
Goethe University of Frankfurt am Main !!!!!!!!!!
High Performance Computing!

 Practical Course!
!
 !

!!!!
Ivan Kisel, FIAS FIAS scientific review, 25.11.2013 /15

4xXX cores XXXX cores

1+8 cores>50 cores

Intel/AMD CPU ATI/NVIDIA GPU

Intel Xeon Phi IBM Cell

Future systems are heterogeneous

• Optimized for low-latency access to cached data sets
• Control logic for out-of-order and speculative execution

• Optimized for data-parallel, throughput computation
• More transistors dedicated to computation

• General purpose RISC processor (PowerPC)
• 8 co-processors (SPE, Synergistic Processor Elements)
• 128-bit wide SIMD units

• Many Integrated Cores architecture announced at ISC10 (June 2010)
• Based on the x86 architecture
• Many-cores + 4-way multithreaded + 512-bit wide vector unit

3

Many-Core CPU/GPU Architectures

!

Goethe University of Frankfurt am Main !!!!!!!!!!
High Performance Computing!

 Practical Course!
!
 !

!!!!!!!!!
Prof. Dr. I. Kisel and PhD students V. Akishina, I. Kulakov, M. Zyzak !!

2012 - 2014 

Ivan Kisel, FIAS FIAS scientific review, 25.11.2013 /15

4xXX cores XXXX cores

1+8 cores>50 cores

Intel/AMD CPU ATI/NVIDIA GPU

Intel Xeon Phi IBM Cell

Future systems are heterogeneous

• Optimized for low-latency access to cached data sets
• Control logic for out-of-order and speculative execution

• Optimized for data-parallel, throughput computation
• More transistors dedicated to computation

• General purpose RISC processor (PowerPC)
• 8 co-processors (SPE, Synergistic Processor Elements)
• 128-bit wide SIMD units

• Many Integrated Cores architecture announced at ISC10 (June 2010)
• Based on the x86 architecture
• Many-cores + 4-way multithreaded + 512-bit wide vector unit

3

Many-Core CPU/GPU Architectures

!

!
!
!
!
!
!
!
!
!
!

!
!
This course has been given at the Goethe University of Frankfurt am Main
starting from summer semester 2012. The idea of the course is to give
students practical experience and insight into parallel programming and many-
core CPU/GPU/Phi computer architectures. 

!

!
!

!

!

Table of contents!
!!

!!!

1. Introduction to Unix shell and C++!
2. Data parallelism!

1. SIMD with headers!
2. Kalman filter track fit!
3. Vector classes (Vc)!
4. CERN ROOT framework!

3. Task parallelism!
1. Open Multi-Processing (OpenMP)!
2. Intel Threading Building Blocks (ITBB)!

4. Hardware parallelism!
1. Open Computing Language (OpenCL) for CPU and GPU!
2. Intel Xeon Phi!

References!

3!
!

35!
53!
71!

101!
!

113!
145!
!

165!
193!
205

1

!

2

HPC Practical Course
Part 1

!
Introduction into Unix Shell and C++

V. Akishina, I. Kisel,
I. Kulakov, M. Zyzak,

Goethe University of Frankfurt am Main
!

16 Feb 2014

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /172

A Unix shell is a command-line interpreter or shell that provides a traditional user interface for the Unix operating
system and for Unix-like systems (Linux, OSX). There are different shell categories, for example Bourne shell (sh),
Bourne-Again shell (bash), C shell (csh), TENEX C shell (tcsh). We consider bash commands, bash is often
default shell, or can be called from other shells with 'bash' command.

pwd — current directory 
cd [dirname] — change directory. 'cd ..' - level up  
mkdir [dirname] — create a new directory 
ls [dirname] — list of files in the directory. 
mv [fileOrDirName] [dirname] — moves a file or a directory to another directory. 
mv [fileOrDirNameOld] [fileOrDirNameNew] — renames a file or a directory. 
cp [filenameOld] [filenameNew] — copies a file. 
cp -r [dirnameOld] [dirnameNew] — copies a directory and its content. 
rm [filename] — removes a file. 
rm -r [dirname] — removes a directory and its content. 
grep [string] [filenames] — looks for the string in the files. 
wget [fileurl] [dirname] — downloads file from web to the directory. 
ssh [user]@[hostname] — connect into a remote machine. 
scp [-r] [userOld]@[hostnameOld]:[fileOrDirNameOld] [userNew]@[hostnameNew]:[fileOrDirNameNew] —
copies a file

or a directory and its content. 
g++ [filenames].cpp [flags] -o [executablename] — compile C++ source code with GNU compiler and create
executable. ./[executablename] — run executable file. 
 
The shell commands can be collected into script text files. Shell scripts have extension ‘.sh’. 
Use '. [bashScriptName].sh’ to execute bash script.

Basic Unix Shell Commands

3

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Types in C++

Type Values Size
(bytes)

bool “true” and “false” 1

unsigned char 0 … 255 1

signed char –128 … 127 1

unsigned short int 0 … 65 535 2

short –32 768 … 32 767 2

unsigned int 0 … 4 294 967 295 4

int –2 147 483 648 … 2 147 483 647 4

float 3.4e–38 … 3.4e+38 4

double 1.7e–308 … 1.7e+308 8

long double 3.4e–4932 … 3.4e+4932 10 (12,16)

3

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Type Casting

Implicit conversion

short a=200; float b; b = a;

Does not require any operator, automatically performed when a value is
copied to a compatible type. Exists for standard types. For users classes
a constructor should be written.

Explicit conversion

b = (type) a;

b = type (a);

b = static_cast <new_type> (a)

Many conversions, specially those that imply a different interpretation of
the value, require an explicit conversion. Traditional explicit type-casting
allows to convert any pointer into any other pointer type, independently
of the types they point to, therefore is not safe, can lead to code that
while being syntactically correct can cause runtime errors.

dynamic_cast <new_type> () Can be used only with pointers and references to objects. Its purpose is
to ensure that the result of the type conversion is a valid complete object
of the requested class.

static_cast <new_type> () Can perform conversions between pointers to related classes. Ensures
that at least the classes are compatible if the proper object is converted.
The overhead of the type-safety checks of dynamic_cast is avoided. A
programmer should ensure the conversion is safe.

reinterpret_cast <new_type> () Converts any pointer type to any other pointer type, even of unrelated
classes. The operation result is a simple binary copy of the value from
one pointer to the other. All pointer conversions are allowed: neither the
content pointed nor the pointer type itself is checked.

const_cast <new_type> () Manipulates the constness of an object, either to be set or to be
removed.

More at: http://www.cplusplus.com/doc/tutorial%20%20/typecasting/

4

4

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Conditional Operators

The conditional operator “if/else”:

!
if(condition) {

 statement1;

}

else {

 statement2;

}

!
If condition is true, then statement1 is executed, if it
is false – statement2, structure else is optional.
Examples:

!
1) if (a>0) { 2) if (a>0)

 b = a; b = a;

 } else

 b = 0;

 }

The ternary conditional operator:
!
(condition) ? expression1 : expression2
!
!
!
!
!
!
!
!
If condition is true, then result is expression1, if it
is false – expression2. Examples:
!
1) b = (a>0) ? a : 0;
!

2) b = (a>0) ? a : b;

More at: http://www.cplusplus.com/doc/tutorial/control/

5

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

The “for” Loop

for (initialisation; condition; increase) statement;

!
• Repeats statement while condition remains true.

• Provides specific locations to contain an initialisation statement and an increase statement.

• Is specially designed to perform a repetitive action with a counter which is initialised and
increased on each iteration.

Examples:

!
1)for(int i=0; i<10; i++) {

 a[i] = i;

}

2) int i=0;

for(; i<10; i++) {

 a[i] = i;

}

3) for (n=0, i=100 ; n!=i ; n++, i--){

 // whatever here...

}

More at: http://www.cplusplus.com/doc/tutorial/control/

6

5

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Pointers

The memory of a computer can be imagined as a succession of memory cells,
each one of the minimal size that computers manage (one byte). These single-
byte memory cells are numbered in a consecutive way.

*ted = 25;
beth = *ted;

More at: http://www.cplusplus.com/doc/tutorial/pointers/

This way, each cell can be easily located in the memory because it has a unique
address and all the memory cells follow a successive pattern.
An address can be stored in pointer variable.

Using a pointer we can directly access the
value stored in the variable which it points to.
!
To do this, we simply have to precede the
pointer's identifier with an asterisk (*), which
acts as dereference operator and that can be
literally translated to "value pointed by".

7

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Pointers. Declaration and Initialization

// pointers with constness
float* a; // a pointer to float
const float* ca; // a pointer to const float
float* const ac; // a constant pointer to float
const float* const cac; // a constant pointer to const float

// declaration and initialisation
float f;
float fArray[100];
float* a = &f; // with an address of a float variable
float* a(&f); // with an address of a float variable
float* b = a; // with a value of another pointer
float* a = fArray; // with a name of an array. fArray is also a pointer
float* a = (float*)0xB8000000; // with an explicit address of a memory
float* a = 0; // with a zero value
float* a = new float; // with a memory allocation

8

6

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Pointers. Manipulation with the Memory

// allocation of the memory
float* myFloatPointer = new float; //a single float
float* myArrayPointer = new float[100]; //array of floats
MyClassType* myClassPointer = new MyClassType(10,20); //a single object of a class
float* myFloatAlignedPointer = (float*) _mm_malloc(4,16); //a single float aligned on 16 bytes !
// free the memory
delete myClassPointer;
delete[] myArrayPointer;
delete myFloatPointer;
_mm_free(myFloatAlignedPointer); // only when allocated with _mm_malloc() !!!!
// manipulations with a pointers
*myFloatPointer = 2.f; // manipulation with the value pointed by
*(myArrayPointer+1) *= 2.f; // manipulation with the second element of the array
myArrayPointer[1] *= 2.f; // equivalent manipulation with the second element
(*myClassPointer).MyPrintFunction(); // call of the class member function
myClassPointer->MyPrintFunction(); // equivalent call of the function !
float myFloat = 10;
*myFloatPointer = myFloat ; // set the value to the cell pointed by the pointer
myFloatPointer = &myFloat; // store the address of a float to the pointer

9

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Functions. Call by Value, by Reference or by Pointer

• Call by value: the value of a variable is copied to a local variable.
• int increment(int i) { return i++; }
• int increment(int i, const int a) { return i+a; }
!

• Call by reference: faster, since the memory for a local variable is not allocated, the function
can modify the value of an input variable.
• void increment(int &i) { i++; }
• void increment(int &i, const int &a) { i+=a; }
!

• Call by pointer: the memory for variable is not allocated, the pointer to variable is copied
to a local pointer variable, value of a variable can be modified, the array can be given as
an input.
• void increment(int *i) { (*i)++; }
• void increment(int *i, const int *a) { *i += *a; }
• void increment(int *array, const int N) {
 for(int i=0; i<N; i++)
 array[i]++;
 }

More at: http://www.cplusplus.com/doc/tutorial/functions2/

10

7

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

A class is an expanded concept of a data structure: instead of holding only data, it can
hold both data and functions.
!
 An object is an instantiation of a class. In terms of variables, a class would be the type,
and an object would be the variable.
!
 Classes are generally declared using the keyword class, with the following format:

class class_name {
 access_specifier_1:
 member1;
 function1();
 access_specifier_2:
 member2;
 function2();
 ...
 } object_names;
!
class_name::function1() {
 // function1 definition
}
 ...

More at: http://www.cplusplus.com/doc/tutorial/classes/

Classes in C++

11

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Example of a Class

// class example
#include <iostream>
using namespace std; !
class CRectangle {
 public: // the following members can be accessed from outside of the class
 CRectangle(int a, int b): x(a), y(b) {}; // class constructor, equivalent to SetNewValues
 void SetNewValues (int, int);
 int Area () { return (x*y); }
 private: // the following members can be accessed only by class member functions
 int x, y;
}; !
void CRectangle::SetNewValues (int a, int b) {
 x = a;
 y = b;
} !
int main () {
 CRectangle rect (1,1);
 cout << "area1: " << rect.Area();
 rect.SetNewValues (3,4);
 cout << "area2: " << rect.Area();
 return 0;
}

12

8

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Templates

Function templates are special functions that can operate with generic types. This allows us to
create a function template whose functionality can be adapted to more than one type or class
without repeating the entire code for each type.

We also have the possibility to write class templates, so that a class can have members
that use template parameters as types.

The format for declaring function templates with type parameters is:
!
 template <class identifier> function_declaration;
 template <typename identifier> function_declaration;

To use this function template we use the following format for the function call:
!
 function_name <type> (parameters);

More at: http://www.cplusplus.com/doc/tutorial/templates/

13

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Templates. Function Example

 // function template
#include <iostream>
using namespace std;
!
template <typename T>
T GetMax (T a, T b) { // define
 T result;
 if (a>b) result = a;
 else result = b;
 return result;
}
!
int main () {
 int i=5, j=6, k;
 double l=10.2, m=5e10, n;
 k=GetMax<int>(i, j); // use
 n=GetMax<double>(l, m);
 cout << k << endl;
 cout << n << endl;
 return 0;
}

Output:
6
5e10

14

9

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Templates. Class Example
 // class templates
#include <iostream>
using namespace std; !
template <class T>
class mypair { // define class
 T a, b;
 public:
 mypair (T first, T second)
 {a=first; b=second;}
 T getmax ();
}; !
template <class T>
T mypair<T>::getmax () // define class member function
{
 T result;
 if (a>b) result = a;
 else result = b;
 return result;
} !
int main () {
 mypair <int> myobject (100, 75); // use
 cout << myobject.getmax();
 return 0;
}

Output:
100

C++ also has the possibility to
write class templates, so that a
class can have members that use
template parameters as types.

15

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Templates. Example with Several Parameters

#include <iostream>
using namespace std; !
template <class T, class T2, int N>
struct myData { // define struct
 T a;
 T2 b[N];
}; !
int main () {
 myData <int,int,10> myStruct1; // use
 myData <int,float,20> myStruct2;
 myStruct1.b[5] = 5.2;
 myStruct2.b[9] = 9.1;
 cout << myStruct1.b[5] << endl;
 cout << myStruct2.b[9] << endl;
 return 0;
}

Output:
5
9.1

Several template parameters can
be used

16

10

16.02.2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /17

Exercises

17

C++ exercises are cover:

1. Basics (compilation, output to screen, conditions and loops) - 2 exercises.

2. Pointers (memory management, manipulation with pointers, typical mistakes) - 6 exercises.

3. Templates (generalisation of algorithm implementation) - 2 exercises.

!
!

Download link: https://www.dropbox.com/sh/eas4kmqbrfk7xrw/s2HHiSnVin

It is recommended to perform exercises within tested environment provided by linux
virtual machine:
http://web-docs.gsi.de/~mzyzak/TSSuse.zip
!
using VirtualBox software:
https://www.virtualbox.org

11

12

1. Unix Shell and C++ Introduction!
Exercises are located: Exercises/Exercise/Exercises/1_CPP/
Solutions: Exercise/Exercises/1_CPP/Solutions/
To compile and run exercise programs use "g++ FILENAME.cpp -o a.out; ./a.out”.
The results given here are obtained on Intel E7-4860 CPU with gcc4.7.3. !

Unix Shell Introduction!
A Unix shell is a command-line interpreter or shell that provides a traditional user interface for the Unix

operating system and for Unix-like systems (Linux, OSX). There are different shell categories, for example
Bourne shell (sh), Bourne-Again shell (bash), C shell (csh), TENEX C shell (tcsh). We consider bash
commands, bash is often default shell, or can be called from other shells with 'bash' command. !

The basic bash commands:
pwd — shows you current directory. The current directory is the directory you work in, the most bash

commands is applied to it. When you start shell you always start out in your 'home directory’.
cd [dirname] — change current directory. You can get back to your 'home directory by typing 'cd'

without arguments. 'cd ..' will get you one level up from your current position. You always can add path to
[dirname], so you don’t have to walk along step by step - you can go to required directory directly, like
'cd ../../dirname1/dirname2’.

mkdir [dirname] — create a new directory in current directory.
ls [dirname] — list of files in the directory. You can skip the argument, 'ls' command will shows list of

files in the current directory.
ls -l — list your files in 'long format', which contains additional information about each file, e.g. the exact

size of the file, who owns the file and who has the right to look at it, and when it was last modified.
ls -a — lists all files, including hidden files (the ones whose filenames begin in a dot).
mv [fileOrDirName] [dirname] — moves a file or a directory to another directory.
mv [fileOrDirNameOld] [fileOrDirNameNew] — renames a file or a directory.
cp [filenameOld] [filenameNew] — copies a file.
cp -r [dirnameOld] [dirnameNew] — copies a directory and its content.
rm [filename] — removes a file.
rm -r [dirname] — removes a directory and its content.
grep [string] [filenames] — looks for the string in the files.
wget [fileurl] [dirname] — downloads file from web to the directory.
ssh [user]@[hostname] — connect into a remote machine.
scp [-r] [userOld]@[hostnameOld]:[fileOrDirNameOld] [userNew]@[hostnameNew]:

[fileOrDirNameNew] — copies a file or a directory and its content.
g++ [filenames].cpp [flags] -o [executablename] — compile C++ source code with GNU compiler and

create executable.
./[executablename] — run executable file. !
The shell commands can be collected into script text files. Shell scripts have extension ‘.sh’. Use '.

[bashScriptName].sh’ to execute bash script.

C++ Introduction!

1_CPP/1_HelloWorld: description!
The first our exercise is a standard program for the beginners in any programming language. The

program prints as a result on a screen "Hello World!" message. It is a simple program, but it contains the
fundamental components of every C++ program: !

13

!
comment line
// Run and understand it.
The lines which start with two slashes (//) are comments in C++ and do have no influence on the

behaviour of the program. The programmer can use it to write brief comments or observations inside the
source code. !

directives
#include <iostream>
A hash sign (#) starting lines are preprocessor directives. They are no a regular code, but commands for

the compiler's preprocessor. The directive #include <iostream> will include the iostream standard file. The
file contains the basic standard input-output library declarations in C++. We will use them later. !

using namespace std;
There is a concept of namespace in C++. In general, a namespace is a container for a set of identifiers.

