gravity. These reconstructed hits are sent to the sector tracker which reconstructs the tracks
in each TPC sector individually. Then the sector tracks are merged by the track merger algo-
rithm and later updated with the measurements from the ITS detector. The reconstruction
of the event’s vertex and the physical triggers are running at the end of the reconstruction
tree structure. Typically every processing stage reduces the size of the event data.

This scheme processes data as early as possible avoiding any unnecessary copy steps and uses
all available data locality and parallelisation.

The core of the event reconstruction happens in the TPC sector tracker, which creates the
tracks from the measurements. It is the only component which processes the TPC hits, the
higher level components operate on the reconstructed sector tracks.
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Figure 5.4: HLT reconstruction scheme. Figure 5.5: Geometry of a TPC sector.

5.3 HLT Tracker Algorithm

An event coming from the detector only contains information about the spatial position of
hits, but no information about the particles which caused the hits. The task of the track
finder is to group the hits in such a way that they form the particle trajectories.

This is a combinatorial pattern recognition problem. Since the potential number of hit com-
binations is enormous,1 there is no exact solution to the problem, therefore heuristic methods
are applied. Due to the large combinatorial background the key issue is the dependence of
the reconstruction time on the number of tracks to be reconstructed. Figure 5.6 shows that
the presented algorithm requires 130 µs per track independently from detector occupancy,
thus the combinatorial part of the algorithm is built optimally.
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Figure 5.6: Reconstruction time on CPU.

The track reconstruction algorithm starts with a combinatorial search for track candidates

1For example, given n tracks producing hits in each of 159 TPC rows, the number of possible hit combi-
nations to create a single track is equal to n159.
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Figure 5.7: a) Neighbours finder. b) Evolution step of the Cellular Automaton.

(tracklets), which is based on the Cellular Automaton method [18]. Local pieces of trajectories
are created from hits which are located nearby to each other, thus eliminating absurd hit
combinations at the local level. The combinatorial processing composes the following two
steps:

• 1. Neighbour finder: For each hit at k-th row the best pair of neighbouring hits from
rows k+1 and k-1 is found, as it is shown in Fig. 5.7 a). The neighbour selection criteria
requires the hit and its two best neighbours to form a straight line. The links to the
best two neighbours are stored. Once the best pair of neighbours is found for each hit,
the step is completed.

• 2. Evolution step: Reciprocal links are determined and saved, all the other links are
removed (see Fig. 5.7 b)).

Every saved one-to-one link defines a part of the trajectory between the two neighbouring
hits. Chains of consecutive one-to-one links define the tracklets. One can see from Fig. 5.7 b)
that each hit can belong to only one tracklet because of the strong evolution criteria.

This uncommon approach is possible due to the abundance of hits on every TPC track.

Such a strong selection of tracklets results in a linear dependence of the processing time on
the number of track candidates. When the tracklets are created, the sequential part of the
reconstruction starts, implementing the following two steps:

• 3. Tracklet construction: The tracklets are created by following the hit-to-hit links
as it is described above. The geometrical trajectories are fit using a Kalman Filter,
described in the Section 2.3, with a χ2 quality check. Each tracklet is extended in order
to collect hits close to its trajectory.

• 4. Tracklet selection: Some of the track candidates can have intersected parts. In this
case the longest track is saved, the shortest removed. A final quality check is applied
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to the reconstructed tracks, including a cut on the minimal number of hits and a cut
for low momentum.

5.4 HLT Tracker Efficiency
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Figure 5.8: Reconstruction performance for
proton-proton collisions at 14TeV.
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Figure 5.9: Reconstruction performance for
central heavy ion collisions at 5TeV.

The performance of the HLT track finder of 99.9 % for proton-proton events and 98.5 % for
central Pb-Pb collisions has been verified on simulated events. Corresponding efficiency plots
are shown on Fig. 5.8 and 5.9. In addition to the high efficiency, the on-line reconstruction
is two orders of magnitude faster than the off-line algorithm used as reference.

Figure 5.10: The first proton-proton event, obtained by the ALICE High Level Trigger.

The algorithm described has the advantage of a high degree of locality and parallelism. Step
one only searches for local neighbors to each hit. It can be done in parallel for all the hits
as the result does not depend on the order of processing. Step three follows each tracklets
hit by hit, which can also be done in parallel. Only the last selection step of the algorithm
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is sequential. These locality and parallelism allow for massively parallel implementation as
outlined in the following section.

There are many parts of the event reconstruction which are running after the tracker, in
particular the primary vertex finder and the V0 finder, which are described in Section 3.7.
As it was already noticed among the text the HLT reconstruction was not only tested on
simulated data, but it has been running on the real data since 2009. A historical snapshot of
one of the first ALICE proton-proton events, obtained by the HLT is shown in Figure 5.10.

5.5 Tracking on GPU hardware
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Figure 5.11: CPU and GPU Tracker Performance of the named processing steps for
central heavy ion event.

The tracker has been adjusted to run on graphics processing units (GPUs), implementing
hundreds ALUs running in parallel.

During the tracking there are 5 steps with a non-negligible requirement of computation time:
Initialization, Neighbour Finding, Tracklet Construction, Tracklet Selection and Tracklet
Output. The required processing time for the these stages of the tracking algorithm are
shown in Figure 5.11.

Of these, the Tracklet Construction contains all the mathematics and most non trivial calcu-
lations, while consuming 70 % of the CPU time. It is therefore both the part best suited for
running on a GPU and the part with the best opportunity for optimisation. Currently the
hardware deployed in the HLT are graphic cards from NVIDIA.

All above-mentioned steps have been ported to CUDA language [31] with the most effort put
into the Tracklet Construction. The GPU tracker is implemented in a way, that the main
tracking algorithm is contained in common source code for the CPU and GPU versions. Only
two specialised wrappers are used for each architecture respectively. The common source file
is included in both wrappers and processed by the CPU and GPU compiler. This ensures
that changes to the algorithm have to be applied only once.

Since the employed GPU chips show good performance only for single precision calculations,
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the whole tracker code uses single precision only. An adaptation of the Kalman filter, de-
scribed in Sec. 4.2 ensures numerical stability to the algorithm in single precision.

To efficiently run the Tracklet Construction on the GPU, a basic understanding of the GPU’s
architecture is needed. The first GPU hardware used in the HLT was the NVIDIA GTX285
card with a GT200b chip. The chip consists of 30 independent multiprocessors with 8
Arithmetic-Logic Units (ALU) each. Each multiprocessor can handle a vast number of threads
in parallel. One should have about 256 concurrent threads running on each multiprocessor for
fully exploiting the GPU. The threads running on a multiprocessor are organized in warps of
32 threads each. All threads in one warp can only execute one particular common instruction.
If different threads are to execute different instructions, for example due to branching in the
code, these operations have to be serialized.

The GPU implementation of the Tracklet Construction has each tracklet processed by a
different thread. The problem arising here is caused by different lengths of the tracklets.
As all threads within one warp must execute a common instruction, they have to wait for
the one thread processing the longest tracklet, even if their current task is already finished.
This resulted in the GPU Utilization staying below 20 % for the first implementation (see
Fig. 5.12).

Figure 5.12: GPU utilization without
scheduling during Tracklet Construction.2

Figure 5.13: GPU utilization with scheduling
during Tracklet Construction.2 3

The inefficiency was solved by D. Rohr [29] by introducing a dynamic scheduler. The Tracklet
Construction task is split into several subtasks. Within one subtask threads only extrapolate
tracklets for a constant amount of rows. Afterward all unfinished tracklets are redistributed
among threads and even multiprocessors. To suppress short tracklets in the first way, during
the evolution phase it is already checked whether at least three hits will be found for a
given start hit. If not, the start hit is ignored. The scheduler works more efficiently when
the tracker processes multiple slices in parallel. This ensures that there are always enough
threads available for scheduling. By applying these changes the GPU utilization raised to
almost 70 % (Fig. 5.13).

Additionally, the memory layout was changed in such a way, that threads which are executed
in parallel access consecutive memory addresses. This is done by interleaving the data struc-
tures for different threads. The GPU memory controller can coalesce accesses from different
threads into one single memory transaction.

Apart from the Tracklet Construction also the Neighbour Finding and Tracklet Selection
was ported onto the GPU. The performance of the Neighbours Finder could be significantly

2White borders seperate threads of one warp. Colors stand for: black — idling, colored — different states
during Tracklet Construction.

3The three rightmost threads belong to different multiprocessors and are scheduled separately.
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Figure 5.14: Asynchronous event processing.

improved by caching intermediate data in the fast shared memory of the NVIDIA GPU.

Running the Tracklet Selection on the GPU is necessary since even though the Tracklet
Selection is slower as compared to the CPU version (see Fig. 5.11), it greatly decreases the
output of the GPU and thus the amount of data that is transferred back to the host. Contrary
to all these tasks, the Initialization and Output steps do not involve computation, but instead
have lots of random memory reads requiring most data only once. This is not well suited for
a GPU, especially considering the additional data transfer required, but can benefit from big
and advanced caches of state of the art CPUs and therefore should stay on the CPU.

Keeping the GPU cores operating at full capacity is the main objective. Since 36 TPC
slices are handled simultaneously anyway, to allow efficient scheduling the steps are pipelined
asynchronously using both, CPU and GPU, while data is transferred via DMA. This way,
after having initialized the tracker data structures for the first slice, the CPU can immediately
preprocess the next slice while the GPU starts tracking the first one, as can be seen in
Figure 5.14. In general three tasks run concurrently: the GPU tracks slice n, slice n − 1 is
transferred to the GPU via DMA, the CPU preprocesses slice n − 2. In order to get higher
performance, multiple CPUs are used for the pipeline.

5.6 Efficiency and Performance of the GPU Tracker
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Figure 5.15: Clusters per track distribution for CPU and GPU trackers.

To test the GPU tracker real data and data from Monte-Carlo simulations is used. A compar-
ison shows that the output of the GPU tracker is equal to the output of the CPU tracker. As
an example, comparison of the number of TPC clusters per track distributions is presented
in Figure 5.15. On the simulated data, the GPU tracker shows the same efficiency as the
CPU tracker.

Additionally, a bitwise comparison of the GPU/CPU outputs has been done by D. Rohr. It
shows that in heavy ion events only 0, 012% of the reconstructed tracks differ. An analysis
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shows that the difference is caused by rounding errors in floating point arithmetic and there-
fore is fully acceptable. It can be concluded that the GPU tracker is in no inferior to the
CPU version. Use of the graphic cards gives factor of 3 speed-up with respect to 10-core
CPU (Fig. 6.14).