Namespaces provide a level of indirection to specific identifiers, thus making it possible to distinguish
between identifiers with the same exact name, but from different namespaces. For example, the entire C++
standard library is defined within namespace std. So in order to access standard functionality we declare
with the expression using namespace std that we will be using this namespace. !

main function
int main ()
Every C++ language program must contain a main() function. It’s a core and starting point of every

program. Regardless of where it is located in the code the execution will be started with the main function.
The name of the function - main is followed in the code by a pair of brackets(), which optionally can

enclose a list of input parameters for the function. For example with argc (argument count) and argv
(argument vector) one can get the number and the values of passed arguments when the application is
launched:

int main (int argc, char** argv)
The body of the main function is inside next braces {}. They contain everything program will do during

execution. !
statement
cout << "Hello World!";
cout is the standard output stream in C++. This statement inserts the line "Hello World!" into the output

stream (which in our case is the screen).
The cout operator is declared in the iostream standard file in the namespace std. Since we already

declared that we are using this namespace, cout operator is available.
Notice that the statement should end with a semicolon (;). One should not forget to put it in the end of

every statement, since it’s one of the most common syntax errors. !

Part of the source code of 1_HelloWorld.cpp

1 // Run and understand it.
2
3
4 #include <iostream>
5 using namespace std;
6
7 int main() {
8
9 cout << " Hello world " << endl;
10
11 return 0;
12 }

Typical output

 Hello world

14

return statement
return 0;
The return statement causes the function to quit. Return has to throw a value in C++, which is called

error code. A zero code is generally interpreted as no errors during execution signal. This is the most
common way to end a C++ program. !

data types
The data types in C++ can be divided in several groups:
• character types: can represent a single character, such as 'A' or '$'. The most basic type is char,

which is a one-byte character.
• numerical integers: can store a whole number value, such as 9 or 1024. They exist in a variety of

sizes, and can either be signed or unsigned, depending on whether they support negative values.
• floating-point numbers: can represent real values, such as 3.14 or 2.71828, with different levels of

precision.
• booleans: can only represent one of two states, true or false.

1_CPP/2_ForLoop: description!
The next exercise has the same basics elements discussed in previous one, but also it includes an

important and frequently used programmer tool: a loop. Loops are useful when one needs to perform an
action a certain number of times or while a certain condition is fulfilled.

Part of the source code of 2_ForLoop.cpp

1 // Run and understand
2 // countdown using a for loop
3 #include <iostream>
4 using namespace std;
5 int main ()
6 {
7 for (int n=10; n>0; n--) {
8 cout << n << ", ";
9 }

15

!
For the “for” loop format is: !
for (initialisation; condition; counter change) statement;
and it is intended to repeat the statement while the condition remains true. This loop is specially

designed to perform an action with a counter which may be changed on each iteration. !
It works as follows:
1. optionally initialisation is executed. This stage performed only once at maximum.
2. condition is checked. If it is true the loop proceeds, otherwise the loop ends and statement is
skipped.

3. statement is executed. It can be either a single statement or a statement block in braces { }. It may
also include some operation with a counter.

4. whatever is specified in the change field is done and the loop gets back to step 2. !
The initialisation and counter change fields are optional. They can be blank, but in all cases the

semicolon signs between them must be present. For example one can write: for (;n<100;) or for (;n<10;n+
+) in case when variables were initialised before.

Also there is a possibility to use more then one counter. In this case one should put a comma operator
(,) in-between. This operator works as an expression separator in case where only one is generally
expected: !

for (n=0, i=50 ; n!=i ; n++, i--)
{ } !
This loop will execute for 25 times if neither n or i are modified in the loop body. !
Pointers.
Any variables in C++ can be addressed with its’ identifier (name). This is the easiest way when we don't

need to care about the physical location of our data in the memory. However, there is the second way to
address a variable, directly using its location in the memory.

The computer memory can be represented as a sequence of memory cells of one byte each. These
cells are numbered in a consecutive way. Each cell has a unique number in the whole available memory.
Every next cell has the number of the previous one plus one. This way we can claim that the cell number 55
definitely follows the cell number 54.

As soon as we declare a variable, the amount it needs in memory is allocated in a specific location
(memory address). Operating system performs this task automatically during runtime. This memory
address locates a variable in the memory and is called a reference to that variable. This reference can be
obtained by adding an ampersand sign (&), so-called reference operator, in front of the identifier. One can
read it as “get address of". !

float a; // declaring a float a 
 &a; // getting address of a !

A variable which stores such memory address of another variable is called a pointer. Pointers are said to
"point to" the variable whose address they store. All pointers a have a special pinter type. While declaring a
pointer one has to specify this type. The pointer type is obtained by adding an asterisk after the type it
points to. The declaration of pointers has such a format: !

type * name; !
where type is the data type of the value that the pointer points to. For example:

10 cout << "FIRE!\n";
11 return 0;
12 }

Part of the source code of 2_ForLoop.cpp

Typical output

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!

16

!
float* a; // a pointer to float 

 const float* ca; // a pointer to const float !
 Although the data to which different pointers point to doesn't need the same amount of space in the

memory, all pointer types occupy the same amount of memory (this amount may vary from platform to
platform).

Using a pointer we can directly access the variable stored in the object which it points to by adding an
asterisk sing (*), which is called a dereference operator. It should not be confused with a pointer type
asterisk, since we just use the same sing for different operation. Here one can compere two approaches to
access object by identifier and by pointer to perform the same action - increment:

!!
Arrays
An array is a number of elements with the same type placed in one memory location. These elements

can be individually addressed by adding an consecutive number to a unique identifier. In order to declare a
regular array name_of_array of N elements with type type one has to do it the same way one declares a
single element with an addition of number of elements in braces. For example: !

type name_of_array [N] ; !
When declaring an array this way its elements will not be initialised with any default value, until we store

some value in them. there is a possibility to assign initial values to each element by enclosing the values in
braces { }: !

int nicely_initialised_array [5] = { 16, 2, 77, 40, 12071 }; !
One can create multidimensional arrays. They can be described as "arrays of arrays". For example, a bi-

dimensional array can be imagined as a bi-dimensional table made of elements. !
The concept of array is bind to the concept of pointer in C++. In fact, the identifier of an array is

equivalent to the address of its first element. !!
Dynamic memory
Until now we only allocate memory for our variables having the size of memory we needed in advance

before the runtime. For this we used static memory. However sometimes this amount of memory needed
can only be determined during execution of the program. For example, in the case when we wait for user
input. C++ gives the opportunity to implement program in this case. This tool is called dynamic memory and
can be used with the help of operators new and delete.

New is the operator to request for dynamic memory. It should be followed by a data type and, optionally
for an array, the number of elements in the brackets []. This operator returns a pointer to the beginning of
the allocated block of memory. This should be done in a form: !

pointer = new type;
pointer = new type [number_of_elements] !
The first expression is for allocating memory for a single element of type type. The second one is used

to assign an array of elements with type type, where number_of_elements is an integer number. !
int * array_of_integers; // pointer to integer
array_of_integers = new int [10]; // array of 10 integers, array_of_integers points to the 1st !
Since the amount of available memory is limited, once dynamic memory is no longer needed it should be

freed, so that the memory is available again. It’s not done automatically like in case of static memory. In this
case we have to use delete operator in this way:

int one = 1; // declaring an integer of value 1
one ++; // increment

int one = 1; // declaring an integer of value 1
int* pointer = & one; //declaring a pointer to int
(*pointer)++; // increment

17

!
delete pointer;
delete [] pointer; !
The first expression should be used to delete memory allocated for a single element, and the second

one for memory allocated for an arrays. !
Allocating aligned memory blocks
Aligned memory we will need while working with SIMD instructions in the future. To allocate and free

aligned blocks of memory use the _mm_malloc and _mm_free intrinsics. These intrinsics are based on
malloc and free, which are in the libirc.a library. The syntax for these intrinsics is as follows:

void* _mm_malloc (size_t size, size_t align)
void _mm_free (void *p)
The _mm_malloc routine takes an extra parameter, which is the alignment constraint. This constraint in

bytes must be a power of two. The pointer that is returned from _mm_malloc is guaranteed to be aligned
on the specified boundary. Here is an example of aligned memory allocation: !

float* array = (float*) _mm_malloc(sizeof(float)*10, 4); // array of floats aligned on 4 !
1_CPP/3_MemoryAllocation: description!

In this pointer exercise one is supposed to allocate memory for an array in 3 different ways:
1) statically for known size of array;
2) dynamically for unknown size not aligned;
3) dynamically for unknown size aligned. ! !

Part of the source code of 3_MemoryAllocation.cpp

1 #include”xmmintrin.h” // for _mm_malloc
2 #include<iostream>
3 #include<cmath>// for sin function
4 using namespace std;
5 int main (int argc, char** argv)
6 {
7 // When the size of the array is known
8 const int SIZE = 10;
9 float Array_static[SIZE];
10 int i;
11 for (i = 0; i < SIZE; ++i)
12 {
13 Array_static[i] = sin(i) * 10.f + i ;
14 }
15 // When the size is unknown
16 int size;
17 cout << "Size of dynamic: ";
18 cin >> size; cout << endl;
19 float* Array_dynamic = new float[size];
20 // TODO fill Array_dynamic with sin(i) * 10.f + i;
21 // Print the Array_static array to the screen
22 std::cout << "Array_static ";
23 for(i=0; i<SIZE; ++i)
24 cout << Array_static[i] << " ";
25 cout << endl;

18

!
1_CPP/3_MemoryAllocation: solution!

We allocate memory as it is asked:
1) statically for known size of array:
 const int SIZE = 10;
 float Array_static[SIZE];
2) dynamically for unknown size not aligned:
 float* Array_dynamic = new float[size];
3) dynamically for unknown size aligned:
float* Array_dynamic_aligned = (float*) _mm_malloc(sizeof(float)*size, 16*16*16);
In each case we can access needed array element the same manner:
array_name[num_element] in order to print it.
In case of static array we don't need to free memory afterwards since it is freed automatically, but in both

dynamic cases we have to do it using corresponding delete operator:
2) delete[] Array_dynamic;
3) _mm_free(Array_dynamic_aligned); !
In the end of exercise we perform some action with array identifier in order to better understand the

concept of array: identifier g_koeff is a pointer, storing address of the 1st element of array g_koeff,
dereferenced *g_koeff — is a 1st element itself. !
cout << endl << "* Array_dynamic: " << * Array_dynamic << endl; // print 1st element value
* Array_dynamic = 42.3f; // store 42.f to 1st element value
cout << "* Array_dynamic: " << * Array_dynamic << endl; // print 1st element value
cout << "Array_dynamic[0]: " << Array_dynamic[0] << endl; // other way to print it

27 // Print the Array_dynamic array to the screen
29 std::cout << "Array_dynamic ";
30 // TODO print to screen Array_dynamic elements
31 // first element
32 cout << endl << "* Array_dynamic: " << * Array_dynamic << endl;
33 * Array_dynamic = 42.3f;
34 cout << "* Array_dynamic: " << * Array_dynamic << endl;
35 // And the * Array_dynamic realy points to the first element:
36 cout << "Array_dynamic[0]: " << Array_dynamic[0] << endl;
37 delete[] Array_dynamic;
38 return 0;
39 }

Part of the source code of 3_MemoryAllocation.cpp

Typical output

Size of Array_dynamic and Array_dynamic_aligned: 5

Array_static 0 9.41471 11.093 4.4112 -3.56802 -4.58924 3.20585 13.5699 17.8936
13.1212
Array_dynamic Array_dynamic_aligned
* Array_dynamic: 0
* Array_dynamic: 42.3
Array_dynamic[0]: 42.3
Position in memory:
0x7fff8787f3a0
0x23cf010
0x23d0000

19

!
Part of the source code of 3_MemoryAllocation_solution.cpp

1 #include”xmmintrin.h” // for _mm_malloc
2 #include<iostream>
3 #include<cmath>// for sin function
4 using namespace std;
5 int main (int argc, char** argv)
6 {
7 // When the size of the array is known
8 const int SIZE = 10;
9 float Array_static[SIZE];
10 int i;
11 for (i = 0; i < SIZE; ++i)
12 {
13 Array_static[i] = sin(i) * 10.f + i ;
14 }
15
16 // When the size is unknown
17 int size;
18 cout << "Size of dynamic and dynamic_aligned: ";
19 cin >> size; cout << endl;
20
21 float* Array_dynamic = new float[size];
22 // The access to the elements of this array is the same as for the

usuall array.
23 for (i = 0; i < size; ++i)
24 {
25 Array_dynamic[i] = sin(i) * 10.f + i;
27 }
29
30 float* Array_dynamic_aligned = (float*) _mm_malloc(sizeof(float)*size,

16*16*16);
31 for (i = 0; i < size; ++i)
32 {
33 Array_dynamic_aligned[i] = sin(i) * 10.f + i;
34 }
35
36 // Print the f_koeff array to the screen
37 std::cout << "Array_static ";
38 for(i=0; i<SIZE; ++i)
39
40 cout << Array_static[i] << " ";
41 cout << endl;
42
43 // Print the g_koeff array to the screen
44 std::cout << "Array_dynamic ";
45 for(float *p = Array_dynamic; p < Array_dynamic + size; ++p)
46 cout << *p << " ";
47 cout << endl;
48
49 // Print the Array_dynamic_aligned array to the screen

20

1_CPP/4_NewDeleteOperators: description!
In the next pointer exercise one is supposed to find bugs in different pointer usage situations: !

50 std::cout << "Array_dynamic_aligned ";
51 for(i=0; i<size; ++i)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

 cout << Array_dynamic_aligned[i] << " ";
 cout << endl;

 //
 cout << endl << "*Array_dynamic: " << *Array_dynamic << endl;
 *Array_dynamic = 42.3f;
 cout << "*Array_dynamic: " << *Array_dynamic << endl;
 // And the *Array_dynamic really points to the first element:
 cout << "Array_dynamic[0]: " << Array_dynamic[0] << endl; !
 cout << "Position in memory: " << endl << Array_static << endl <<
Array_dynamic << endl << Array_dynamic << endl;
 delete[] Array_dynamic;
 _mm_free(Array_dynamic);
 return 0;
}

Part of the source code of 3_MemoryAllocation_solution.cpp

Typical output

Size of Array_dynamic and Array_dynamic_aligned: 5

Array_static 0 9.41471 11.093 4.4112 -3.56802 -4.58924 3.20585 13.5699 17.8936
13.1212
Array_dynamic 0 9.41471 11.093 4.4112 -3.56802
Array_dynamic_aligned 0 9.41471 11.093 4.4112 -3.56802

* Array_dynamic: 0
* Array_dynamic: 42.3
Array_dynamic[0]: 42.3
Position in memory:
0x7fffc6f6a1f0
0x138c010
0x138d000

Part of the source code of 4_NewDeleteOperators.cpp

…
11 const short k = 1;
12
13 int main ()
14 {
15 float* p = new float(123); // allocate the memory, initialize with 123
16 float* p1 = p;
17 p1++;
18
19 cout << " PART 1 " << endl;

21

1_CPP/4_NewDeleteOperators: solution!
While being run this program receives “double free or corruption“ message. Let us understand why.

20 cout << "Initial value: " << p << " " << *p << endl;
21 (*p)++; //increase the value
22 cout << "Increased value: " << p << " " << *p << endl;
23
24 //clean the memory;
25 cout << " PART 2 " << endl;
26 cout << "Address p before delete: " << p << " " << *p << endl;
27 delete p;
28 cout << "Address p after delete: " << p << " " << *p << endl;
29
30 if(k == 2) {
31 cout << " PART 3 " << endl;
32 cout << "Address p before delete: " << p << " " << *p << endl;
33 delete p; //free the memory
34 cout << "Address p after delete: " << p << " " << *p << endl;
35 }
36 if(k >= 2) {
37 cout << " PART 4 " << endl;
38 cout << "Address p1 before delete: " << p1 << " " << *p1 << endl;
39 delete p1; //free the memory
40 cout << "Address p1 after delete: " << p1 << " " << *p1 << endl;
41 }
…

Part of the source code of 4_NewDeleteOperators.cpp

Typical output with k = 1

 PART 1
Initial value: 0xa3b010 123
Increased value: 0xa3b010 124
 PART 2
Address p before delete: 0xa3b010 124
Address p after delete: 0xa3b010 0

Part of typical output with k = 2

 PART 3
Address p before delete: 0x1f8d010 0
*** glibc detected *** ./a.out: double free or corruption (fasttop):
0x0000000001f8d010 ***

Part of typical output with k = 3

 PART 4

Address p1 before delete: 0xbec014 0

*** glibc detected *** ./a.out: free(): invalid pointer: 0x0000000000bec014 ***

22

In this program the main function begins by declaring a pointer, which points to dynamically allocated
float initialised with the value of 123.

Right after that, we introduce one more pointer p1, which points the same float. In the line 10 we
increment the pointer p1. Note that after this operation p1 now points to the next float in the memory.
However the actual value of the allocated float is not changed and still equals to 123.

In lines 12-14 we print the address of the float (p) and its value (*p), which is still 123, increase the value
of float ((*p)++) with the use of dereferencing operator and print the address, which remains the same, and
the increased value (124). The outcome of these lines: !

Initial value: 0x602010 123
Increased value: 0x602010 124 !
In lines 17-18 we free the memory to which p was pointing. Since the float was allocated dynamically we

use delete operator with usual syntax by passing the pointer to memory block previously allocated with new
operator: delete p;

That explains why after this operation for printing address and the value of float we get:
 0x602010 0.
So address remains the same. However, the value is set to 0 by delete operator.
In the line 23 we are trying to free dynamically allocated memory block the 2nd time, which is not

allowed in c++. This produce “double free or corruption“ message. The easiest way to fix this bug is to
change condition in the line 21 to: if(0),

so that lines 22-24 are never executed.
In the line 23 we are trying to free memory block, to which points pointer p1. As it was mentioned before,

after executing the line 10 it points to the memory block, which was not allocated. This is not allowed in C+
+. We can fix this bug the same manner, by commenting these lines with the use of condition clause if(0)
as it was done previously. !