The GPU tracker is incorporated to the HLT framework and running on-line since 2011.

The first working version of the GPU tracker was written by the author, then the development
has been continued by David Rohr. The author thanks David for providing figures for this
and for the previous section.
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Conclusions

This thesis presents various algorithms which have been developed for event reconstruction
in the CBM and ALICE experiments.

All the developed algorithms are aimed for on-line data processing, where the challenge is to
create not only efficient but very fast reconstruction which would match high data rates of
the modern High Energy Physics experiments.

The effort to achieve the goal has been exerted in three directions:

• Development of fast mathematics for track and vertex fit (Chapters 2 and 3). For that
propose the existing fit algorithms has been improved and simplified using modifications
of the Kalman filter method, described in Chapter 1.

• Development of fast track finders to treat the most combinatorial part of the event
reconstruction (Chapters 4, 5). Here the Cellular Automaton-based algorithms have
been developed.

• Implementation of the developed algorithms on the modern hardware, such as SIMD for
CBM and GPU for ALICE, which allows one to perform massive parallel calculations
(Chapters 4, 5).

All the developed algorithms have proven their quality and speed and are used (in ALICE
experiment) or planned to be used (in CBM experiment) for the on-line data processing.
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[5] R. Frühwirth, P. Kubinec, W. Mitaroff and M. Regler, Vertex reconstruction and track
bundling at the LEP collider using robust algorithms. Comp. Phys. Commun. 96 (1996)
189-208.

[6] D. Emeliyanov, I. Kisel, S. Masciocchi, M. Sang and Yu. Vassiliev, Primary vertex
reconstruction by Rover. HERA-B note 00-139, 2000.

[7] V. Eiges, D. Emeliyanov, V. Kekelidze, I. Kisel and Yu. Vassiliev, Test of vertex recon-
struction and fitting algorithms on J/ψ → µ+µ− data. HERA-B note 00-182, 2000.

[8] S. Gorbunov and I. Kisel, Primary vertex fit based on the Kalman filter. CBM-SOFT-
note-2006-001, GSI, Darmstadt, 9 January 2006.

[9] S. Gorbunov and I. Kisel, Secondary vertex fit based on the Kalman filter. CBM-SOFT-
note-2006-002, GSI, Darmstadt, 14 September 2006.

[10] S. Gorbunov and I. Kisel, An analytic formula for track extrapolation in an inhomoge-
neous magnetic field. CBM-SOFT-note-2005-001, GSI, Darmstadt, 18 March 2005.

[11] W. Hulsbergen, Decay chain fitting with a Kalman filter. Nucl. Instr. and Meth. A 552
(2005) 566-575.

[12] CBM Collaboration, Compressed Baryonic Matter Experiment. Technical Status Report.
GSI, Darmstadt, 2005; 2006 Update
(http://www.gsi.de/documents/DOC-2006-Feb-108-1.pdf).

[13] I. Kisel, Event reconstruction in the CBM experiment. Nucl. Instr. and Meth. A566
(2006) 85-88.

[14] S. Gorbunov and I. Kisel, Analytic formula for track extrapolation in non-homogeneous
magnetic field. Nucl. Instr. and Meth. A559 (2006) 148-152.

92



[15] W.-M. Yao et al. (Particle Data Group), Review of Particle Physics, J. Phys. G: Nucl.
Part. Phys. 33 (2006) 1-1232.

[16] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, “Numerical Recipes in C”, Cam-
bridge University Press, Second edition, 1995.

[17] G. R. Lynch and O. I. Dahl, Approximations to multiple Coulomb scattering. Nucl.
Instr. and Meth. B58 (1991) 6-10.

[18] I. Kisel, Event reconstruction in the CBM experiment, Nucl. Instr. and Meth A 566
(2006), pp. 8588.

[19] J. Podolanski and R. Armenteros, Phil. Mag. 45, (1954), 13.

[20] IA-32 Intel Architecture Optimization Reference Manual, Intel, June 2005.

[21] Cell Broadband Engine. Programming Tutorial. IBM, ver. 1.0, October 21, 2005.

[22] Cell Broadband Engine. Programming Handbook. IBM, ver. 1.0, April 19, 2006.

[23] I. Ollmann, AltiVec Tutorial, ver. 1.2, 2002 (http://www.simdtech.org).

[24] M.S. Grewal and A.P. Andrews, Kalman Filtering: Theory and Practice using MATLAB.
New York, NY.: John Wiley & Sons, 2nd Ed., 2001.

[25] P.G. Kaminski, A.E. Bryson and S.F. Schmidt, Discrete square root filtering: A survey
of current techniques, IEEE Trans. Auto. Control, vol. AC-16 (1971) 727-736.

[26] S. Gorbunov, U. Kebschull, I. Kisel, V. Lindenstruth, and W. F. J. Müller, “Fast
SIMDized Kalman Filter based track Fit,” Comp. Phys. Comm., vol. 178, no. 5, pp. 374
- 383, Mar. 2008.

[27] The ALICE collaboration, “ALICE - Technical Proposal for A Large Ion Collider Exper-
iment at the CERN LHC,” CERN, Geneve, Rep. CERN-LHCC-95-71; LHCC-P-3, 1995.
Available: http://cdsweb.cern.ch/record/293391http://cdsweb.cern.ch/record/293391

[28] The ALICE collaboration, “The ALICE Experiment at the CERN LHC,”
JINST, vol. 3, no. 08, Aug. 2008. Available: http://dx.doi.org/10.1088/1748-
0221/3/08/S08002http://dx.doi.org/10.1088/1748-0221/3/08/S08002

[29] S. Gorbunov, D. Rohr et al. ALICE HLT high speed tracking and vertexing. Proc.17th
Real Time Conference, Lisbon, May 2010

[30] S. Gorbunov, D. Rohr et al. ALICE HLT High Speed Tracking on GPU . IEEE Trans-
actions on Nuclear Science, vol. 58, no. 4, Aug. 2011

[31] NVIDIA Corporation. CUDA C Programming Guide 4.0 (June 2011).

93



Chapter 6

Zusammenfassung (in German)

Diese Dissertation präsentiert verschiedenen Algorithmen, die für die Echtzeit-Ereignisrekon-
struktion im CBM-Experiment der GSI (in Darmstadt) und im ALICE-Experiment am
CERN (in Genf) entwickelt wurden.

Obwohl diese Experimente unterschiedlich sind — CBM ist ein Fixed-Target Experiment mit
Forward-Geometrie, während ALICE eine typische Collider-Geometrie hat — gibt es bei der
Rekonstruktion gemeinsame Aspekte.

Diese Arbeit beschreibt:

— allgemeine Änderungen an der Kalman-Filter-Methode, die bestehende Fit-Algorithmen
(auch Anpassungsalgorithmen genannt) beschleunigen, vereinfachen sowie deren numerische
Stabilität verbessern.

— Fit-Algorithmen, die für die CBM und ALICE Experimente entwickelt wurden, inklusive
einer neuen Methode für die Spurextrapolation in nicht-homogenen Magnetfeldern.

— die entwickelten Algorithmen für die Bestimmung der primären und sekundären Vertices
in beiden Experimenten. Insbesondere wird eine Methode zur Rekonstruktion der zerfallenen
Teilchen vorgestellt.

— parallelisierte Methoden für die Echtzeit-Spursuche im CBM Experiment.

— parallelisierte Methoden zur Echtzeit-Spursuche im High Level Trigger des ALICE-Experi-
ments.

— die Realisierung der Spurrekonsturtion auf moderner Hardware, insbesondere Vektor-
prozessoren und GPUs.

Alle vorgestellten Methoden sind vom oder mit direkter Beteiligung des Autors entwickelt
worden.

6.1 Die Kalman-Filter-Methode

Die Ereignisrekonstruktion in der Hochenergiephysik umfasst verschiedenen Anpassungsprob-
leme. Um es kurz zu fassen: es müssen die wahrscheinlichsten Werte von Größen anhand von
Messungen dieser Größen errechnet werden. Ein Beispiel ist die Suche nach den Parametern,
die die Trajektorie eines Teilchens beschreiben, unter Verwendung der von den Detektoren
gelieferten Informationen. Der Kalman-Filter [1, 2] ist eine leistungsfähige Methode, die das
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Figure 6.1: Schema der Kalman-Filter-Methode.

Anpassungsproblem in einer sehr allgemeinen Weise löst.

Anpassungsproblem

Zur Formulierung des Anpassungsproblems werden Folgende Begriffe verwendet:

Zustandsvektor rt — Dies ist ein reellwertiger Vektor, der die unbekannten Größen des
Anpassungsproblems (z.b. die Parameter einer Spur) enthällt. Allgemein kann sich der
Zustandsvektor mit der Zeit (rt0 → rt1 → . . .→ rtn) auf zufällige Weise verändern:

rtk = Akr
t
k−1 + νk (k = 1 . . . n) (6.1)

wobei Ak ein (bekannter) linearer Operator ist, der Extrapolierer genannt wird; νk ist eine
Zufallsvariable, die Prozessrauschen heißt. Das Prozessrauschen hat Erwartungswerk 0
und seine Kovarianzmatrix Qk ist bekannt.

Messung mk — Die Messung ist die gemessene (bekannte) Größe, die vom Zustandsvektor
linear abhängig ist:

mk = Hkr
t
k + ηk (6.2)
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wobei Hk ein (bekannter) linearer Operator ist, der Messungsmodell heißt. Die Variable
ηk ist eine Zufallsvariable, die Messfehler genannt wird. Der Messfehler hat ebenfalls Er-
wartungswert 0 und seine Kovarianzmatrix Vk ist bekannt.

Es wird davon ausgegangen, dass alle Zufallsvariablen νi, ηj unkorreliert sind.

Schätzer rk — Dies ist ein Vektor, der den Wert des (unbekannten) Zustandsvektors rtk
anhand von gegebenen Messungen einschätzt. Der Schätzer wird linearer Schätzer genannt,
wenn er linear von den Messungen abhängt.

Das Anpassungsproblem besteht nun darin, den besten linearen Schätzer rn des Zus-
tandsvektors rtn zu finden, der der letzten Messung mn entspricht.

Die Kalman-Filter-Methode

Der Kalman-Filter startet mit einer gewissen Approximation r = r0, verfeinert den Schätzer r,
indem er die Messungen nacheinander bearbeitet, und liefert nach der Bearbeitung der letzten
Messung den besten Schätzer.