Part of the source code of 4_NewDeleteOperators_solution.cpp

…
11 const short k = 1;
12
13 #include <iostream>
14 using namespace std;
15
16 int main ()
17 {
18 float* p = new float(123); // allocate the memory, initialize with 123
19 float* p1 = p;
20 p1++;
21
22 cout << " PART 1 " << endl;
23 cout << "Initial value: " << p << " " << *p << endl;
24 (*p)++; //increase the value
25 cout << "Increased value: " << p << " " << *p << endl;
26
27 //clean the memory;
28 cout << " PART 2 " << endl;
29 cout << "Address p before delete: " << p << " " << *p << endl;
30 delete p;
31 cout << "Address p after delete: " << p // 1st case
32 << " " << *p << endl; // 2nd
33
34 if(k == 2) {
35 cout << " PART 3 " << endl;

23

!
1_CPP/5_PointersAndFunctions: description!

In the next exercise one is supposed to find two bugs, which leads to segmentation fault. !

1_CPP/5_PointersAndFunctions: solution!
In order to examine this code first of all remember that C++ program always begins with execution of

main function.
The main function in this case starts with introducing a pointer “pi2”, which points nowhere up to now.

This pointer is given to the function piPointer1, which tries to save a value at the place it points to. This
would fail. To fix it one needs to allocate memory for pi1 variable and free it after use.

36 cout << "Address p before delete: " << p << " " << *p << endl; // 3rd &
4th

37 delete p; //free the memory // 5th
38 cout << "Address p after delete: " << p << " " << *p << endl; // 6th &

7th
39 }
40 if(k >= 2) {
41 cout << " PART 4 " << endl;
42 cout << "Address p1 before delete: " << p1 << " " << *p1 << endl; // 8th &

9th
43 delete p1; //free the memory // 10th
44 cout << "Address p1 after delete: " << p1 << " " << *p1 << endl; // 11th

& 12th
45 }
46
47 return 0;
48 }

Part of the source code of 4_NewDeleteOperators_solution.cpp

Part of the source code of 5_PointersAndFunctions.cpp
11 void piPointer1(float* pi) {
12 *pi = 3.14;
13 }
14
15 float* piPointer2() {
16 float pi = 3.1415;
17 return π
18 }
18
19 int main() {
20 float* pi1;
21 piPointer1(pi1);
22 cout << *pi1 << endl;
23
24 float* pi2 = piPointer2();
25 cout << *pi2 << endl;
26 delete pi2;
27
28 return 0;
29 }

Typical output

Segmentation fault

24

!
Function piPointer2 does not need an argument, but it returns pointer to local variable. This variable

allocated and destroyed inside of the function, therefore one can not use it outside of the function. Even
more - one can not free the memory for this variable, it is already freed. The solution would be to allocate
memory dynamically. !

1_CPP/6_Factorial: description!
The next program is intended to calculate the factorials of N natural numbers. One is supposed to

understand the code and find a bug: !

Part of the source code of 5_PointersAndFunctions_solution.cpp

11 void piPointer1(float* pi) {
12 *pi = 3.14;
13 }
14
15 float* piPointer2() {
16 float* pi = new float;
17 *pi = 3.1415;
18 return pi;
19 }
20
21 int main() {
22 float* pi1 = new float;
23 piPointer1(pi1);
24 cout << *pi1 << endl;
25 delete pi1;
26
27 float* pi2 = piPointer2();
28 cout << *pi2 << endl;
29 delete pi2;
30
31 return 0;
32 }

Typical output

3.14
3.1415

Part of the source code of 6_Factorial.cpp

1 // Will this program work? Find a bug.
2
3 #include<iostream>
4 using namespace std;
5
6 const int N = 10;
7
8 // Get set of the factorials of the first N numbers
9 int *GetFactorials(){
10 int a[N];
11

25

!
1_CPP/6_Factorial: solution!

!
In order to understand the problem with this program lets first consider GetFactorials function. The line

10 shows that the function returns pointer to the integer: !
int *GetFactorials() !
In the function body we introduce an array of integers with the size of N: !
int a[N]; !
In the line 14 we have a for loop, which computes factorial values for 1st N natural numbers and stores

the results in a static array a[N].
In the end function returns the pointer to the first array element a.
Already here we face a problem, since a[N], being a static array, has a scope limited to the function

body only. So we it makes no sense to return pointer to it, because the memory is freed automatically after
the function execution is finished. In order to fix this bug we should replace line 11 with: !

int *a = new int[N];

12 a[0] = 1;
13 for(int i = 1; i < N; ++i)
14 a[i] = i*a[i-1];
15
16 return a;
17 }
18
19 int main() {
20 // Get set of the factorials of the first N numbers
21 int *a = GetFactorials();
22
23 // print it
24 for(int i = 0; i < N; ++i)
25 cout << a[i] << endl;
27
29 return 0;
30 }

Part of the source code of 6_Factorial.cpp

Part of output

1
51
-1190761318
51
6295008
0
-1136061198
51
1653124016
32767
*** glibc detected *** ./a.out: munmap_chunk(): invalid pointer:
0x00007fff6288aa80 ***

26

!
So that the memory is allocated dynamically and will only be freed after calling delete operator in the end

of the program in main function: !
delete[] a; !

Part of the source code of 6_Factorial_solution.cpp

1 // Will this program work? Find a bug.
2
3 #include<iostream>
4 using namespace std;
5
6 const int N = 10;
7
8 // Get set of the factorials of the first N numbers
9 int *GetFactorials(){
10 int *a = new int[N];
11
12 a[0] = 1;
13 for(int i = 1; i < N; ++i)
14 a[i] = i*a[i-1];
15
16 return a;
17 }
18
19 int main() {
20 // Get set of the factorials of the first N numbers
21 int *a = GetFactorials();
22
23 // print it
24 for(int i = 0; i < N; ++i)
25 cout << a[i] << endl;
27 int *a = new int[N];
29 delete[] a;
30 return 0;
31 }

Typical output

1
1
2
6
24
120
720
5040
40320
362880

27

1_CPP/7_FunctionArgument: description!
In the next pointer exercise one is supposed to write different version of increment function: !

Part of the source code of 7_FunctionArgument.cpp

11 void increase1(int arg)
12 {
13 arg++;
14 }
15
16 int increase2(int arg)
17 {
18 arg++;
19 return arg;
20 }
21
22 void pointer_increase(int* arg)
23 {
24 // TODO
25 }
26
27 void reference_increase(int& arg)
28 {
29 // TODO
30 }
31
32 int main ()
33 {
34 int number = 0;
35 cout << "Number is: " << number << endl;
36 increase1(number); // Has no effect.
37 cout << "Number is: " << number << endl;
38 number = increase2(number); // increase number by 1.
39 cout << "Number is: " << number << endl;
40 pointer_increase(/* TODO */); // increase number by 1.
41 cout << "Number is: " << number << endl;
42 reference_increase(/* TODO */); // increase number by 1.
43 cout << "Number is: " << number << endl;
44 return 0;
45 }

Typical output

exPointers4.cpp: In function 'int main()':
exPointers4.cpp:22: error: too few arguments to function 'void
pointer_increase(int*)'
exPointers4.cpp:40: error: at this point in file
exPointers4.cpp:27: error: too few arguments to function 'void
reference_increase(int&)'
exPointers4.cpp:42: error: at this point in file

28

1_CPP/7_FunctionArgument: solution!
Functions should differ from each other in a way of passing argument. In the main body we introduce an

integer number with value of 0. After this we increase its value by 4 different ways and print the result after
each time in the lines 28-36.

Now lets have a closer look into function increase1. In this case we pass number by value, however the
function is void type, so it doesn't return anything, as one can see it in line 4: !

void increase1(int arg) !
In this case we create a local copy of variable “number” in function, increase it in line 6: !
arg++; !
However, this action doesn't change the global variable “number” in the main body. In case of increase2

we pass argument by value, but in this case the function type is not void, but integer, as it is declared: !
int increase2(int arg) !
So it returns the copy of locally increased variable “number”.
Thus, after line 31: !
number = increase2(number); // increase number by 1. !
value of global variable “number” will be increased by 1.
In the case of pointer_increase the argument is passed by pointer: !
void pointer_increase(int* arg) !
So we don't create a local copy of variable in this case, in order to increase the value of global variable,

we should use dereference operator in this manner: !
 (*arg)++; !
In the case of reference_increase the argument is passed by reference: !
void reference_increase(int& arg) !
In this case every action we perform with function argument automatically will be done with global

variable.
So in this case we can perform increment as easy that: !
arg++; !

Part of the source code of 7_FunctionArgument_solution.cpp

22 void pointer_increase(int* arg)
23 {
24 (*arg)++;
25 }
26
27 void reference_increase(int& arg)
28 {
29 arg++;
30 }

Typical output

Number is: 0

29

1_CPP/8_Arrays: description!
The task for this exercise is to explain the output. !

Number is: 0
Number is: 1
Number is: 2
Number is: 3

Typical output

Part of the source code of 8_Arrays.cpp

11 int main()
12 {
13 const int N = 10;
14
15 // declare pointers
16 int* p1, *p2;
17
18 // allocate memory
19 p1 = new int[N];
20 p2 = new int[N];
21
22 // fill
23 for(int i = 0; i < N; ++i) {
24 p1[i] = i;
25 p2[i] = i;
26 }
27
28 // change some values. Will arrays change?
29 p1[11] = 1011;
30 p1[15] = 1015;
31 p2[13] = 2013;
32
33 // print
34 for(int i = 0; i < N; ++i) {
35 cout << "p1[" << i << "] = " << p1[i] << " " << "p2[" << i << "] = " <<

p2[i] << endl;
36 }
37
38 delete[] p1;
39 delete[] p2;
40 }

Typical output

p1[0] = 0 p2[0] = 0
p1[1] = 1 p2[1] = 1
p1[2] = 2 p2[2] = 2
p1[3] = 3 p2[3] = 1015
p1[4] = 4 p2[4] = 4
p1[5] = 5 p2[5] = 5

30

1_CPP/8_Arrays: solution!
The task for this exercise is to explain the output. To do this, lets try to understand what is done in the

main body. In line 6 the const integer “N” with value 10 is introduced. In line 9 we declare 2 pointers to
integer “p1”, “p2”.

In the lines 12-13 we dynamically allocate memory for 2 arrays with N=10 elements in each.
In the lines 16-20 we have a for loop, which fills both arrays with array element numbers: from 0 to (N-1).
In lines 22-23 we try to change one element of each array, number 15 in array “p1” and 13 in number

“p2”: !
 p1[15] = 1005;
 p2[13] = 2003; !
However, as we learned from lines 12-13 for both arrays we allocate memory only for 10 elements in

each. This means that in our case it’s not correct to address any elements with number higher than 9.
In order to see the outcome of our action we print arrays elements with the use of loop in the line 27.

The outcome of program shows us that we have change the element with number 4 in array p2. This can
easily be explained and give us some insight to the process of allocated dynamically. After performing lines: !

p1 = new int[N];
p2 = new int[N]; !
processor allocates 2 memory blocks each of 10 floats. The blocks are located in the same place in

memory: first array “p1”, “p2” follows right after “p1”.
This is the reason, why addressing non existent element of array p1 with number 15, we actually change

6th element of array “p2”.
With line: !
p2[13] = 2003; !
We corrupt some not yet allocated memory. In this case it didn't show segmentation fault, although it’s

not right way to code. This also shows that even if program produce correct results, it doesn't necessarily
mean that it has no bugs :-).

1_CPP/9_Templates: description!
Templates
Function templates are special functions that can operate with generic types. This allows to create a

function template whose functionality can be adapted to more than one type or class without repeating the
entire code for each type.

In C++ this can be achieved using template parameters. A template parameter is a special kind of
parameter that can be used to pass a type as argument: just like regular function parameters can be used
to pass values to a function, template parameters allow to pass also types to a function. These function
templates can use these parameters as if they were any other regular type.

The format for declaring function templates with type parameters is: !
template <class identifier> function_declaration;
template <typename identifier> function_declaration;

p1[6] = 6 p2[6] = 6
p1[7] = 7 p2[7] = 7
p1[8] = 8 p2[8] = 8
p1[9] = 9 p2[9] = 9
*** glibc detected *** ./a.out: free(): invalid next size (fast):
0x0000000002494010 ***

Typical output

31

!
The only difference between both prototypes is the use of either the keyword class or the keyword

typename. Its use is indistinct, since both expressions have exactly the same meaning and behave exactly
the same way.

For example, to create a template function that returns the greater one of two objects we could use: !
template <class myType>
myType GetMax (myType a, myType b) {
 return (a>b?a:b);
} !
Here we have created a template function with myType as its template parameter. This template

parameter represents a type that has not yet been specified, but that can be used in the template function
as if it were a regular type. As you can see, the function template GetMax returns the greater of two
parameters of this still- undefined type.

To use this function template we use the format for example for two integers: !
int x,y;
GetMax <int> (x,y); !

!
Lets start examining this code with template function GetMax. This function takes 2 parameters (a, b) of

the same type T by value and returns the result with the same type T, as it is written in the line 7.
In the body we declare a variable “result” with type T.
In the lines 6-9 we store the greater variable among (a, b) to the value of “result” with the use of

conditional clause. In the last line we return the result.
In the main body we declare 2 integers and 2 doubles in lines 13-14.

Part of the source code of 9_Templates.cpp

11 template <typename T>
12 T GetMax (T a, T b) {
13 T result;
14 if (a > b) result = a;
15 else result = b;
16 return result;
17 }
18
19 int main () {
20 int i=5, j=6;
21 double l=9.2, m=2e9;
22 cout << GetMax<int>(i,j) << endl;
23 cout << GetMax<double>(l,m) << endl;
24 cout << "float: " << GetMax<float>(l,m) << endl;
25 cout << "int: " << GetMax<int>(l,m) << endl;
26 cout << "short: " << GetMax<short>(l,m) << endl;
27 cout << "char: " << int(GetMax<char>(l,m)) << endl;
28 return 0;
29 }

Typical output

6
2E+09
float: 2e+09
int: 2000000000
short: 9
char: 9

32

In lines 15-16 we call our template function with different types. It always returns the greater value.

1_CPP/10_Epsilon: description!
In the last exercise one is supposed to estimate the machine error epsilon with some precision for

different types: float, double and long double with the use of templates. Machine epsilon can be found as
the smallest value of e, such that (1 + e) is not equal to 1.

1_CPP/10_Epsilon: solution!
Part of the source code of 10_Epsilon_solution.cpp

16 template <class T>
17 T Epsilon() {
18 // cout << " (Type size: " << sizeof(T) << ") ";
19
20 const T one = 1;
21 T e = one;
22
23 for(T oneP = one + e/2; abs(oneP - one) > 0; oneP = one + e/2) {
24 e = e/2;
25 }
26 return e;
27 }
28
29 int main () {
30 cout << "Machine epsilon for float = ";
31 cout << Epsilon<float>() << endl;
32 cout << "1 + e - 1 = " << 1 + Epsilon<float>() - 1 << endl;
33
34 cout << "Machine epsilon for double = ";
35 cout << Epsilon<double>() << endl;
36 cout << "1 + e - 1 = " << 1 + Epsilon<double>() - 1 << endl;
37
38 cout << "Machine epsilon for long double = ";
39 cout << Epsilon<long double>() << endl;
40 cout << "1 + e - 1 = " << 1 + Epsilon<long double>() - 1 << endl;
41
42 cout << "Machine epsilon for int = ";
43 cout << Epsilon<int>() << endl;
44 cout << "1 + e - 1 = " << 1 + Epsilon<int>() - 1 << endl;
45
46 return 0;
47 }

Typical output

Machine epsilon for float = 1.19209e-07
1 + e - 1 = 1.19209e-07
Machine epsilon for double = 2.22045e-16
1 + e - 1 = 2.22045e-16
Machine epsilon for long double = 1.0842e-19

33

!
Since machine epsilon can be found as the smallest value of e, such that (1 + e) is not equal to 1, we

can introduce a for loop, which will stop as soon as condition ((1 + e)=1) is fulfilled. There could be many
ways to write this condition, we have done it in this way: !

for (T oneP = one + e/2; abs(oneP - one) > 0; oneP = one + e/2) e = e/2; !
This way starting from 1 we make e two times smaller each time till the point there condition: !
 ((1 + e)==1) !
is fulfilled. As soon as it happens we stop the loop execution and return the final e value. Since the

function is written with the use of templates, we can run it for different variable types, in order to find out the
precision for each one.

1 + e - 1 = 1.0842e-19
Machine epsilon for int = 1
1 + e - 1 = 1

Typical output

34

V. Akishina, I. Kisel,
I. Kulakov, M. Zyzak

HPC Practical Course
Part 2.1

!
SIMD with headers

Goethe University of Frankfurt am Main
!

30 Apr 2014

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Moore’s Law

2

Moore’s Law:
• the number of transistors doubles

approximately every two years
• surprisingly good prediction
• but it “only” talks about the number

of transistors
• the clock rate mostly fixed
!

performance increase by means of:
• improved parallelism
• faster and larger memory caches

35

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

aComputer architectures

Taken from: http://en.wikipedia.org/wiki/Flynn's_taxonomy

Single Instruction Sindle Data
Single Instruction Multiple Data

Multiple Instruction Multiple Data

vc = va+vb

3

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

aSIMD registers

SIMD register:

float float float float

double double

__m128

128 bit

• Processors with 256 bit and 512 bit registers exist

4

Speed up of factor 4

36

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

aBasic single precision SSE SIMD instructions

_mm_add_ps (Va,Vb)
_mm_sub_ps (Va,Vb)
_mm_mul_ps (Va,Vb)
_mm_div_ps (Va,Vb)
!
!
_mm_and_ps (Va,Vb)
_mm_or_ps (Va,Vb)
_mm_xor_ps (Va,Vb)
!
!
_mm_cmplt_ps (Va,Vb)
_mm_cmple_ps (Va,Vb)
_mm_cmpgt_ps (Va,Vb)
_mm_cmpge_ps (Va,Vb)
_mm_cmpeq_ps (Va,Vb)
!
!
_mm_min_ps (Va,Vb)
_mm_max_ps (Va,Vb)
_mm_rcp_ps (Va)
_mm_sqrt_ps (Va)
_mm_rsqrt_ps (Va)

Arithmetic:
!
!
!
!
!
Logical:
!
!
!
!
Comparison:
!
!
!
!
!
!
Extra:

a + b
a - b
a * b
a / b
!
!
a & b
a | b
a ^ b
!
!
a < b
a <= b
a > b
a >= b
a == b
!
!
min (a, b)
max (a, b)
1/a
sqrt(a)
1/sqrt(a)

There are much more instructions,
including instructions for SIMD vectors
with double precision values

5

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

aWrapper C++ Header

6

Partial source code of P4_F32vec4.h
44 class F32vec4
45 {
46 public:
47
48 __m128 v;
49
50 float & operator[](int i){ return (reinterpret_cast<float*>(&v))[i]; }
51 float operator[](int i) const { return (reinterpret_cast<const float*>(&v))[i]; }
52
53 F32vec4():v(_mm_set_ps1(0)){}
54 F32vec4(const __m128 &a):v(a) {}
55 F32vec4(const float &a):v(_mm_set_ps1(a)) {}
56
57 F32vec4(const float &f0, const float &f1, const float &f2, const float

&f3):v(_mm_set_ps(f3,f2,f1,f0)) {}
…
62 /* Arithmetic Operators */
63 friend F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) { return _mm_add_ps(a,b); }
…
72 /* Square Root */
73 friend F32vec4 sqrt (const F32vec4 &a){ return _mm_sqrt_ps (a); }
…
214 } __attribute__ ((aligned(16)));
215
216
217 typedef F32vec4 fvec;
218 typedef float fscal;
219 const int fvecLen = 4;

The instructions can be wrapped by C++ class,
which overloads standard operators (+, -, *, \, >, etc.) for the convenience of user.

37

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

SIMDization example

float a[1000];
float b[1000];
float c[1000];
!
 // add
for(int i = 0; i < 1000; i++) {
 c[i] = a[i]+b[i];
}

float a[1000];
float b[1000];
float c[1000];
!
fvec aV[250];
fvec bV[250];
fvec cV[250];
!
 // copy
for(int i = 0; i < 250; i++) {
 for(int iv = 0; iv < 4; iv++) {
 aV[i][iv] = a[i*4+iv];
 bV[i][iv] = b[i*4+iv];
 }
}
!
 // add
for(int i = 0; i < 250; i++) {
 cV[i] = aV[i]+bV[i];
}
!
 // copy back
for(int i = 0; i < 250; i++)
 for(int iv = 0; iv < 4; iv++)
 c[i*4+iv] = cV[i][iv];

Let’s vectorize c=a+b

SIMDization

7

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Vectorization Approaches: Task

Task:
• vector r = {x, y, z}
• calculate vector sum rc = ra+rb

• for many pairs of vectors: ra1, ra2, ra3,…; rb1, rb2, rb3,….

ra

rb

rc

8

38

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Vectorization approaches 2

ra

rb

rc

xa1 ya1 za1 -

xb1 yb1 zb1 -

+

xc1 yc1 zc1 -

=

Inside the subtask (pair)

xa2 ya2 za2 -

xb2 yb2 zb2 -

+

xc2 yc2 zc2 -

=

xa3 ya3 za3 -

xb3 yb3 zb3 -

+

xc3 yc3 zc3 -

=

……
• Usually is not optimal
• Do not scale

9

Task:
• vector r = {x, y, z}
• calculate vector sum rc = ra+rb

• for many pairs of vectors: ra1, ra2, ra3,…; rb1, rb2, rb3,….

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Vectorization approaches 3

xa1 xa2 xa3 xa4

xb1 xb2 xb3 xb4

+

xc1 xc2 xc3 xc4

=

Between the subtasks

ya1 ya2 ya3 ya4

yb1 yb2 yb3 yb4

+

yc1 yc2 yc3 yc4

=

za1 za2 za3 za4

zb1 zb2 xb3 zb4

+

zc1 zc2 zc3 zc4

=

……
• Full vectorization if no branches
• Scales with big number of tasks

10

ra

rb

rc
Task:
• vector r = {x, y, z}
• calculate vector sum rc = ra+rb

• for many pairs of vectors: ra1, ra2, ra3,…; rb1, rb2, rb3,….

39

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

AoS vs SoA

11

struct TDataElement {
 float x, y, z;
};
!
TDataElement data[8];

struct TData {
 float x[8], y[8], z[8];
};
!
TData data;

Array of Structures (AoS) Structure of Arrays (SoA)

x y z x y z x y z x y z x y z x y z x x x x x x . . y y y y y y . . z z z z z z . .

- Vectorization needs data movement
- Padding wastes the memory
+ x, y, z in the same cache line
+ Intuitively structured code

!
!

struct TDataVecElement {
 float x[vecLen], y[vecLen], z[vecLen];
};
!
TDataVecElement data[2];

x x x x y y y y z z z z x x x x . . .

Array of Structures of Arrays

+ The data is already grouped for vectorisation
+ Compact data placement
- x, y, z in tree different cache lines
- Confusing code

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Matrix Problem

 for(int i = 0; i < N; i++) {
 for(int j = 0; j < N; j++) {
 c[i][j] = sqrt(a[i][j]);
 }
 }

Scalar SIMD

?

!
Task:
• Write the SIMD part of the code using the SIMD-header file.
• Compare time and results.
• Can you avoid copying?

12

Exersices/2_SIMD/0_Matrix

40

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Quadratic Equations Problem

!
Task:
• Write the SIMD code for the root calculation using SIMD intrinsics and copying the data to SIMD

vectors.
• Write the SIMD code using SIMD intrinsics and casting the data from the scalar arrays to SIMD

vectors (use reinterpret_cast for this). Compare the time with a previous task.
• Write the SIMD code using header files and copying the data to SIMD vectors. Compare the time

with previous tasks.
• Write the SIMD code using header files and casting the data from the scalar arrays to SIMD

vectors (use reinterpret_cast for this). Compare the time with previous tasks.
• Put NVectors = 10000000; and NIterOut=10. Compare times and speed up factors with the

previous results.

for(int i=0; i<N; i++) {
 float det = b[i]*b[i] - 4*a[i]*c[i];
 x[i] = (-b[i]+sqrt(det))/(2*a[i]);
}

Scalar SIMD

?

13

Exersices/2_SIMD/1_QuadraticEquation

 of 14 30 Apr 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Check sum

template< typename T >
T Sum(const T* data, const int N)
{
 T sum = 0;
 const T* end = data + N;
 for (int i = 0; i < N; ++i)
 sum = sum ^ data[i];
 return sum;
}

x1 x2 x3 x4 x5 … x100 cs

x1 XOR x2 XOR x3 XOR x4 XOR x5 … XOR x100 CS

CS

1 byte

How to vectorize?
What is max speed up?
Is it possible to vectorize without SIMD-intrinsics?

Exersices/2_SIMD/2_CheckSum

14

41

42

2.1. SIMD with headers!
Exercises are located at Exercises/2_SIMD/
Solutions are located at Exercises/2_SIMD/Solutions/
To compile and run exercise programs use the line given in the head-comments in the code.
The results given here are obtained on Intel E7-4860 CPU with gcc4.7.3.

SIMD Introduction!
Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It

describes computers with multiple processing elements that perform the same operation on multiple data
points simultaneously. SIMD instructions can be found, to one degree or another, on most CPUs, including
the Intel's SSE, AVX, AMD’s 3DNow!, IBM's AltiVec, SPE for PowerPC etc.

To use C++ with SIMD support on a typical Intel
CPU one needs to load floating point data into the
special __m128 data type, which contains 4
floating point variables. Then Streaming SIMD
Extensions (SSE) intrinsics can be applied to the
__m128 data type as a usual functions. A list of the
most common SSE instructions for single precision
is given in Table 1.

For convenience the instructions can be
wrapped by C++ class, which overloads standard
operators (+, -, *, \, >, etc.). A small header file with

overloaded instructions is provided at vectors/P4_F32vec4.h. It wraps __m128 data type by F32vec4
object, providing operator[] for access and operators like operator+ and operator< for computations. Also
a more general short name fvec is given to the F32vec4 type, the vector length is saved to fvecLen and
the scalar entry type to fscal. See part of the header file below.

Fig. 1. Typical SIMD register.

SSE Scalar analog

_mm_set_ps(a3,a2,a1,a0) convert 4 floats into
SSE vector

_mm_add_ps (Va,Vb) a + b

_mm_sub_ps (Va,Vb) a - b

_mm_mul_ps (Va,Vb) a * b

_mm_div_ps (Va,Vb) a / b

_mm_and_ps (Va,Vb) a & b

_mm_or_ps (Va,Vb) a | b

_mm_xor_ps (Va,Vb) a ^ b

_mm_cmplt_ps (Va,Vb) a < b

_mm_cmple_ps (Va,Vb) a <= b

_mm_cmpgt_ps (Va,Vb) a > b

_mm_cmpge_ps (Va,Vb) a >= b

_mm_cmpeq_ps (Va,Vb) a == b

_mm_min_ps (Va,Vb) min (a, b)

_mm_max_ps (Va,Vb) max (a, b)

_mm_rcp_ps (Va) 1/a

_mm_sqrt_ps (Va) sqrt(a)

_mm_rsqrt_ps (Va) 1/sqrt(a)

Table. 1. Common SSE instructions

Fig. 2. The explanation of vec_add intrinsic.

43

!

!
Headers with vector instructions emulated by scalar operations are provided in PSEUDO_F32vec4.h

(vector with 4 entires) and PSEUDO_F32vec1.h (vector with 1 entry). They can be used in the similar way
as P4_F32vec4.h, but won’t give any speed up. They supposed to be used for debugging and comparison.

2_SIMD/0_Matrix: description!
The Matrix exercise requires to parallelize

square root extraction over a set of float
variables arranged in a square matrix, see
Fig. 1. The ini t ial code gives an
implemented scalar part and lives blank
space for a vector part. Therefore the
initial output shows 0 time for vector
calculations and infinite speed up factor,
which should be currently ignored.

 !

Part of the source code of P4_F32vec4.h

44 class F32vec4
45 {
46 public:
47
48 __m128 v;
49
50 float & operator[](int i){ return (reinterpret_cast<float*>(&v))[i]; }
51 float operator[](int i) const { return (reinterpret_cast<const

float*>(&v))[i]; }
52
53 F32vec4():v(_mm_set_ps1(0)){}
54 F32vec4(const __m128 &a):v(a) {}
55 F32vec4(const float &a):v(_mm_set_ps1(a)) {}
56
57 F32vec4(const float &f0, const float &f1, const float &f2, const float

&f3):v(_mm_set_ps(f3,f2,f1,f0)) {}
…
62 /* Arithmetic Operators */
63 friend F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) { return

_mm_add_ps(a,b); }
…
72 /* Square Root */
73 friend F32vec4 sqrt (const F32vec4 &a){ return _mm_sqrt_ps (a); }
…
214 } __attribute__ ((aligned(16)));
215
216
217 typedef F32vec4 fvec;
218 typedef float fscal;
219 const int fvecLen = 4;

Part of the source code of Matrix.cpp

23 float a[N][N]; // input array
24 float c[N][N]; // output array for scalar computations

Fig. 1. The explanation of Matrix task.

44

25 float c_simd[N][N]; // output array for SIMD computations
26
27 template<typename T> // required calculations
28 T f(T x) {
29 return sqrt(x);
30 }
…
45 int main() {
46
47 // fill classes by random numbers
48 for(int i = 0; i < N; i++) {
49 for(int j = 0; j < N; j++) {
50 a[i][j] = float(rand())/float(RAND_MAX); // put a random value, from 0 to

1
51 }
52 }
53
54 /// -- CALCULATE --
55 /// SCALAR
56 TStopwatch timerScalar;
57 for(int ii = 0; ii < NIter; ii++)
58 for(int i = 0; i < N; i++) {
59 for(int j = 0; j < N; j++) {
60 c[i][j] = f(a[i][j]);
61 }
62 }
63 timerScalar.Stop();
64
65 /// SIMD VECTORS
66 TStopwatch timerSIMD;
67 // TODO
68 timerSIMD.Stop();
69
70 double tScal = timerScalar.RealTime()*1000;
71 double tSIMD1 = timerSIMD.RealTime()*1000;
72
73 cout << "Time scalar: " << tScal << " ms " << endl;
74 cout << "Time SIMD: " << tSIMD1 << " ms, speed up " << tScal/tSIMD1 <<

endl;
75
76 CheckResults(c,c_simd);
77
78 return 1;
79 }

Part of the source code of Matrix.cpp

Typical output

Time scalar: 599.968 ms
Time SIMD: 0 ms, speed up inf
ERROR! SIMD and scalar results are not the same.

45

2_SIMD/0_Matrix: solution!
For vector calculations all N*N scalar variables need to be divided into N*(N/4) groups with 4 elements,

that will be treated as vectors. The solution groups scalars within each row, thus creating a matrix with N
rows and N/4 columns.

Initial data copying into vectors can be avoided by reinterpreting them as vectors in case the scalar data
is aligned to 16 bytes (line 23 of the solution). In the same way copying can be avoided at the output stage
(line 25).

Although one can use the same algorithm structure with a triple loop as in the scalar code, we iterate
over 4 elements groups rather than over each matrix element, therefore the step of the innermost loop
need to be modified. !

!!
Since the function f(…), which must be applied to the data, is a template, we can use the same function

call format.
Since 4 float variables fit into a single SIMD vector, all calculations are done in parallel and no overhead

operations are required, the expected speed-up factor should be 4.

2_SIMD/1_QuadraticEquation: description!
The QuadraticEquation exercise requires to vectorize solution of a set of quadratic equations in four

different ways: using either (1) copying of data or (2) casting and using either (3) SIMD intrinsics or (4) fvec
type from the header file. Then (5) compare the calculation time depending on amount of processed data.

It is recommended to compile the code with -fno-tree-vectorize option to prevent auto-vectorization of
the scalar code, otherwise comparison of the vectorized and scalar codes will not be direct. !

Part of the source code of Matrix_solution.cpp

23 float a[N][N] __attribute__((aligned(16))); // input array
24 float c[N][N]; // output array for scalar

computations
25 float c_simd[N][N] __attribute__((aligned(16))); // output array for SIMD

computations
…
66 TStopwatch timerSIMD;
67 for(int ii = 0; ii < NIter; ii++)
68 for(int i = 0; i < N; i++) {
69 for(int j = 0; j < N; j+=fvecLen) {
70 fvec &aVec = reinterpret_cast<fvec&>(a[i][j]);
71 fvec &cVec = reinterpret_cast<fvec&>(c_simd[i][j]);
72 cVec = f(aVec);
73 }
74 }
75 timerSIMD.Stop();

Typical output after solution

Time scalar: 604.324 ms
Time SIMD: 150.4 ms, speed up 4.01811
SIMD and scalar results are the same.

Part of the source code of QuadraticEquation.cpp

74 // fill parameters by random numbers
75 for(int i = 0; i < N; i++) {
76 a[i] = float(rand())/float(RAND_MAX); // put a random value, from 0 to 1

46

2_SIMD/1_QuadraticEquation: solution!
(1) The first task is to vectorize calculations using copying of data and SIMD intrinsics.
One need to use __m128 type and _mm_set_ps function to copy the data. This function takes four float

arguments and fills 4 32-bit elements in __m128 variable starting from the last one. Therefore for i-th vector
one uses (i*fvecLen+3)-th, (i*fvecLen+2)-th, (i*fvecLen+1)-th and (i*fvecLen)-th scalars as arguments.

The _mm_set_ps1 function is used to convert constants 4 and 2 into the SIMD type. The
_mm_sub_ps, _mm_mul_ps, _mm_sqrt_ps and _mm_div_ps are used for all required calculations. !

(2) The second task is vectorisation using cast and SIMD intrinsics.
Since the data is already aligned to 16 bytes one can use reinterpret_cast directly to the part of the

scalar input and output arrays starting from the i-th element.
The calculation part remains the same.

77 b[i] = float(rand())/float(RAND_MAX);
78 c[i] = -float(rand())/float(RAND_MAX);
79 }
80
81 /// -- CALCULATE --
82
83 // scalar calculations
84 TStopwatch timerScalar;
85 for(int io=0; io<NIterOut; io++)
86 for(int i=0; i<N; i++)
87 {
88 float det = b[i]*b[i] - 4*a[i]*c[i];
89 x[i] = (-b[i]+sqrt(det))/(2*a[i]);
90 }
91 timerScalar.Stop();

Part of the source code of QuadraticEquation.cpp

Typical output

Time scalar: 431.702 ms
Time SIMD1: 0 ms, speed up inf
Time SIMD2: 0.000953674 ms, speed up 452672
Time SIMD3: 0 ms, speed up inf
Time SIMD4: 0.000953674 ms, speed up 452672
ERROR! SIMD1 and scalar results are not the same.
ERROR! SIMD2 and scalar results are not the same.
ERROR! SIMD3 and scalar results are not the same.
ERROR! SIMD4 and scalar results are not the same.

Part of the source code of QuadraticEquation_solution.cpp

98 __m128 aV = _mm_set_ps(a[i*fvecLen+3],a[i*fvecLen+2],a[i*fvecLen
+1],a[i*fvecLen]);

99 __m128 bV = _mm_set_ps(b[i*fvecLen+3],b[i*fvecLen+2],b[i*fvecLen
+1],b[i*fvecLen]);

100 __m128 cV = _mm_set_ps(c[i*fvecLen+3],c[i*fvecLen+2],c[i*fvecLen
+1],c[i*fvecLen]);

101
102 const __m128 det = _mm_sub_ps(_mm_mul_ps(bV,bV) ,

_mm_mul_ps(_mm_set_ps1(4),_mm_mul_ps(aV,cV)));
103 __m128 xV =

_mm_div_ps(_mm_sub_ps(_mm_sqrt_ps(det),bV),_mm_mul_ps(_mm_set_ps1(2),aV));

47

!

!
(3) The third task is to vectorize calculations using copying of data and headers.
With headers one uses fvec type and fvec constructor to copy the data. The constructor takes 4 float

arguments and fills 4 32-bit elements starting from the first one. Therefore for the i-th vector one uses
(i*fvecLen)-th, (i*fvecLen+1)-th, (i*fvecLen+2)-th and (i*fvecLen+3)-th scalars as arguments.

The calculations part remains the same. !

!
(4) The fourth task is to vectorize using cast of data and headers. It can be done as in the tasks (2) and

(3). !

!
It is expected to have exactly the same speed up factor independently of SSE intrinsics overloading. The

speed up factor of 4 should be achieved with reinterpret_cast. It should be slightly less in the other case,
because additional time is spend on data management. !

(5) The initial number of vectors is 10,000, which gives the size of arrays 10000*16 bytes = 0.16 MB. All
5 arrays should fit into the cache memory (typical size 1-20 MB), therefore the speed-up factor of 4 should
be achievable with reinterpret_cast.