Der Anpassungsalgorithmus besteht aus drei Schritten: Initialisierung, Extrapolation und
Filtrierung, sehe Abbildung 6.1. Die Schritte der Extrapolation und der Filtrierung werden
n–mal nacheinander für jede Messung mk, k = 1, . . . n wiederholt. Nach der Filtrierung
der letzten Messung mn entspricht der Schätzer rn dem gesuchten besten Schätzer mit der
Kovarianzmatrix Cn.

Erweiterungen der Kalman-Filter-Methode

In dieser Arbeit wurden mehrere Änderungen des konventionellen Filtrierungsverfahrens en-
twickelt. Sie ermöglichen es, die Kalman-Filter-Methode für die Rekonstruktion von zerfall-
enen Teilchen anzuwenden und den Standardansatz für den Vertex-Fit zu optimieren.

• Filtrierung mit erweitertem Messmodell (Sec. 1.4.1). Eine Erweiterung der Kal-
man-Filter-Methode erlaubt es die Gleichung in Abbildung 6.1 durch eine allgemeinere
zu ersetzen.

• Filtrierung mit einer korrelierten Messung (Sec. 1.4.2). Um einen einfachen und
schnellen Vertexanpasser, der in Abschnitt 3.3 beschrieben wird, zu konstruieren, war es
notwendig, die Bedingungen des konventionellen Kalman-Filters für den Fall, dass die
Fehler der verschiedenen Messungen untereinander korreliert sind, zu verallgemeinern.

• Filtrierung mit bestem Schätzer (Sec. 1.4.3). Gelegentlich ist es notwendig, einen
Teil des Zustandsvektors separat anzupassen und dann den angepassten Teil mit dem
Rest des Vektors zusammenzufügen. Dieses Problem tritt auf, wenn ein Teilchen in
einen bereits rekonstruierten Vertex eingefügt werden soll.

• Subtraktion einer Messung (Sec. 1.4.4). Manchmal ist es notwendig, eine falsche
Messung, die zuvor in einen Zustandsvektor integriert wurde, zu entfernen. Dieses
Problem besteht bei der primären Vertex-Rekonstruktion.

• Anpassung mit Nebenbedingungen (Sec. 1.4.5). In einigen Fällen kann das Anpas-
sungsergebnis durch Einführen von Einschränkungen für den Zustandsvektor verbessert
werden. In Abschnitt 1.4.5 wird nachgewiesen, dass die Einschränkungen durch den
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Figure 6.2: Prozess der Track-Fit. Grüne Punkte sind Messungen, weiße Punkte sind Posi-
tionen des Zustandsvektors.

Kalman-Filter als gewöhnliche Messungen des Zustandsvektors betrachtet werden kön-
nen. Diese Nebenbedingungen werden hauptsächlich in der sekundären Vertexrekon-
struktion verwendet.

6.2 Track-Fit mit dem Kalman-Filter

Die typische Anwendung des Kalman-Filters in der Hochenergiephysik ist die Bestimmung
der Teilchentrajektorien, die Spuren oder Tracks genannt werden. Das ist eine interessante
und nicht-triviale Aufgabe, bei der man alle Vorteile der Methode zu schätzen lernt.

Wenn ein geladenes Teilchen sich in einem Detektor bewegt, wird seine Trajektorie von
mehreren physikalischen Effekten beeinflusst, wie z. B. Streuung am Detektormaterial, En-
ergieverlusten und einem nicht-homogenen Magnetfeld. Alle diese Einflüsse können durch
das Kalman-Filter-Verfahren berücksichtigt werden, was diese Methode für die Track-Fit
unverzichtbar macht.

Die Anwendung des Track-Fits verläuft wie folgt:

Zuerst werden alle Messungen entlang der erwarteten Trajektorie geordnet.

Danach wird der Spurschätzer beliebig initialisiert (Initialisierungsschritt des Kalman-
Filters).

Nach der Initialisierung der Spur wird das Fit-Verfahren gestartet. Der Anfangsschätzer
wird zur ersten Messung extrapoliert und die Mehrfachsteuerung wird zur Kovarianzmatrix
(Extrapolation) hinzugefügt. Dann wird der Schätzer mit der ersten Messung aktualisiert
(Filtrierung). Es folgt die Extrapolation auf die Position des zweiten Detektors und der
Vorgang wird für die zweite Messung wiederholt, usw.

Das Fit-Verfahren ist schematisch in Abbildung 6.2 gezeigt. Man kann sehen, dass der
Anfangsschätzer r0 weit weg von der tatsächlichen Spur liegt, er wird aber während der
Messungsverarbeitung schrittweise verbessert. Der endgültige beste Schätzer rn der Spurpa-
rameter entsteht nach der Verarbeitung der letzten Messung.

Obwohl sich die tatsächlichen Verhältnisse (das Spurmodell, die Extrapolationsformel, die
Messungen und das Rauschen) von verschiedenen Experimenten unterscheiden, bleibt das
allgemeine oben beschriebene Schema des Track-Fit immer gleich.
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Figure 6.3: STS + MVD Detektorsystem in CBM.

Track-Fit in CBM

CBM ist ein Experiment mit fixem Target, bei dem die geladenen Teilchen aus dem Target
innerhalb eines engen Kegels in Strahlrichtung emittiert werden. Um die Teilchen im Raum
zu trennen, wird ein starkes Magnetfeld direkt nach dem Target benutzt. Der Detektor ist
innerhalb des Magneten platziert, deswegen wird die Rekonstruktion der Ereignisse in der
z-Region zwishcen 5 cm und 1 m durchgeführt (siehe Abb. 6.3).