 When the number of vectors is increased by a factor of 1000, the size of arrays becomes 160 MB, then
the arrays will be stored in the much slower RAM memory. Therefore the speed-up factor will be less
than 4. The speed-up factor should remain the same (low) also for 1,000,000 vectors. !

Part of the source code of QuadraticEquation_solution.cpp

114 for(int i=0; i<N; i+=fvecLen)
115 {
116 __m128& aV = (reinterpret_cast<__m128&>(a[i]));
117 __m128& bV = (reinterpret_cast<__m128&>(b[i]));
118 __m128& cV = (reinterpret_cast<__m128&>(c[i]));
119
120 __m128& xV = (reinterpret_cast<__m128&>(x_simd2[i]));

Part of the source code of QuadraticEquation_solution.cpp

134 fvec aV = fvec(a[i*fvecLen],a[i*fvecLen+1],a[i*fvecLen+2],a[i*fvecLen
+3]);

135 fvec bV = fvec(b[i*fvecLen],b[i*fvecLen+1],b[i*fvecLen+2],b[i*fvecLen
+3]);

136 fvec cV = fvec(c[i*fvecLen],c[i*fvecLen+1],c[i*fvecLen+2],c[i*fvecLen
+3]);

137
138 const fvec det = bV*bV - 4*aV*cV;
139 fvec xV = (-bV+sqrt(det))/(2*aV);

Typical output after solution

Time scalar: 432.194 ms
Time SIMD1: 109.914 ms, speed up 3.93211
Time SIMD2: 105.318 ms, speed up 4.1037
Time SIMD3: 111.117 ms, speed up 3.88954
Time SIMD4: 105.588 ms, speed up 4.09321
SIMD1 and scalar results are the same.
SIMD2 and scalar results are the same.
SIMD3 and scalar results are the same.
SIMD4 and scalar results are the same.

Typical output after solution

Time scalar: 4322.71 ms

48

2_SIMD/2_CheckSum: description!
The CheckSum exercise requires to vectorize the check sum calculation for the array of data. Check

sum is defined as XOR-sum over all bytes of the array (lines 29-30 in the code below). In addition, consider
if parallel calculations here can be done without the hardware support of parallelization. !

2_SIMD/2_CheckSum: solution!
The parallelization can be achieved, since XOR operator is applied bitwise and can be applied to the

SIMD register data in the same way as to char variable, such that we can use __m128 type to pack 16
char variables into a vector and treat them simultaneously.

Time SIMD1: 1197.12 ms, speed up 3.61093
Time SIMD2: 1130.53 ms, speed up 3.82361
Time SIMD3: 1215.68 ms, speed up 3.5558
Time SIMD4: 1137.61 ms, speed up 3.79981
SIMD1 and scalar results are the same.
SIMD2 and scalar results are the same.
SIMD3 and scalar results are the same.
SIMD4 and scalar results are the same.

Typical output after solution

Part of the source code of CheckSum.cpp

23 template< typename T >
24 T Sum(const T* data, const int N)
25 {
26 T sum = 0;
27
28 for (int i = 0; i < N; ++i)
29 sum = sum ^ data[i];
30 return sum;
31 }
32
33 int main() {
34
35 // fill string by random values
36 for(int i = 0; i < N; i++) {
37 str[i] = 256 * (double(rand()) / RAND_MAX); // put a random value, from 0

to 255
38 }
39
40 /// -- CALCULATE --
41
42 /// SCALAR
43
44 unsigned char sumS = 0;
45 TStopwatch timerScalar;
46 for(int ii = 0; ii < NIter; ii++)
47 sumS = Sum<unsigned char>(str, N);
48 timerScalar.Stop();

49

The input char array should be reinterpreted as an array of fvecs. Then XOR sum of fvecs is calculated
using the given template function. The resulting fvec variable should be reinterpreted back as an array of
16 char variables and the scalar sum of 16 elements is calculated directly. !

!
Parallelization without SIMD instructions can be achieved, since XOR operator is applied bitwise and

can be applied to integer data in the same way as to SIMD data and byte data. The only difference is the
length of the vector, that is 4 in case of integer. !

!
A typical speed-up with integer should be 4, as expected, since 4 bytes are packed into one integer and

time for the additional loop with 3 iterations is negligible. The speed-up factor using fvec theoretically
should be 16, practically the achieved speed-up factor is about 10 to 12.

Part of the source code of CheckSum_solution.cpp

52 unsigned char sumV = 0;
53
54 const int fvecCharLen = fvecLen*4;
55 const int NV = N/fvecCharLen;
56
57 TStopwatch timerSIMD;
58 for(int ii = 0; ii < NIter; ii++) {
59 fvec sumVV = 0;
60 sumVV = Sum<fvec>(reinterpret_cast<fvec*>(str), NV);
61 unsigned char *sumVS = reinterpret_cast<unsigned char*>(&sumVV);
62
63 sumV = sumVS[0];
64 for (int iE = 1; iE < fvecCharLen; ++iE)
65 sumV ^= sumVS[iE];
66 }
67 timerSIMD.Stop();

Part of the source code of CheckSum_solution.cpp

71 unsigned char sumI = 0;
72
73 const int intCharLen = 4;
74 const int NI = N/intCharLen;
75
76 TStopwatch timerINT;
77 for(int ii = 0; ii < NIter; ii++) {
78 int sumII = Sum<int>(reinterpret_cast<int*>(str), NI);
79 unsigned char *sumIS = reinterpret_cast<unsigned char*>(&sumII);
80
81 sumI = sumIS[0];
82 for (int iE = 1; iE < intCharLen; ++iE)
83 sumI ^= sumIS[iE];
84 }
85 timerINT.Stop();

Typical output after solution

Time scalar: 274.435 ms
Time INT: 65.3081 ms, speed up 4.20216
Time SIMD: 25.3839 ms, speed up 10.8114
Results are the same.

50

Typical output of KFLineFitter_solution2_simd.cpp

 Begin
Time: 0.647068 ms
 End

51

52

HPC Practical Course
Part 2.2

!
Kalman Filter Track Fit

V. Akishina, I. Kisel,
I. Kulakov, M. Zyzak

Goethe University of Frankfurt am Main
!

6 May 2014

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

The Kalman Filter

2

The Kalman filter is a recursive algorithm which estimates the state
of a dynamic system from a series of incomplete and noisy measurements.

The filter was developed in papers by Swerling (1958), Kalman (1960),
and Kalman and Bucy (1961). The filter is named

after
Rudolf E. Kalman.

A wide variety of Kalman filters have now been developed, from Kalman's original formulation, now
called the simple Kalman filter, to extended filter, the information filter and a variety of square-root
filters.

An example of an application would be to provide accurate continuously-updated information about the
position and velocity of an object given only a sequence of observations about its position, each of which
includes some error. !
It is used in a wide range of engineering applications from radar to computer vision.

53

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

The Kalman Filter Algorithm

3

The Kalman filter uses the dynamics of the target, which describes its time evolution, to remove the
effects of the noise and get a good estimate of the location of the target
• at the present time (filtering),
• at a future time (prediction), or
• at a time in the past (interpolation or smoothing).

The Kalman filter is a recursive estimator – only the estimated state from the previous time step and the
current measurement are needed to compute the estimate for the current state.

n

n+1

mean value over n measurements

mean value over n+1 measurements

previous estimation new measurement

correctionweight

Prediction
or
Extrapolation

Update
or
Filter

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Components of the Kalman Filter method

4

54

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Example: Radar Applications

5

In a radar application, where one is interested in following a target, information about the location, speed,
and acceleration of the target is measured at different moments in time with corruption by noise.

r = { x, y, z, vx, vy, vz }

σ2
x

 σ2
y …

 σ2
z

 σ2
vx

 … σ2
vy

 σ2
vz

C =

State vector Covariance matrix

position velocity

error of x

December 21, 1968. The Apollo 8 spacecraft has just been sent on its way to the Moon.
003:46:31 Collins: Roger. At your convenience, would you please go P00 and Accept? We're going to update to your W-matrix.

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Kalman Filter Based Track Fit

6

Track fit: Optimal estimation of the track parameters according to hits – Kalman Filter

Kalman Filter:
1. Choose a state vector.
2. Start with an arbitrary initialization.
3. Add one hit after another, improving the state vector.
4. Get the optimal parameters after the last hit.

UpdatekInitialize Propagatek,k+1

MC track
parameters

Fitted track
parameters

Fit precision

Initialization

Optimal estimation

Hits

Stationsx

z

Hits errors

1 2 3 4 5 6 7 8
I P67 U7 P78 U8P56 U6P45 U5P23 U3 P34 U4P12 U2

U1

2D KF line fit example
3σ errors are shown

State vector of track parameters: r = { x, tx }
position & direction

55

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Kalman Filter Equation

7

Prediction

Noise matrixHow to propagate the state vector?

Prediction matrix
(Jacobian)

How does measurement depend on the state vector?

Model of measurement

Noise

 / 11 7 May 2014 Valentina Akishina, HPC Praktikum, Uni-Frankfurt

Kalman Filter Equation

6

Prediction

Filtering

Noise matrix

Measurement error

How to propagate the state vector?

Prediction matrix
(Jacobian)

How does measurement depend on the state vector?

Model of measurement

Noise

Weighting matrix

Gain matrix

Residual

Covariance
matrix

r rt

m
k

, k = 1 . . . n r ⇠

r = rt + ⇠,

C = < ⇠ · ⇠T > .

r =
r0 r

rt

k
(k � 1)

r rt

rt k
rt

k

⌘ rt(k)
m

k

rt

k

m
k

= H
k

rt

k

+ ⌘
k

H
k

⌘
k

k
rt

k

rt

k�1

rt

k

= F
k�1rt

k�1 + v
k

,

v
k

V
k

Q
k

< ⌘
k

>=< v
k

> = 0
< ⌘

k

· ⌘T

k

> = V
k

.

< v
k

· vT

k

> = Q
k

.

r rt

m
k

, k = 1 . . . n r ⇠

r = rt + ⇠,

C = < ⇠ · ⇠T > .

r =
r0 r

rt

k
(k � 1)

r rt

rt k
rt

k

⌘ rt(k)
m

k

rt

k

m
k

= H
k

rt

k

+ ⌘
k

H
k

⌘
k

k
rt

k

rt

k�1

rt

k

= F
k�1rt

k�1 + v
k

,

v
k

V
k

Q
k

< ⌘
k

>=< v
k

> = 0
< ⌘

k

· ⌘T

k

> = V
k

.

< v
k

· vT

k

> = Q
k

.

r rt

m
k

, k = 1 . . . n r ⇠

r = rt + ⇠,

C = < ⇠ · ⇠T > .

r =
r0 r

rt

k
(k � 1)

r rt

rt k
rt

k

⌘ rt(k)
m

k

rt

k

m
k

= H
k

rt

k

+ ⌘
k

H
k

⌘
k

k
rt

k

rt

k�1

rt

k

= F
k�1rt

k�1 + v
k

,

v
k

V
k

Q
k

< ⌘
k

>=< v
k

> = 0
< ⌘

k

· ⌘T

k

> = V
k

.

< v
k

· vT

k

> = Q
k

.

r�
k

+ ⇠�
k

= F
k�1r+

k�1 + F
k�1⇠

+
k�1 + v

k

,

r�
k

= F
k�1r+

k�1,

F
k�1

ij

=
@r�

k

i

@r+
k�1

j

.

⇠�
k

= F
k�1⇠

+
k�1 + v

k

,

C
k

= < F
k�1⇠

+
k�1 · ⇠+T

k�1F
T

k�1 + F
k�1⇠

+
k�1vk

+ v
k

· ⇠+T

k�1F
T

k�1 + v
k

· vT

k

>

= F
k�1 < ⇠+

k�1 · ⇠+T

k�1 > F T

k�1 + F
k�1 < ⇠+

k�1vk

>

+ < v
k

· ⇠+T

k�1 > F T

k�1+ < v
k

· vT

k

> .

C�
k

= F
k�1C

+
k�1F

T

k�1 + Q
k

.

r+
k

rt

k k r�
k+1

rt k (k+1)
rt

(k + 1)

rt C�
k

C+
k

rt k

r+
0

C+
0

C+
0 = I · inf I inf

rt

r�
k

+ ⇠�
k

= F
k�1r+

k�1 + F
k�1⇠

+
k�1 + v

k

,

r�
k

= F
k�1r+

k�1,

F
k�1

ij

=
@r�

k

i

@r+
k�1

j

.

⇠�
k

= F
k�1⇠

+
k�1 + v

k

,

C
k

= < F
k�1⇠

+
k�1 · ⇠+T

k�1F
T

k�1 + F
k�1⇠

+
k�1vk

+ v
k

· ⇠+T

k�1F
T

k�1 + v
k

· vT

k

>

= F
k�1 < ⇠+

k�1 · ⇠+T

k�1 > F T

k�1 + F
k�1 < ⇠+

k�1vk

>

+ < v
k

· ⇠+T

k�1 > F T

k�1+ < v
k

· vT

k

> .

C�
k

= F
k�1C

+
k�1F

T

k�1 + Q
k

.

r+
k

rt

k k r�
k+1

rt k (k+1)
rt

(k + 1)

rt C�
k

C+
k

rt k

r+
0

C+
0

C+
0 = I · inf I inf

rt

(k � 1) r+
k�1

r�
k

rt k (k � 1)

r�
k

= F
k�1r+

k�1

C�
k

= F
k�1C

+
k�1F

T

k�1 + Q
k

.

m
k

r+
k

rt k
k

S
k

= (V
k

+ H
k

C�
k

HT

k

)�1,

K
k

= C�
k

HT

k

S
k

,

⇣
k

= m
k

�H
k

r�
k

,

r+
k

= r�
k

+ K
k

⇣
k

,

C+
k

= (I �K
k

H
k

) · C�
k

,

�2
k

= �2
k�1 + ⇣T

k

S
k

⇣
k

.

(k + 1)
k = k + 1

K
k

⇣
k

�2
k

�2

r
k

m1, . . .m
k

r+
n

C+
n

m
k

rt

rlin

m
k

(rt) = h
k

(rt) + ⌘
k

⇡ h
k

(rlin) + H
k

(rt � rlin) + ⌘
k

H
k

h
k

() rlin

H
k

ij

=
@h

k

i

(r
k

)
@r

k

j

�����
r

k

=rlin

k

.

⇣
k

⇣
k

= m
k

� (h
k

(r0) + H
k

(r
k�1 � r0))

(k � 1) r+
k�1

r�
k

rt k (k � 1)

r�
k

= F
k�1r+

k�1

C�
k

= F
k�1C

+
k�1F

T

k�1 + Q
k

.

m
k

r+
k

rt k
k

S
k

= (V
k

+ H
k

C�
k

HT

k

)�1,

K
k

= C�
k

HT

k

S
k

,

⇣
k

= m
k

�H
k

r�
k

,

r+
k

= r�
k

+ K
k

⇣
k

,

C+
k

= (I �K
k

H
k

) · C�
k

,

�2
k

= �2
k�1 + ⇣T

k

S
k

⇣
k

.

(k + 1)
k = k + 1

K
k

⇣
k

�2
k

�2

r
k

m1, . . .m
k

r+
n

C+
n

m
k

rt

rlin

m
k

(rt) = h
k

(rt) + ⌘
k

⇡ h
k

(rlin) + H
k

(rt � rlin) + ⌘
k

H
k

h
k

() rlin

H
k

ij

=
@h

k

i

(r
k

)
@r

k

j

�����
r

k

=rlin

k

.

⇣
k

⇣
k

= m
k

� (h
k

(r0) + H
k

(r
k�1 � r0))

(k � 1) r+
k�1

r�
k

rt k (k � 1)

r�
k

= F
k�1r+

k�1

C�
k

= F
k�1C

+
k�1F

T

k�1 + Q
k

.

m
k

r+
k

rt k
k

S
k

= (V
k

+ H
k

C�
k

HT

k

)�1,

K
k

= C�
k

HT

k

S
k

,

⇣
k

= m
k

�H
k

r�
k

,

r+
k

= r�
k

+ K
k

⇣
k

,

C+
k

= (I �K
k

H
k

) · C�
k

,

�2
k

= �2
k�1 + ⇣T

k

S
k

⇣
k

.

(k + 1)
k = k + 1

K
k

⇣
k

�2
k

�2

r
k

m1, . . .m
k

r+
n

C+
n

m
k

rt

rlin

m
k

(rt) = h
k

(rt) + ⌘
k

⇡ h
k

(rlin) + H
k

(rt � rlin) + ⌘
k

H
k

h
k

() rlin

H
k

ij

=
@h

k

i

(r
k

)
@r

k

j

�����
r

k

=rlin

k

.

⇣
k

⇣
k

= m
k

� (h
k

(r0) + H
k

(r
k�1 � r0))

(k � 1) r+
k�1

r�
k

rt k (k � 1)

r�
k

= F
k�1r+

k�1

C�
k

= F
k�1C

+
k�1F

T

k�1 + Q
k

.

m
k

r+
k

rt k
k

S
k

= (V
k

+ H
k

C�
k

HT

k

)�1,

K
k

= C�
k

HT

k

S
k

,

⇣
k

= m
k

�H
k

r�
k

,

r+
k

= r�
k

+ K
k

⇣
k

,

C+
k

= (I �K
k

H
k

) · C�
k

,

�2
k

= �2
k�1 + ⇣T

k

S
k

⇣
k

.

(k + 1)
k = k + 1

K
k

⇣
k

�2
k

�2

r
k

m1, . . .m
k

r+
n

C+
n

m
k

rt

rlin

m
k

(rt) = h
k

(rt) + ⌘
k

⇡ h
k

(rlin) + H
k

(rt � rlin) + ⌘
k

H
k

h
k

() rlin

H
k

ij

=
@h

k

i

(r
k

)
@r

k

j

�����
r

k

=rlin

k

.

⇣
k

⇣
k

= m
k

� (h
k

(r0) + H
k

(r
k�1 � r0))

(k � 1) r+
k�1

r�
k

rt k (k � 1)

r�
k

= F
k�1r+

k�1

C�
k

= F
k�1C

+
k�1F

T

k�1 + Q
k

.

m
k

r+
k

rt k
k

S
k

= (V
k

+ H
k

C�
k

HT

k

)�1,

K
k

= C�
k

HT

k

S
k

,

⇣
k

= m
k

�H
k

r�
k

,

r+
k

= r�
k

+ K
k

⇣
k

,

C+
k

= (I �K
k

H
k

) · C�
k

,

�2
k

= �2
k�1 + ⇣T

k

S
k

⇣
k

.

(k + 1)
k = k + 1

K
k

⇣
k

�2
k

�2

r
k

m1, . . .m
k

r+
n

C+
n

m
k

rt

rlin

m
k

(rt) = h
k

(rt) + ⌘
k

⇡ h
k

(rlin) + H
k

(rt � rlin) + ⌘
k

H
k

h
k

() rlin

H
k

ij

=
@h

k

i

(r
k

)
@r

k

j

�����
r

k

=rlin

k

.

⇣
k

⇣
k

= m
k

� (h
k

(r0) + H
k

(r
k�1 � r0))

(k � 1) r+
k�1

r�
k

rt k (k � 1)

r�
k

= F
k�1r+

k�1

C�
k

= F
k�1C

+
k�1F

T

k�1 + Q
k

.

m
k

r+
k

rt k
k

S
k

= (V
k

+ H
k

C�
k

HT

k

)�1,

K
k

= C�
k

HT

k

S
k

,

⇣
k

= m
k

�H
k

r�
k

,

r+
k

= r�
k

+ K
k

⇣
k

,

C+
k

= (I �K
k

H
k

) · C�
k

,

�2
k

= �2
k�1 + ⇣T

k

S
k

⇣
k

.

(k + 1)
k = k + 1

K
k

⇣
k

�2
k

�2

r
k

m1, . . .m
k

r+
n

C+
n

m
k

rt

rlin

m
k

(rt) = h
k

(rt) + ⌘
k

⇡ h
k

(rlin) + H
k

(rt � rlin) + ⌘
k

H
k

h
k

() rlin

H
k

ij

=
@h

k

i

(r
k

)
@r

k

j

�����
r

k

=rlin

k

.

⇣
k

⇣
k

= m
k

� (h
k

(r0) + H
k

(r
k�1 � r0))

a cross-platform programming language with a well-
specified computation environment.

4. Conventional Kalman filter

The Kalman filter method [1, 2, 3, 5] in its linear
form is intended for finding the optimum estimation
r of an unknown vector rt according to the measure-
ments mk, k = 1, . . . , n, of the vector rt by minimizing
the mean square estimation error. The estimation r is
known with the error ⇠, therefore the covariance matrix
of the estimation is introduced:

r = rt + ⇠, (1a)

C = h⇠ · ⇠T i. (1b)

The state vector is normally not observed directly, but
through the detector measurements. The measurement
mk linearly depends on rt

k:

mk = Hkrt
k + ⌘k, (2)

where Hk is the measurement model and ⌘k is an error
of the kth measurement.

The evolution of the linear system proceeds in space
from one measurement mk�1 to the next measurement
mk and is described by a linear equation:

rt
k = Fk�1rt

k�1 + ⌫k, (3)

where Fk�1 is a linear propagation operator, ⌫k is a ran-
dom process noise between the measurements mk�1 and
mk.

The measurement errors ⌘k and the process noise ⌫k
are assumed to be uncorrelated and unbiased, and those
covariance matrices Vk and Qk are known:

h⌘ki = h⌫ki = 0, (4a)

h⌘k · ⌘T
k i ⌘ Vk, (4b)

h⌫k · ⌫T
k i ⌘ Qk. (4c)

The conventional Kalman filter algorithm (Fig. 1)
consists of three stages:

Initialization: The state vector r0 is initialized either
arbitrary or with some approximate values. The covari-
ance matrix is set to C0 = I · inf2, where inf denotes a
large number.

Prediction: The current estimations of the state vec-
tor and the covariance matrix at the measurement mk�1
are propagated to the next measurement, and the process
noise is taken into account.

r�k = Fk�1r+k�1, (5a)

C�k = Fk�1C+k�1FT
k�1 + Qk. (5b)

Initialization

r0, C0

�
Prediction

r�k = Fk�1r+k�1

C�k = Fk�1C+k�1FT
k�1 + Qk

�
Filtration

Kk = C�k HT
k (Vk + HkC�k HT

k)�1

r+k = r�k + Kk(mk � Hkr�k)

C+k = (I � KkHk) ·C�k

�

rk, Ck

�
Optimum estimation

r+n , C+n

Noise

Qk
�

Measurement

mk, Hk, Vk
�

Figure 2: Block diagram representation of the conventional Kalman filter.

5

Figure 1: Block diagram of the conventional Kalman filter.

For the first propagation the initialization values are
used instead of a non-existed measurement.

Filtration: The predicted state vector and the covari-
ance matrix are updated with the new measurement to
get their optimal estimations:

⇣k = mk � Hkr�k , (6a)

Wk = (Vk + HkC�k HT
k)�1, (6b)

Kk = C�k HT
k ·Wk, (6c)

r+k = r�k + Kk · ⇣k, (6d)
C+k = (I � KkHk) ·C�k , (6e)

�2
k = �

2
k�1 + ⇣

T
k ·Wk · ⇣k. (6f)

The following designations have been used: r+k�1,
C+k�1 – the optimum estimation and the error covariance
matrix, obtained at the previous measurement; the ma-
trix Fk�1 relates the state at step (k�1) to the state at step
k; r�k , C�k – predicted estimation of rt after the process
noise; mk , Vk – the kth measurement and its covariance
matrix; the matrix Hk – the model of measurement; ⇣k –
the residual, distance between the predicted and the ac-
tual measurement; Wk – the weight matrix, inverse co-
variance matrix of the residual; the matrix Kk is the so-
called gain matrix; the value �2

k is the total �2-deviation
of the obtained estimation r+k from the measurements
m1, . . . ,mk.

The vector r+n obtained after the filtration of the last

4

a cross-platform programming language with a well-
specified computation environment.

4. Conventional Kalman filter

The Kalman filter method [1, 2, 3, 5] in its linear
form is intended for finding the optimum estimation
r of an unknown vector rt according to the measure-
ments mk, k = 1, . . . , n, of the vector rt by minimizing
the mean square estimation error. The estimation r is
known with the error ⇠, therefore the covariance matrix
of the estimation is introduced:

r = rt + ⇠, (1a)

C = h⇠ · ⇠T i. (1b)

The state vector is normally not observed directly, but
through the detector measurements. The measurement
mk linearly depends on rt

k:

mk = Hkrt
k + ⌘k, (2)

where Hk is the measurement model and ⌘k is an error
of the kth measurement.

The evolution of the linear system proceeds in space
from one measurement mk�1 to the next measurement
mk and is described by a linear equation:

rt
k = Fk�1rt

k�1 + ⌫k, (3)

where Fk�1 is a linear propagation operator, ⌫k is a ran-
dom process noise between the measurements mk�1 and
mk.

The measurement errors ⌘k and the process noise ⌫k
are assumed to be uncorrelated and unbiased, and those
covariance matrices Vk and Qk are known:

h⌘ki = h⌫ki = 0, (4a)

h⌘k · ⌘T
k i ⌘ Vk, (4b)

h⌫k · ⌫T
k i ⌘ Qk. (4c)

The conventional Kalman filter algorithm (Fig. 1)
consists of three stages:

Initialization: The state vector r0 is initialized either
arbitrary or with some approximate values. The covari-
ance matrix is set to C0 = I · inf2, where inf denotes a
large number.

Prediction: The current estimations of the state vec-
tor and the covariance matrix at the measurement mk�1
are propagated to the next measurement, and the process
noise is taken into account.

r�k = Fk�1r+k�1, (5a)

C�k = Fk�1C+k�1FT
k�1 + Qk. (5b)

Initialization

r0, C0

�
Prediction

r�k = Fk�1r+k�1

C�k = Fk�1C+k�1FT
k�1 + Qk

�
Filtration

Kk = C�k HT
k (Vk + HkC�k HT

k)�1

r+k = r�k + Kk(mk � Hkr�k)

C+k = (I � KkHk) ·C�k

�

rk, Ck

�
Optimum estimation

r+n , C+n

Noise

Qk
�

Measurement

mk, Hk, Vk
�

Figure 2: Block diagram representation of the conventional Kalman filter.

5

Figure 1: Block diagram of the conventional Kalman filter.

For the first propagation the initialization values are
used instead of a non-existed measurement.

Filtration: The predicted state vector and the covari-
ance matrix are updated with the new measurement to
get their optimal estimations:

⇣k = mk � Hkr�k , (6a)

Wk = (Vk + HkC�k HT
k)�1, (6b)

Kk = C�k HT
k ·Wk, (6c)

r+k = r�k + Kk · ⇣k, (6d)
C+k = (I � KkHk) ·C�k , (6e)

�2
k = �

2
k�1 + ⇣

T
k ·Wk · ⇣k. (6f)

The following designations have been used: r+k�1,
C+k�1 – the optimum estimation and the error covariance
matrix, obtained at the previous measurement; the ma-
trix Fk�1 relates the state at step (k�1) to the state at step
k; r�k , C�k – predicted estimation of rt after the process
noise; mk , Vk – the kth measurement and its covariance
matrix; the matrix Hk – the model of measurement; ⇣k –
the residual, distance between the predicted and the ac-
tual measurement; Wk – the weight matrix, inverse co-
variance matrix of the residual; the matrix Kk is the so-
called gain matrix; the value �2

k is the total �2-deviation
of the obtained estimation r+k from the measurements
m1, . . . ,mk.

The vector r+n obtained after the filtration of the last

4

a cross-platform programming language with a well-
specified computation environment.

4. Conventional Kalman filter

The Kalman filter method [1, 2, 3, 5] in its linear
form is intended for finding the optimum estimation
r of an unknown vector rt according to the measure-
ments mk, k = 1, . . . , n, of the vector rt by minimizing
the mean square estimation error. The estimation r is
known with the error ⇠, therefore the covariance matrix
of the estimation is introduced:

r = rt + ⇠, (1a)

C = h⇠ · ⇠T i. (1b)

The state vector is normally not observed directly, but
through the detector measurements. The measurement
mk linearly depends on rt

k:

mk = Hkrt
k + ⌘k, (2)

where Hk is the measurement model and ⌘k is an error
of the kth measurement.

The evolution of the linear system proceeds in space
from one measurement mk�1 to the next measurement
mk and is described by a linear equation:

rt
k = Fk�1rt

k�1 + ⌫k, (3)

where Fk�1 is a linear propagation operator, ⌫k is a ran-
dom process noise between the measurements mk�1 and
mk.

The measurement errors ⌘k and the process noise ⌫k
are assumed to be uncorrelated and unbiased, and those
covariance matrices Vk and Qk are known:

h⌘ki = h⌫ki = 0, (4a)

h⌘k · ⌘T
k i ⌘ Vk, (4b)

h⌫k · ⌫T
k i ⌘ Qk. (4c)

The conventional Kalman filter algorithm (Fig. 1)
consists of three stages:

Initialization: The state vector r0 is initialized either
arbitrary or with some approximate values. The covari-
ance matrix is set to C0 = I · inf2, where inf denotes a
large number.

Prediction: The current estimations of the state vec-
tor and the covariance matrix at the measurement mk�1
are propagated to the next measurement, and the process
noise is taken into account.

r�k = Fk�1r+k�1, (5a)

C�k = Fk�1C+k�1FT
k�1 + Qk. (5b)

Initialization

r0, C0

�
Prediction

r�k = Fk�1r+k�1

C�k = Fk�1C+k�1FT
k�1 + Qk

�
Filtration

Kk = C�k HT
k (Vk + HkC�k HT

k)�1

r+k = r�k + Kk(mk � Hkr�k)

C+k = (I � KkHk) ·C�k

�

rk, Ck

�
Optimum estimation

r+n , C+n

Noise

Qk
�

Measurement

mk, Hk, Vk
�

Figure 2: Block diagram representation of the conventional Kalman filter.

5

Figure 1: Block diagram of the conventional Kalman filter.

For the first propagation the initialization values are
used instead of a non-existed measurement.

Filtration: The predicted state vector and the covari-
ance matrix are updated with the new measurement to
get their optimal estimations:

⇣k = mk � Hkr�k , (6a)

Wk = (Vk + HkC�k HT
k)�1, (6b)

Kk = C�k HT
k ·Wk, (6c)

r+k = r�k + Kk · ⇣k, (6d)
C+k = (I � KkHk) ·C�k , (6e)

�2
k = �

2
k�1 + ⇣

T
k ·Wk · ⇣k. (6f)

The following designations have been used: r+k�1,
C+k�1 – the optimum estimation and the error covariance
matrix, obtained at the previous measurement; the ma-
trix Fk�1 relates the state at step (k�1) to the state at step
k; r�k , C�k – predicted estimation of rt after the process
noise; mk , Vk – the kth measurement and its covariance
matrix; the matrix Hk – the model of measurement; ⇣k –
the residual, distance between the predicted and the ac-
tual measurement; Wk – the weight matrix, inverse co-
variance matrix of the residual; the matrix Kk is the so-
called gain matrix; the value �2

k is the total �2-deviation
of the obtained estimation r+k from the measurements
m1, . . . ,mk.

The vector r+n obtained after the filtration of the last

4

a cross-platform programming language with a well-
specified computation environment.

4. Conventional Kalman filter

The Kalman filter method [1, 2, 3, 5] in its linear
form is intended for finding the optimum estimation
r of an unknown vector rt according to the measure-
ments mk, k = 1, . . . , n, of the vector rt by minimizing
the mean square estimation error. The estimation r is
known with the error ⇠, therefore the covariance matrix
of the estimation is introduced:

r = rt + ⇠, (1a)

C = h⇠ · ⇠T i. (1b)

The state vector is normally not observed directly, but
through the detector measurements. The measurement
mk linearly depends on rt

k:

mk = Hkrt
k + ⌘k, (2)

where Hk is the measurement model and ⌘k is an error
of the kth measurement.

The evolution of the linear system proceeds in space
from one measurement mk�1 to the next measurement
mk and is described by a linear equation:

rt
k = Fk�1rt

k�1 + ⌫k, (3)

where Fk�1 is a linear propagation operator, ⌫k is a ran-
dom process noise between the measurements mk�1 and
mk.

The measurement errors ⌘k and the process noise ⌫k
are assumed to be uncorrelated and unbiased, and those
covariance matrices Vk and Qk are known:

h⌘ki = h⌫ki = 0, (4a)

h⌘k · ⌘T
k i ⌘ Vk, (4b)

h⌫k · ⌫T
k i ⌘ Qk. (4c)

The conventional Kalman filter algorithm (Fig. 1)
consists of three stages:

Initialization: The state vector r0 is initialized either
arbitrary or with some approximate values. The covari-
ance matrix is set to C0 = I · inf2, where inf denotes a
large number.

Prediction: The current estimations of the state vec-
tor and the covariance matrix at the measurement mk�1
are propagated to the next measurement, and the process
noise is taken into account.

r�k = Fk�1r+k�1, (5a)

C�k = Fk�1C+k�1FT
k�1 + Qk. (5b)

Initialization

r0, C0

�
Prediction

r�k = Fk�1r+k�1

C�k = Fk�1C+k�1FT
k�1 + Qk

�
Filtration

Kk = C�k HT
k (Vk + HkC�k HT

k)�1

r+k = r�k + Kk(mk � Hkr�k)

C+k = (I � KkHk) ·C�k

�

rk, Ck

�
Optimum estimation

r+n , C+n

Noise

Qk
�

Measurement

mk, Hk, Vk
�

Figure 2: Block diagram representation of the conventional Kalman filter.

5

Figure 1: Block diagram of the conventional Kalman filter.

For the first propagation the initialization values are
used instead of a non-existed measurement.

Filtration: The predicted state vector and the covari-
ance matrix are updated with the new measurement to
get their optimal estimations:

⇣k = mk � Hkr�k , (6a)

Wk = (Vk + HkC�k HT
k)�1, (6b)

Kk = C�k HT
k ·Wk, (6c)

r+k = r�k + Kk · ⇣k, (6d)
C+k = (I � KkHk) ·C�k , (6e)

�2
k = �

2
k�1 + ⇣

T
k ·Wk · ⇣k. (6f)

The following designations have been used: r+k�1,
C+k�1 – the optimum estimation and the error covariance
matrix, obtained at the previous measurement; the ma-
trix Fk�1 relates the state at step (k�1) to the state at step
k; r�k , C�k – predicted estimation of rt after the process
noise; mk , Vk – the kth measurement and its covariance
matrix; the matrix Hk – the model of measurement; ⇣k –
the residual, distance between the predicted and the ac-
tual measurement; Wk – the weight matrix, inverse co-
variance matrix of the residual; the matrix Kk is the so-
called gain matrix; the value �2

k is the total �2-deviation
of the obtained estimation r+k from the measurements
m1, . . . ,mk.

The vector r+n obtained after the filtration of the last

4

a cross-platform programming language with a well-
specified computation environment.

4. Conventional Kalman filter

The Kalman filter method [1, 2, 3, 5] in its linear
form is intended for finding the optimum estimation
r of an unknown vector rt according to the measure-
ments mk, k = 1, . . . , n, of the vector rt by minimizing
the mean square estimation error. The estimation r is
known with the error ⇠, therefore the covariance matrix
of the estimation is introduced:

r = rt + ⇠, (1a)

C = h⇠ · ⇠T i. (1b)

The state vector is normally not observed directly, but
through the detector measurements. The measurement
mk linearly depends on rt

k:

mk = Hkrt
k + ⌘k, (2)

where Hk is the measurement model and ⌘k is an error
of the kth measurement.

The evolution of the linear system proceeds in space
from one measurement mk�1 to the next measurement
mk and is described by a linear equation:

rt
k = Fk�1rt

k�1 + ⌫k, (3)

where Fk�1 is a linear propagation operator, ⌫k is a ran-
dom process noise between the measurements mk�1 and
mk.

The measurement errors ⌘k and the process noise ⌫k
are assumed to be uncorrelated and unbiased, and those
covariance matrices Vk and Qk are known:

h⌘ki = h⌫ki = 0, (4a)

h⌘k · ⌘T
k i ⌘ Vk, (4b)

h⌫k · ⌫T
k i ⌘ Qk. (4c)

The conventional Kalman filter algorithm (Fig. 1)
consists of three stages:

Initialization: The state vector r0 is initialized either
arbitrary or with some approximate values. The covari-
ance matrix is set to C0 = I · inf2, where inf denotes a
large number.