Das verwendete Spurmodell ist typisch für Experimente mit fixem Target:

z, {x, y, tx, ty, q/p} (6.3)

wobei x, y, z die Koordinaten sind; tx ≡ dx/dz, ty ≡ dy/dz die Steigungen und q/p der Quo-
tient von Ladung und Impuls. Die Spur wird entland der z-Koordinate parametrisiert. Diese
Parametrisierung ist für die Spurextrapolation sehr günstig, da Target und die Detektoren
entlang der z-Achse platziert sind.

Der Track-Fit wird nach dem im Abschnitt 6.2 beschriebenen Schema durchgeführt. Auf-
grund der Geometrie des Magneten ist das Magnetfeld stark inhomogen, was eine einfache Ex-
trapolation ausschließt. Daher wurde eine spezielle analytische Extrapolationsformel entwick-
elt, die das Variieren der Rechnungskomplexität und damit auch die CPU-Zeit in Übereinstim-
mung mit der erforderlichen Genauigkeit ermöglicht. Die Standard-Runge-Kutta-Extrapo-
lation wurde ebenfalls implementiert und wird als Referenz verwendet. In Tabelle 6.1 ist zu
sehen, dass die entwickelte Formel, Analytic-* genannt, die gleiche Qualität wie das Runge-
Kutta-Verfahren aufweist.

Ein großer Vorteil der entwickelten Formel ist, dass die Berechnungen für mehrere Spuren par-
allel mit SIMD-CPU-Registern durchgeführt werden können, was mit dem iterativen Runge-
Kutta-Extrapolator nicht möglich ist. Der beschriebene Track-Fit stellt den Kern der Online-
Rekonstruktion im CBM Experiment dar (Absch. 4.2).

Track-Fit im ALICE High Level Trigger

Der wichtigste Spur-Detektor in ALICE ist der Time Projection Chamber (TPC) Detektor,
der in 36 trapezförmige Auslesungssektoren unterteilt ist. Die Geometrie eines TPC-Sektors
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Residuals Pulls

Method δp/p x y tx ty q/p x y tx ty
Runge-Kutta–4 0.64 27 24 1.5 1.5 1.17 1.05 1.01 1.02 1.00
Analytic–3 0.64 27 24 1.5 1.5 1.18 1.05 1.00 1.02 1.00
Analytic–2 0.68 27 24 1.5 1.5 1.30 1.08 1.01 1.03 1.00
Analytic–1 0.94 30 25 1.5 1.5 1.90 1.37 1.03 1.10 1.02

Analytic–light 0.64 27 24 1.5 1.5 1.19 1.05 1.00 1.02 1.00
Analytic–central 2.49 38 25 1.7 1.5 3.77 2.23 1.03 1.33 1.00

Table 6.1: Residuen (δp/p[%], (x, y)[µm], (tx, ty)[·10−3]) und normalisierte Residuen (pulls)
der Spurparameter nach dem Kalman-Filter mit verschiedenen Extrapolations-Methoden.

Figure 6.4: Geometrie eines TPC-Sektor.

ist in Abbildung 6.4 dargestellt. Die TPC-Messungen sind Raumpunkte. Das ALICE-
Magnetfeld ist entlang der z-Achse orientiert. Da das Magnetfeld innerhalb der TPC fast
konstant ist, sind die Teilchentrajektorien Helices.

Das ALICE-Spurmodell wird unter Berücksichtigung der zylindrischen Geometrie des Exper-
iments gewählt. Für jeden TPC-Sektor haben die Spuren eine lokale Parametrisierung an
bestimmter x-Position mit 5 variablen Parametern:

x, {y, z, sinφ, λ, q/pt} (6.4)

x, y, z sind die Koordinaten; φ is der Polarwinkel; λ is der Tangenz des azimutalen Winkels;
q/pt ist der vorzeichenbehaftete inverse Transversalimpuls.

Der Offline-Track-Fit in ALICE wird mit dem konventionellen Kalman-Filtern durchgeführt.
In Tabelle 6.2 kann man sehen, dass es einen signifikanten systematischen Fehler im rekon-
struierten Transversalimpuls (pt) gibt, der der wichtigste physikalische Parameter ist. Für
den ALICE High Level Trigger ist ein verbesserter Track-Fit implementiert.

Die Anpassung wurde verbessert, wie im Abschnitt 2.3 beschrieben. Insbesondere wurde
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q/pt y z sinφ λ

standard fit 1.29(+0.368) 1.23 0.93 1.22 0.71
new HLT fit 1.02(+0.001) 1.01(+0.003) 1.03(+0.013) 1.01(-0.010) 1.03(-0.019)

Table 6.2: Pulls der neuen HLT Track-Fit: Wert (±systematische Fehler).

eine Korrektur zweiten Grades entwickelt, die sehr allgemein ist und für alle linearisierten
Gleichung in jedem Track-Fit angewendet werden kann. In Tabelle 6.2 ist zu sehen, dass die
systematischen Fehler der gefundenen Parameter nach der Verbesserung nahezu ideal sind.

6.3 Rekonstruktionen von Vertices und zerfallenen Teilchen

Figure 6.5: Schematische Darstellung von Ereignisvertices und zerfallenden Teilchen.