Prediction: The current estimations of the state vec-
tor and the covariance matrix at the measurement mk�1
are propagated to the next measurement, and the process
noise is taken into account.

r�k = Fk�1r+k�1, (5a)

C�k = Fk�1C+k�1FT
k�1 + Qk. (5b)

Initialization

r0, C0

�
Prediction

r�k = Fk�1r+k�1

C�k = Fk�1C+k�1FT
k�1 + Qk

�
Filtration

Kk = C�k HT
k (Vk + HkC�k HT

k)�1

r+k = r�k + Kk(mk � Hkr�k)

C+k = (I � KkHk) ·C�k

�

rk, Ck

�
Optimum estimation

r+n , C+n

Noise

Qk
�

Measurement

mk, Hk, Vk
�

Figure 2: Block diagram representation of the conventional Kalman filter.

5

Figure 1: Block diagram of the conventional Kalman filter.

For the first propagation the initialization values are
used instead of a non-existed measurement.

Filtration: The predicted state vector and the covari-
ance matrix are updated with the new measurement to
get their optimal estimations:

⇣k = mk � Hkr�k , (6a)

Wk = (Vk + HkC�k HT
k)�1, (6b)

Kk = C�k HT
k ·Wk, (6c)

r+k = r�k + Kk · ⇣k, (6d)
C+k = (I � KkHk) ·C�k , (6e)

�2
k = �

2
k�1 + ⇣

T
k ·Wk · ⇣k. (6f)

The following designations have been used: r+k�1,
C+k�1 – the optimum estimation and the error covariance
matrix, obtained at the previous measurement; the ma-
trix Fk�1 relates the state at step (k�1) to the state at step
k; r�k , C�k – predicted estimation of rt after the process
noise; mk , Vk – the kth measurement and its covariance
matrix; the matrix Hk – the model of measurement; ⇣k –
the residual, distance between the predicted and the ac-
tual measurement; Wk – the weight matrix, inverse co-
variance matrix of the residual; the matrix Kk is the so-
called gain matrix; the value �2

k is the total �2-deviation
of the obtained estimation r+k from the measurements
m1, . . . ,mk.

The vector r+n obtained after the filtration of the last

4

a cross-platform programming language with a well-
specified computation environment.

4. Conventional Kalman filter

The Kalman filter method [1, 2, 3, 5] in its linear
form is intended for finding the optimum estimation
r of an unknown vector rt according to the measure-
ments mk, k = 1, . . . , n, of the vector rt by minimizing
the mean square estimation error. The estimation r is
known with the error ⇠, therefore the covariance matrix
of the estimation is introduced:

r = rt + ⇠, (1a)

C = h⇠ · ⇠T i. (1b)

The state vector is normally not observed directly, but
through the detector measurements. The measurement
mk linearly depends on rt

k:

mk = Hkrt
k + ⌘k, (2)

where Hk is the measurement model and ⌘k is an error
of the kth measurement.

The evolution of the linear system proceeds in space
from one measurement mk�1 to the next measurement
mk and is described by a linear equation:

rt
k = Fk�1rt

k�1 + ⌫k, (3)

where Fk�1 is a linear propagation operator, ⌫k is a ran-
dom process noise between the measurements mk�1 and
mk.

The measurement errors ⌘k and the process noise ⌫k
are assumed to be uncorrelated and unbiased, and those
covariance matrices Vk and Qk are known:

h⌘ki = h⌫ki = 0, (4a)

h⌘k · ⌘T
k i ⌘ Vk, (4b)

h⌫k · ⌫T
k i ⌘ Qk. (4c)

The conventional Kalman filter algorithm (Fig. 1)
consists of three stages:

Initialization: The state vector r0 is initialized either
arbitrary or with some approximate values. The covari-
ance matrix is set to C0 = I · inf2, where inf denotes a
large number.

Prediction: The current estimations of the state vec-
tor and the covariance matrix at the measurement mk�1
are propagated to the next measurement, and the process
noise is taken into account.

r�k = Fk�1r+k�1, (5a)

C�k = Fk�1C+k�1FT
k�1 + Qk. (5b)

Initialization

r0, C0

�
Prediction

r�k = Fk�1r+k�1

C�k = Fk�1C+k�1FT
k�1 + Qk

�
Filtration

Kk = C�k HT
k (Vk + HkC�k HT

k)�1

r+k = r�k + Kk(mk � Hkr�k)

C+k = (I � KkHk) ·C�k

�

rk, Ck

�
Optimum estimation

r+n , C+n

Noise

Qk
�

Measurement

mk, Hk, Vk
�

Figure 2: Block diagram representation of the conventional Kalman filter.

5

Figure 1: Block diagram of the conventional Kalman filter.

For the first propagation the initialization values are
used instead of a non-existed measurement.

Filtration: The predicted state vector and the covari-
ance matrix are updated with the new measurement to
get their optimal estimations:

⇣k = mk � Hkr�k , (6a)

Wk = (Vk + HkC�k HT
k)�1, (6b)

Kk = C�k HT
k ·Wk, (6c)

r+k = r�k + Kk · ⇣k, (6d)
C+k = (I � KkHk) ·C�k , (6e)

�2
k = �

2
k�1 + ⇣

T
k ·Wk · ⇣k. (6f)

The following designations have been used: r+k�1,
C+k�1 – the optimum estimation and the error covariance
matrix, obtained at the previous measurement; the ma-
trix Fk�1 relates the state at step (k�1) to the state at step
k; r�k , C�k – predicted estimation of rt after the process
noise; mk , Vk – the kth measurement and its covariance
matrix; the matrix Hk – the model of measurement; ⇣k –
the residual, distance between the predicted and the ac-
tual measurement; Wk – the weight matrix, inverse co-
variance matrix of the residual; the matrix Kk is the so-
called gain matrix; the value �2

k is the total �2-deviation
of the obtained estimation r+k from the measurements
m1, . . . ,mk.

The vector r+n obtained after the filtration of the last

4

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Application of Kalman Filter to the Straight Line 2D Fit

8

56

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Application of Kalman Filter to the Line Fit: continue

9

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Exercise

10
 / 11 7 May 2014 Valentina Akishina, HPC Praktikum, Uni-Frankfurt

Kalman Filter Track Fit for CBM experiment

11

!
Task:
SIMDize track fitting procedure using templates.
Compare results and time.

g++ KFLineFitter.cpp -O3; ./a.out
!
!
!
!
output - output file generated by KFfit programm.
!!

Compile and run:
!
!
!
!
Check results

Exercises/1_SIMD/3_KF

rt

k

= rt

k,k�1(r
t

k�1)

r�
k

= f
k

(r+
k�1) ⇡ f

k

(rlin) + F
k�1(r+

k�1 � rlin

k�1)

F
k�1

ij

=
@f

k

i

(r+
k�1)

@r+
k�1

j

�����
r+

k�1=rlin

k�1

.

x
y

x

y �
y

y1 y2 y3 y4 y5

y = t
y

x + b.

y
t
y

x

Exersices/2_SIMD/3_KF

57

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak 11

 / 12 6 May 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak 12

58

2.2. Kalman Filter Track Fit!
Exercises are located at Exercises/2_SIMD/
Solutions are located at Exercises/2_SIMD/Solutions/
To compile and run exercise programs use the line given in the head-comments in the code.
The results given here are obtained on Intel E7-4860 CPU with gcc4.7.3.

2_SIMD/3_KF: description!
The Kalman filter is a method of obtaining estimate of unknown variable that uses a series of noisy

measurements observed over time. The resulting estimate tend to be more precise than estimates based
on a single measurements alone. The filter is named after Rudolf Kalman, one of the primary developers of
its theory.!

The Kalman filter has numerous applications in technology and science. A common application is for
guidance, navigation and control of vehicles, particularly aircrafts and spacecrafts. Furthermore, the
Kalman filter is a widely applied concept used in fields such as signal processing and econometrics.!

The Kalman filter is a recursive estimator – only the estimated state from the previous time step and the
current measurement are needed to compute the estimate for the current state. For illustration let us
reformulate a calculation of a mean value of N elements in a recursive form. The general form of mean
value is defined as:

The mean over n+1 elements can be rewritten in a way:

Now the mean of n+1 is determined by the previous estimate and a correction term, which is a new
measurement with a weighting coefficient 1/(n+1). After we have reformulated the problem in a recursive
way Kalman filter method becomes applicable.

The Kalman filter method is intended for finding the optimum estimation r of an unknown state vector of
a system rt based on k measurements mk, k = 1,…,n by minimising the mean square estimation error. The
estimation r is known with the error ξ:

r = rt + ξ,
therefore the covariance matrix of the estimation is introduced:

C= ⟨ξ·ξT⟩.
The state vector is normally not observed directly, but through the detector measurements. Let’s assume

that the measurement mk linearly depends on rtk:

mk = Hkrtk +ηk, where Hk is the measurement model and ηk is an error of the k-th measurement. 
The evolution of the linear system proceeds in space from one measurement mk−1 to the next
measurement mk and is described by a linear equation:

rtk=Fk−1rtk−1+νk,
where Fk−1 is a linear propagation operator, νk is a random process noise between the measurements

mk−1 and mk.
The measurement errors ηk and the process noise νk are assumed to be uncorrelated and unbiased,

and those covariance matrices Vk and Qk are known:

59

⟨η⟩=⟨ν⟩= 0,
⟨ηk·η

T
k⟩≡Vk, (4b) ⟨νk·νTk⟩≡Qk.

The conventional Kalman filter algorithm (details in Fig. 3) consists of three stages:

!
Initialisation: The state vector r is initialised either arbitrary or with some approximate values. The

covariance matrix is set to C0 = I · inf2, where inf denotes a large number.
Prediction: The current estimations of the state vector and the covariance matrix at the measurement

mk−1 are propagated to the next measurement, and the process noise is taken into account. For the first
propagation the initialisation values are used instead of a non-existed measurement.
Filtration: The predicted state vector and the covariance matrix are updated with the new measurement

to get their optimal estimations, also at this stage we calculate ζk – the residual, distance between the
predicted and the actual measurement and Wk – the weight matrix, inverse covariance matrix of the
residual: 
ζk = mk − Hk rk ,

Wk = (Vk +HkCk
−Hk

T)−1.

The following designations have been used: r+k−1, C+ – the optimum estimation and the error
covariance matrix, obtained at the previous measurement; the matrix Fk−1 relates the state at step k−1 to

the state at step k; r−k , Ck
− – predicted estimation of rt and covariance matrix after the process noise;

mk , Vk – the k-th measurement and its covariance matrix; the matrix Hk – the model of measurement; the

value χ2k is the total χ2-deviation of the obtained estimation r+k from the measurements m1,…,mk.

The vector r+n obtained after the filtration of the last measurement is the desired optimal estimation of

the rtn with the covariance matrix Cn
+.

a cross-platform programming language with a well-
specified computation environment.

4. Conventional Kalman filter

The Kalman filter method [1, 2, 3, 5] in its linear
form is intended for finding the optimum estimation
r of an unknown vector rt according to the measure-
ments mk, k = 1, . . . , n, of the vector rt by minimizing
the mean square estimation error. The estimation r is
known with the error ⇠, therefore the covariance matrix
of the estimation is introduced:

r = rt + ⇠, (1a)

C = h⇠ · ⇠T i. (1b)

The state vector is normally not observed directly, but
through the detector measurements. The measurement
mk linearly depends on rt

k:

mk = Hkrt
k + ⌘k, (2)

where Hk is the measurement model and ⌘k is an error
of the kth measurement.

The evolution of the linear system proceeds in space
from one measurement mk�1 to the next measurement
mk and is described by a linear equation:

rt
k = Fk�1rt

k�1 + ⌫k, (3)

where Fk�1 is a linear propagation operator, ⌫k is a ran-
dom process noise between the measurements mk�1 and
mk.

The measurement errors ⌘k and the process noise ⌫k
are assumed to be uncorrelated and unbiased, and those
covariance matrices Vk and Qk are known:

h⌘ki = h⌫ki = 0, (4a)

h⌘k · ⌘T
k i ⌘ Vk, (4b)

h⌫k · ⌫T
k i ⌘ Qk. (4c)

The conventional Kalman filter algorithm (Fig. 1)
consists of three stages:

Initialization: The state vector r0 is initialized either
arbitrary or with some approximate values. The covari-
ance matrix is set to C0 = I · inf2, where inf denotes a
large number.

Prediction: The current estimations of the state vec-
tor and the covariance matrix at the measurement mk�1
are propagated to the next measurement, and the process
noise is taken into account.

r�k = Fk�1r+k�1, (5a)

C�k = Fk�1C+k�1FT
k�1 + Qk. (5b)

Initialization

r0, C0

�
Prediction

r�k = Fk�1r+k�1

C�k = Fk�1C+k�1FT
k�1 + Qk

�
Filtration

Kk = C�k HT
k (Vk + HkC�k HT

k)�1

r+k = r�k + Kk(mk � Hkr�k)

C+k = (I � KkHk) ·C�k

�

rk, Ck

�
Optimum estimation

r+n , C+n

Noise

Qk
�

Measurement

mk, Hk, Vk
�

Figure 2: Block diagram representation of the conventional Kalman filter.

5

Figure 1: Block diagram of the conventional Kalman filter.

For the first propagation the initialization values are
used instead of a non-existed measurement.

Filtration: The predicted state vector and the covari-
ance matrix are updated with the new measurement to
get their optimal estimations:

⇣k = mk � Hkr�k , (6a)

Wk = (Vk + HkC�k HT
k)�1, (6b)

Kk = C�k HT
k ·Wk, (6c)

r+k = r�k + Kk · ⇣k, (6d)
C+k = (I � KkHk) ·C�k , (6e)

�2
k = �

2
k�1 + ⇣

T
k ·Wk · ⇣k. (6f)

The following designations have been used: r+k�1,
C+k�1 – the optimum estimation and the error covariance
matrix, obtained at the previous measurement; the ma-
trix Fk�1 relates the state at step (k�1) to the state at step
k; r�k , C�k – predicted estimation of rt after the process
noise; mk , Vk – the kth measurement and its covariance
matrix; the matrix Hk – the model of measurement; ⇣k –
the residual, distance between the predicted and the ac-
tual measurement; Wk – the weight matrix, inverse co-
variance matrix of the residual; the matrix Kk is the so-
called gain matrix; the value �2

k is the total �2-deviation
of the obtained estimation r+k from the measurements
m1, . . . ,mk.

The vector r+n obtained after the filtration of the last

4

Fig. 3. Block diagram of the conventional Kalman
filter.

60

In the our exercise we will deal with simple example of straight line trajectory in 2D space. Fig. 4 shows
five detector planes placed along x axis. The distance between neighbouring detectors is L. We measure

y-coordinate of a track in each detector
plane with some error σ: (y1, y2, y3, y4, y5).
The task is to estimate the trajectory in the
area of track origin IP. We will start
estimation procedure with the last station 5.
In this case of straight track the equation of
motion is:
 !!!

Let us define state v e c t o r a s
the y-coordinate and tangent of track slope in x

direction ty and covariance matrix for this state vector:

Since we measure only y-coordinate the measurement vector for this case and its’ covariance matrix
are:

The model of measurement for this case:
So that: yk = Hk rk .
The propagation operator will be:

So that the prediction stage can be rewritten in a way:
y k = y k-1 - L t yk.
t yk = t yk-1. !
For the next vectorisation exercise we will have a closer look at KF algorithm in the case of straight line

trajectory. The task is to SIMDise the estimation of particle tracks parameters using Kalman filter method . 1

The program consists of two parts: 1. simulation of particle tracks and 2. reconstruction of particle tracks
parameters. An independent classes LFSimulator and LFFitter are present respectively for each task,
both classes contain the parameters information of track environment, procedures to change those
parameters and procedures to execute the task.

Only the reconstruction part must be vectorized. It is proposed to use templates for convenience of
vectorisation and debugging, i.e. to create template classes and functions, which can be applied both to
scalar and simd variables.

LFSimulator basing on given parameters of particle trajectory simulates interaction points with detector
planes (Monte Carlo (MC) points) and detector measurements obtained due to these interactions (hits),
they both structured into LFTrack class.

 S. Gorbunov, U. Kebschull, I. Kisel, V. Lindenstruth and W.F.J. Müller, Fast SIMDized Kalman filter based 1

track fit. CBM-SOFT-note-2007-001, 22 January 2007.

rt

k

= rt

k,k�1(r
t

k�1)

r�
k

= f
k

(r+
k�1) ⇡ f

k

(rlin) + F
k�1(r+

k�1 � rlin

k�1)

F
k�1

ij

=
@f

k

i

(r+
k�1)

@r+
k�1

j

�����
r+

k�1=rlin

k�1

.

x
y

x

y �
y

y1 y2 y3 y4 y5

y = t
y

x + b.

y
t
y

x

r =

y
t
y

!

, C =

C
yy

C
yt

y

C
yt

y

C
t

y

t

y

!

.

y

m
k

= {ym

k

}, V
k

= �2.

y

H
k

=
⇣

1 0
⌘

.

S
k

=
1

�2 + C�
k

yy

,

K
k

=
1

�2 + C�
k

yy

C�

k

yy

C�
k

yt

y

!

,

⇣
k

= ym

k

� y�
k

,

r+
k

=

0

BBB@

y�
k

+
C

�
k

yy

�

2+C

�
k

yy

(ym

k

� y�
k

)

t�
y

k

+
C

�
k

yt

y

�

2+C

�
k

yy

(ym

k

� y�
k

)

1

CCCA ,

C+
k

=

0

BBB@

C�
k

yy

(1�
C

�
k

yy

�

2+C

�
k

yy

) C�
k

yt

y

(1�
C

�
k

yy

�

2+C

�
k

bb

)

C�
k

yt

y

(1�
C

�
k

yy

�

2+C

�
k

yy

) C�
k

t

y

t

y

�
C

�2
k

yt

y

�

2+C

�
k

yy

1

CCCA .

L
x

y�
k

ym

k

y�
k

= t+
y

k�1
(x

k�1 � L) + b = y+
k�1 � t+

y

k�1
L.

r =

y
t
y

!

, C =

C
yy

C
yt

y

C
yt

y

C
t

y

t

y

!