Die Rekonstruktion eines physikalischen Ereignisses besteht nicht nur aus der Spurrekonstruk-
tion sondern umfasst auch die vollständige Suche und Rekonstruktion des primären Vertex
sowie der sekundären Vertices und der Trajektorien der zerfallenen Teilchen (Abb. 6.5).

Schnelle Rekonstruktion der primären und sekundären Vertices

Das Ziel des Vertex-Fits ist die Bestimmung der Vertexposition und der zugehörigen Kovari-
anzmatrix unter Verwendung der vorhandenen Teilchenspuren. Beim sekundären Vertex-Fit
müssen außer den Vertex-Parametern auch alle Parameter der zum Vertex gehörende Spuren
sowie die Kovarianzmatrix berechnet werden.

Der modifizierte Kalman-Filter (Absch. 3.2.1-3.4) zeigt eine Verbesserung gegenüber dem
konventionellem Ansatz des Kalman-Filters. Die Menge der Berechnungen wurde erheblich
reduziert. Insbesondere benutzen die entwickelten Algorithmen eine einzelne Division anstatt
der Inversion einer 5 × 5-Matrix im Standardansatz. Das Vermeiden von Matrixinversionen
verbessert auch die Robustheit gegenüber Rundungsfehlern.
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Rekonstruktion der zerfallenen Teilchen

Abschnitt 3.5 beschreibt eine neue Methode zur Rekonstruktion der Parameter von zerfallenen
Teilchen und der zugehörigen Kovarianzmatrix. Der Algorithmus verwendet eine kanonische
Teilchenparametrisierung (x, y, z, px, py, pz, E, s)

1, wodurch er unabhängig von der Geometrie
des Detektorsystems ist.

Die gewählte Parametrisierung ist eine natürliche Wahl und sehr gut für die physikalis-
che Analyse geeignet. Sie enthält alle notwendigen Informationen über die Teilchen sowohl
am Erzeugungsvertex als auch am Zerfallsvertex. Daher ist die entwickelte Methode auch
geeignet, um Vertices zu bestimmen.
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Figure 6.6: ALICE HLT K0
s und Λ0 Finder. Reale Daten, run 00010480 (2009).

Die entwickelten Algorithmen zur Suche nach Vertices und zerfallenen Teilchen wurden erfol-
greich in den CBM und ALICE Experimenten implementiert (Absch. 3.6, 3.7). Ein Beispiel
für reale Datenanalyse ist in Abbildung 6.6 dargestellt.

6.4 Online-Ereignisrekonstruktion im CBM-Experiment

Figure 6.7: Darstellung des zellulären Auto-
matenalgorithmus.

Figure 6.8: Effizienz der Spurrekonstruktion
als Funktion des Impulses.

1Der Parameter s =
l

p
ist die Länge der Teilchentrajektorie normiert auf den Teilchenimpuls.
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Die hohe Spurdichte (im Durchschnitt 500 Spuren im inneren Detektor in einer typischen
zentralen Au + Au Kollision) zusammen mit dem nicht-homogenen Magnetfeld macht die
Rekonstruktion der Ereignisse im CBM-Experiment sehr kompliziert.

Der CBM-Algorithmus zur Spursuche basiert auf der Methode des zellulären Automaten.
Er erstellt kurze Drei-Hit Spurabschnitte (Tracklets) in benachbarten Detektorebenen und
verknüpft diese dann zu vollständigen Spuren (Abb. 6.7). Der Track-Fit (Absch. 2.2) wird
bereits auf Ebene der Erstellung des Tracklets angewendet. Dadurch ist die Geschwindigkeit
des Fits sehr wichtig für die Online-Datenverarbeitung.

Figure 6.9: Die bedeutendste (By) Komponente des magnetischen Feldes in der Mitte des
Detektorsystems (z = 50 cm) unter Verwendung der Polynomapproximation (links) und der
Unterschied zwischen zwei alternativen Felddarstellungen (rechts).

Kapitel 4 beschriebt die am Algorithmus vorgenommenen Optimierungen:

1. Der Zugriff auf eine große Magnetfeldkarte konnte durch die Anwendung einer polyno-
mialen Approximation des Feldes (Abb. 6.9) vermieden werden.

2. Der Algorithmus wurde von doppelter auf einfache Rechengenauigkeit umgestellt. Ver-
besserungen am Kalman-Filter garantieren die numerische Stabilität und konnten die
Geschwindigkeit beträchtlich steigern.

3. Der Algorithmus wurde vektorisiert, um die SIMD-Einheit des Pentium 4 Prozessors
zu verwenden.

4.-5. Der Algorithmus wurde auf den Cell-Prozessor [21, 22] portiert, der als ein Kandidat
für die Online-Hardware betrachtet wird.

Stage Description Time/track Speed-up factor

Initial scalar version 12 ms
1 Approximation of the magnetic field 240 µs 50
2 Optimisation of the algorithm 7.2 µs 35
3 Vectorisation 1.6 µs 4.5
4 Porting to SPE 1.1 µs 1.5
5 Parallelisation on 16 SPEs (2 Cells) 0.1 µs 10

Final SIMDised version 0.1 µs 120000

Table 6.3: Zusammengefasste Stadien des Optimierungsverfahrens.

Tabelle 6.3 summiert alle Ergebnisse und listet eine Zeit-Analyse und die Beschleunigungs-
faktoren nach jedem Entwicklungsstadium auf. Man kann sehen, dass der vektorisierte Fit
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um das 10.000–fache schneller als das Original ist. Insgesamt wurde der Kalman-Filter um
bis zu einem Faktor 120.000 beschleunigt.

6.5 Online-Ereignisrekonstruktion in ALICE High Level Trig-
ger

Figure 6.10: Reales Proton-Proton-Ereignis,
rekonstruiert vom HLT (2009).

Figure 6.11: Reales Schwerionen-Ereignis,
rekonstruiert vom HLT (2010).

Der ALICE High Level Trigger bearbeitet Proton-Proton-Kollisionen bei 2 kHz und Schwer-
ionen-Kollisionen bei 300 Hz; ein Durchschnitt von 25 Spuren in Proton-Proton-Ereignissen
und bis zu 25.000 Spuren in Schwerionen-Ereignissen entspricht einem eingehenden Daten-
strom von bis zu 30 GB/s. Abbildungen 6.10 und 6.11 zeigen die Komplexität der beiden
Typen von Ereignissen. Die Rekonstruktion erfolgt in Echtzeit.

Der HLT-Tracker basiert auf der Methode des zellulären Automaten [18]. Neben der hohen
Effizienz (Abb. 6.12), ist die Online-Rekonstruktion um zwei Grössenordnungen schneller als
der Offline-Algorithmus, der als Referenz verwendet wurde. Abbildung 6.13 zeigt, dass der
Algorithmus 130µs pro Spur unabhängig von der Spuranzahl im Detektor erfordert, also der
kombinatorische Teil des Algorithmus optimal gebaut ist.
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Figure 6.12: Rekonstruktionsleistung für
zentrale Schwerionen-Kollisionen bei 5 TeV.
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Figure 6.13: Rekonstruktionszeit auf CPU.

Der Tracker ist für die Verarbeitung von Schwerionen-Ereignissen ausgelegt, deswegen wurde
er für die Anwendung auf Grafikkarten (GPUs) angepasst, in denen mehr als hundert ALUs
parallel laufen. Die Nutzung der Grafikkarten gibt eine weitere 3-fache Beschleunigung
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(Abb. 6.14). Der GPU-Tracker ist in das HLT-Framework integriert und läuft dort seit
2011.
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As a collaborator of the ALICE experiment: 
 

70. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), The ALICE 
Experiment at the CERN LHC, J. Instrum. 3, S08002 (2008) 

71. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), First proton–
proton collisions at the LHC as observed with the ALICE detector: 
measurement of the charged-particle pseudorapidity density at √s=900, 
Eur Phys J. C  (2010) 65: 111-125 

72. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Alignment of the 
ALICE Inner Tracking System with cosmic-ray tracks, J. Instrum. 5, 
P03003 

73. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration),  Charged-particle 
multiplicity measurement in proton–proton collisions at √s=0.9 and 2.36 
TeV with ALICE at LHC, Eur. Phys. J. C (2010) 68: 89–108 

74. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Charged-particle 
multiplicity measurement in proton–proton collisions at √s=7 TeV with 
ALICE at LHC, Eur. Phys. J. C (2010) 68: 345–354 

75. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Midrapidity 
Antiproton-to-Proton Ratio in pp Collisons at √s=0.9 and 7 TeV 
Measured by the ALICE Experiment, Phys Rev Lett Vol.105, No.7, (2010) 

76. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Two-pion Bose-
Einstein correlations in pp collisions at √s=900  GeV, Phys. Rev. D 82, 
052001 (2010) 

77. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Transverse 
momentum spectra of charged particles in proton–proton collisions at 
√s=900  GeV with ALICE at the LHC, Physics Letters B 693 (2010) 53–68 

78. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Charged-particle 
multiplicity density at mid-rapidity in central Pb-Pb collisions at 
sqrt(sNN) = 2.76 TeV, Phys. Rev. Lett. 105, 252301 (2010) 

79. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Suppression of 
Charged Particle Production at Large Transverse Momentum in Central 
Pb-Pb Collisions at √sNN = 2.76 TeV, Phys. Lett. B 696 (2011) 30-39 

80. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Elliptic flow of 
charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105, 
252302 (2010) 

81. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Centrality 
dependence of the charged-particle multiplicity density at mid-rapidity 
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in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV, Phys. Rev. Lett. 106, 032301 
(2011) 

82. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Two-pion Bose-
Einstein correlations in central PbPb collisions at sqrt(s_NN) = 2.76 
TeV, Phys. Lett. B 696 (4): 328-337, 2011 

83. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Strange particle 
production in proton-proton collisions at √s = 0.9 TeV with ALICE at the 
LHC, Eur. Phys. J. C 71 (3), 1594 (2011) 

84. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Rapidity and 
transverse momentum dependence of inclusive J/psi production in pp 
collisions at sqrt(s)=7 TeV, Phys. Lett. B 704 (2011) 442-455 

85. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Higher harmonic 
anisotropic flow measurements of charged particles in Pb-Pb collisions 
at 2.76 TeV, Phys. Rev. Lett. 107, 032301 (2011) 

86. K. Aamodt, ..., S. Gorbunov et al. (ALICE Collaboration), Production of 
pions, kaons and protons in pp collisions at sqrt(s)= 900 GeV with 
ALICE at the LHC, Eur. Phys. J. C 71(6): 1655, 2011 
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