.

y

m
k

= {ym

k

}, V
k

= �2.

y

H
k

=
⇣

1 0
⌘

.

S
k

=
1

�2 + C�
k

yy

,

K
k

=
1

�2 + C�
k

yy

C�

k

yy

C�
k

yt

y

!

,

⇣
k

= ym

k

� y�
k

,

r+
k

=

0

BBB@

y�
k

+
C

�
k

yy

�

2+C

�
k

yy

(ym

k

� y�
k

)

t�
y

k

+
C

�
k

yt

y

�

2+C

�
k

yy

(ym

k

� y�
k

)

1

CCCA ,

C+
k

=

0

BBB@

C�
k

yy

(1�
C

�
k

yy

�

2+C

�
k

yy

) C�
k

yt

y

(1�
C

�
k

yy

�

2+C

�
k

bb

)

C�
k

yt

y

(1�
C

�
k

yy

�

2+C

�
k

yy

) C�
k

t

y

t

y

�
C

�2
k

yt

y

�

2+C

�
k

yy

1

CCCA .

L
x

y�
k

ym

k

y�
k

= t+
y

k�1
(x

k�1 � L) + b = y+
k�1 � t+

y

k�1
L.

rt

k

= rt

k,k�1(r
t

k�1)

r�
k

= f
k

(r+
k�1) ⇡ f

k

(rlin) + F
k�1(r+

k�1 � rlin

k�1)

F
k�1

ij

=
@f

k

i

(r+
k�1)

@r+
k�1

j

�����
r+

k�1=rlin

k�1

.

x
y

x

y �
y

y1 y2 y3 y4 y5

y = t
y

x + b.

y
t
y

x

Fig. 4. Straight line track crossing detector planes.

r =

y
t
y

!

, C =

C
yy

C
yt

y

C
yt

y

C
t

y

t

y

!

.

y

m
k

= {ym

k

}, V
k

= �2.

y

H
k

=
⇣

1 0
⌘

.

S
k

=
1

�2 + C�
k

yy

,

K
k

=
1

�2 + C�
k

yy

C�

k

yy

C�
k

yt

y

!

,

⇣
k

= ym

k

� y�
k

,

r+
k

=

0

BBB@

y�
k

+
C

�
k

yy

�

2+C

�
k

yy

(ym

k

� y�
k

)

t�
y

k

+
C

�
k

yt

y

�

2+C

�
k

yy

(ym

k

� y�
k

)

1

CCCA ,

C+
k

=

0

BBB@

C�
k

yy

(1�
C

�
k

yy

�

2+C

�
k

yy

) C�
k

yt

y

(1�
C

�
k

yy

�

2+C

�
k

bb

)

C�
k

yt

y

(1�
C

�
k

yy

�

2+C

�
k

yy

) C�
k

t

y

t

y

�
C

�2
k

yt

y

�

2+C

�
k

yy

1

CCCA .

L
x

y�
k

ym

k

y�
k

= t+
y

k�1
(x

k�1 � L) + b = y+
k�1 � t+

y

k�1
L.

t�
y

k

= t+
y

k�1
.

Q
k

= 0

F
k�1 =

0

BB@

@y

�
k

@y

+
k�1

@y

�
k

@t

+
y

k�1

@t

�
y

k

@y

+
k�1

@t

�
y

k

@t

+
y

k�1

1

CCA =

1 �L
0 1

!

r�
k

=

y+
k�1 � t+

y

k�1
L,

t+
y

k�1

!

,

C�
k

=

C+
k�1

yy

� 2LC+
k�1yt

y

+ L2C+
k

t

y

t

y

C+
k�1

yt

y

� LC+
k�1

t

y

t

y

C+
k�1

yt

y

� LC+
k�1

t

y

t

y

C+
k�1

t

y

t

y

!

.

r0 =

y0

t
y0

!

C0 =

C0
yy

0
0 C0

t

y

t

y

!

.

r�1 = r0 C�1 = C0 C0
yy

C

�
0
yy

�

2+C

�
0
yy

C0
yy

C0
yy

�2 + C0
yy

=
1

1 + �

2

C0
yy

⇡ 1� �2

C0
yy

.

61

!

!
LFFitter basing on hits reconstructs parameters of particle trajectory and their error matrices

(covariance matrices), chi-squared deviation between points and trajectory and number of degrees of
freedom (NDF), which are also kept in LFTrack class. !

Part of the source code of KFLineFitter.cpp

41 struct LFPoint {
42 LFPoint():x(NAN0),z(NAN0){};
43 LFPoint(float x_, float z_): x(x_),z(z_) {};
44
45 float x; // x-position of the hit
46 float z; // coordinate of station
47 };
…
79 struct LFTrack {
80 vector<LFPoint> hits;
81
82 LFTrackParam rParam; // track parameters reconstructed by the fitter
83 LFTrackCovMatrix rCovMatrix; // error (or covariance) matrix
84 float chi2; // chi-squared deviation between points and trajectory
85 int ndf; // number degrees of freedom
86
87 vector<LFTrackParam> mcPoints; // simulated track parameters
88 };

Part of the source code of KFLineFitter.cpp

49 struct LFTrackParam {
…
59 float &X() { return p[0]; };
60 float &Tx() { return p[1]; };
61 float &Z() { return z; };
62
63 float p[2]; // x, tx.
64 float z;
…
67 };
…
177 void LFFitter::Fit(LFTrack& track) const
178 {
179 Initialize(track);
180
181 const int NHits = track.hits.size();
182 for (int i = 0; i < NHits; ++i) {
183 Extrapolate(track, track.hits[i].z);
184 Filter(track, track.hits[i].x);
185 }
186
187 Extrapolate(track, track.mcPoints.back().z); // exptrapolate to MC point

for comparison with MC info
188 }
189

62

190 void LFFitter::Initialize(LFTrack& track) const
191 {
192 track.rParam.Z() = 0;
193 track.rParam.X() = 0;
194 track.rParam.Tx() = 0;
195 track.chi2 = 0;
196 track.ndf = -2;
197
198 track.rCovMatrix.C00() = InfX;
199 track.rCovMatrix.C10() = 0;
200 track.rCovMatrix.C11() = InfTx;
201 }
202
203 void LFFitter::Extrapolate(LFTrack& track, float z_) const
204 {
205 float &z = track.rParam.Z();
206 float &x = track.rParam.X();
207 float &tx = track.rParam.Tx();
208 float &C00 = track.rCovMatrix.C00();
209 float &C10 = track.rCovMatrix.C10();
210 float &C11 = track.rCovMatrix.C11();
211
212 const float dz = z_ - z;
213
214 x += dz * tx;
215 z = z_;
216
217 // F = 1 dz
218 // 0 1
219
220 const float C10_in = C10;
221 C10 += dz * C11;
222 C00 += dz * (C10 + C10_in);
223 }
224
225 void LFFitter::Filter(LFTrack& track, float x_) const
226 {
227
228 float &x = track.rParam.X();
229 float &tx = track.rParam.Tx();
230 float &C00 = track.rCovMatrix.C00();
231 float &C10 = track.rCovMatrix.C10();
232 float &C11 = track.rCovMatrix.C11();
233
234 // H = { 1, 0 }
235 // zeta = Hr - r // P.S. not "r - Hr" here becase later will be rather "r =

r - K * zeta" then "r = r + K * zeta"
236 float zeta = x - x_;
237
238 // F = C*H'

Part of the source code of KFLineFitter.cpp

63

2_SIMD/3_KF: solution!
First of all it has to be decided which data should be grouped and how it should be grouped to vectorize

the track fitting procedure. The grouped data should be maximally independent, therefore the most simple
and effective way is to treat M (4) independent tracks in parallel. The procedure (see lines 177-188 in scalar
version) would be the following: M tracks are initialised, M tracks are extrapolated to the 1-st station, M hits
are taken into account in the tracks parameters estimation (one hit per track), M tracks extrapolated to 2-nd
station, … M tracks extrapolated to z-coordinate of last mc point, which must be the same for all tracks.

To perform these procedures we should prepare hits grouping them from different tracks into one vector,
all hits in group must be on the same station. Corresponding class should have vector of M x-coordinates of
M hits and scalar of z-coordinate of M hits, which is same as z-coordinate of a station the hits belong to.
The general type for M floats grouped together is noted as T. Both fvec and float types can be substituted
here instead of T, that justifies the template construct usage. !

239 float F0 = C00;
240 float F1 = C10;
241
242 // H*C*H'
243 float HCH = F0;
244
245 // S = 1. * (V + H*C*H')^-1
246 float wi = 1./(fSigma*fSigma + HCH);
247 float zetawi = zeta * wi;
248
249 track.chi2 += zeta * zetawi ;
250 track.ndf += 1;
251
252 // K = C*H'*S = F*S
253 float K0 = F0*wi;
254 float K1 = F1*wi;
255
256 // r = r - K * zeta
257 x -= K0*zeta;
258 tx -= K1*zeta;
259
260 // C = C - K*H*C = C - K*F
261 C00 -= K0*F0;
262 C10 -= K1*F0;
263 C11 -= K1*F1;
264
265 }

Part of the source code of KFLineFitter.cpp

Part of the source code of KFLineFitter_solution2_simd.cpp

49 template< typename T >
50 struct LFPoint {
51 LFPoint():x(NAN0),z(NAN0){};
52 LFPoint(T x_, T z_): x(x_),z(z_) {};
53
54 T x; // x-position of the hit

64

!
Result of the procedure would be M track parameters grouped into one vectorized parameters class.

Similarly to hits, x and Tx parameters and covariance elements are grouped together and z-coordinate is
stays scalar. !

!
The data is grouped in track class, which also have additional chi-squared deviation and NDF, which can

be different for different tracks, therefore required a vector type. Meanwhile NDF is integer, therefore
additional parameter of template I is added for grouped integers. !

!
The same operations must be done in LFFitter functions, which implement data processing: basically all

floats, with exception of z-coordinate, should be changed to template T type and all integers to I type, and

55 float z; // coordinate of station // all points on one station have same z-
position

56 };

Part of the source code of KFLineFitter_solution2_simd.cpp

Part of the source code of KFLineFitter_solution2_simd.cpp

58 template< typename T >
59 struct LFTrackParam {
…
69 T &X() { return p[0]; };
70 T &Tx() { return p[1]; };
71 float &Z() { return z; };
72
73 T p[2]; // x, tx.
74 float z;
…
77 };
78
79 template< typename T >
80 struct LFTrackCovMatrix {
81 T &C00() { return c[0]; };
82 T &C10() { return c[1]; };
83 T &C11() { return c[2]; };
84
85 T c[3]; // C00, C10, C11
…
88 };

Part of the source code of KFLineFitter_solution2_simd.cpp

90 template< typename T, typename I >
91 struct LFTrack {
92 vector< LFPoint<T> > hits;
93
94 LFTrackParam<T> rParam; // reconstructed by the fitter track parameters
95 LFTrackCovMatrix<T> rCovMatrix; // error (or covariance) matrix
96 T chi2; // chi-squared deviation between points and trajectory
97 I ndf; // number degrees of freedom
98
99 vector< LFTrackParam<T> > mcPoints; // simulated track parameters
100 };

65

class types to the templates prepared for vector processing. Since 4 tracks are independent and similar no
changes in the algorithm itself are required and the code is basically the same. !

Part of the source code of KFLineFitter_solution2_simd.cpp

231 template< typename T, typename I >
232 void LFFitter<T,I>::Fit(LFTrack<T,I>& track) const
233 {
234 Initialize(track);
235 const int NHits = track.hits.size();
236 for (int i = 0; i < NHits; ++i) {
237 Extrapolate(track, track.hits[i].z);
238 Filter(track, track.hits[i].x);
239 }
240
241 Extrapolate(track, track.mcPoints.back().z); // just for pulls
242 }
243
244 template< typename T, typename I >
245 void LFFitter<T,I>::Initialize(LFTrack<T,I>& track) const
246 {
247 track.rParam.Z() = 0;
248 track.rParam.X() = 0;
249 track.rParam.Tx() = 0;
250 track.chi2 = 0;
251 track.ndf = -2;
252
253 track.rCovMatrix.C00() = InfX;
254 track.rCovMatrix.C10() = 0;
255 track.rCovMatrix.C11() = InfTx;
256 }
257
258 template< typename T, typename I >
259 void LFFitter<T,I>::Extrapolate(LFTrack<T,I>& track, float z_) const
260 {
261 float &z = track.rParam.Z();
262 T &x = track.rParam.X();
263 T &tx = track.rParam.Tx();
264 T &C00 = track.rCovMatrix.C00();
265 T &C10 = track.rCovMatrix.C10();
266 T &C11 = track.rCovMatrix.C11();
267
268 const float dz = z_ - z;
269
270 x += dz * tx;
271 z = z_;
272
273 // F = 1 dz
274 // 0 1
275
276 const T C10_in = C10;
277 C10 += dz * C11;

66

!
All the template classes and functions can be used for scalar calculations in the same way as before,

just adding <float,int> template parameters to fit class: !

278 C00 += dz * (C10 + C10_in);
279 }
280
281 template< typename T, typename I >
282 void LFFitter<T,I>::Filter(LFTrack<T,I>& track, T x_) const
283 {
284
285 T &x = track.rParam.X();
286 T &tx = track.rParam.Tx();
287 T &C00 = track.rCovMatrix.C00();
288 T &C10 = track.rCovMatrix.C10();
289 T &C11 = track.rCovMatrix.C11();
290
291 // H = { 1, 0 }
292 // zeta = Hr - r // P.S. not "r - Hr" here becase later will be rather "r =

r - K * zeta" then "r = r + K * zeta"
293 T zeta = x - x_;
294
295 // F = C*H'
296 T F0 = C00;
297 T F1 = C10;
298
299 // H*C*H'
300 T HCH = F0;
301
302 // S = 1. * (V + H*C*H')^-1
303 T wi = 1./(fSigma*fSigma + HCH);
304 T zetawi = zeta * wi;
305
306 track.chi2 += zeta * zetawi ;
307 track.ndf += 1;
308
309 // K = C*H'*S = F*S
310 T K0 = F0*wi;
311 T K1 = F1*wi;
312
313 // r = r - K * zeta
314 x -= K0*zeta;
315 tx -= K1*zeta;
316
317 // C = C - K*H*C = C - K*F
318 C00 -= K0*F0;
319 C10 -= K1*F0;
320 C11 -= K1*F1;
321
322 }

Part of the source code of KFLineFitter_solution2_simd.cpp

67

!
The LFFitter class can be used similarly for vectored computations, T parameter should be set to fvec, I

parameter should be set to fvec either, since we can use floating point values to store integers. In addition
the input data should be prepared and the output data should be converted to scalar format for future
comparison. For this purpose one should introduce two additional functions: CopyTrackHits and
CopyTrackParams. !

Part of the source code of KFLineFitter_solution2_simd.cpp

361 #ifndef SIMDIZED
362
363 LFFitter<float,int> fit;
364
365 fit.SetSigma(Sigma);
366
367 #ifdef TIME
368 timer.Start(1);
369 #endif
370 for (int i = 0; i < NTracks; ++i) {
371 LFTrack<float,int> &track = tracks[i];
372 fit.Fit(track);
373 }
374 #ifdef TIME
375 timer.Stop();
376 #endif
377
378 #else

Part of the source code of KFLineFitter_solution2_simd.cpp

378 #else
379
380 // Convert scalar Tracks to SIMD-tracks
381 const int NVTracks = NTracks/fvecLen;
382 LFTrack<fvec,fvec> vTracks[NVTracks];
383
384 CopyTrackHits(tracks, vTracks, NVTracks);
385
386 // fit
387 LFFitter<fvec,fvec> fit;
388
389 fit.SetSigma(Sigma);
390
391 #ifdef TIME
392 timer.Start(1);
393 #endif
394 for (int i = 0; i < NVTracks; ++i) {
395 LFTrack<fvec,fvec> &track = vTracks[i];
396 fit.Fit(track);
397 }
398 #ifdef TIME
399 timer.Stop();
400 #endif
401

68

!
The CopyTrackHits function is needed to copy all required by LFFitter class data into vectorized

classes. These are full hits data and z-coordinate of the last MC point. To copy it one would need a loop
over groups of tracks, fvecLen tracks in group (see line 384). For each group loop over track in group are
required and a loop over hits in track (lines 111 and 114). Since all tracks have same number of hits, equal
to number of stations we can take this number from the very first track and make it constant. The z-
coordinate of the last point should be copied for each track after loop over hits.

The CopyTrackParams function is needed to copy all output data from vectorized classes to scalar
classes. This would require similarly the loop over vectorized tracks, and loop over entries in the vectorized
tracks, loop over parameters and loop over covariance matrix elements. !

402 // Convert SIMD-tracks to scalar Tracks
403 CopyTrackParams(vTracks, tracks, NVTracks);
404
405 #endif // SIMDIZED

Part of the source code of KFLineFitter_solution2_simd.cpp

Part of the source code of KFLineFitter_solution2_simd.cpp

103 void CopyTrackHits(const LFTrack<float,int>* sTracks, LFTrack<fvec,fvec>*
vTracks, int nVTracks){

104 const int NHits = sTracks[0].hits.size(); // all tracks have the same number
of hits

105
106
107 for(int iV = 0; iV < nVTracks; ++iV) {
108 LFTrack<fvec,fvec>& vTrack = vTracks[iV];
109 vTrack.hits.resize(NHits);
110 vTrack.mcPoints.resize(NHits);
111 for(int i = 0; i < fvecLen; ++i) {
112 const LFTrack<float,int>& sTrack = sTracks[iV*fvecLen + i];
113
114 for(int iH = 0; iH < NHits; ++iH) {
115 vTrack.hits[iH].x[i] = sTrack.hits[iH].x;
116 vTrack.hits[iH].z = sTrack.hits[iH].z;
117 }
118
119 vTrack.mcPoints[NHits-1].z = sTrack.hits[NHits-1].z; // need this info

for comparison of reco and MC
120 }
121 }
122 }
123
124 void CopyTrackParams(const LFTrack<fvec,fvec>* vTracks, LFTrack<float,int>*

sTracks, int nVTracks){
125
126
127 for(int iV = 0; iV < nVTracks; ++iV) {
128 const LFTrack<fvec,fvec>& vTrack = vTracks[iV];
129 for(int i = 0; i < fvecLen; ++i) {
130 LFTrack<float,int>& sTrack = sTracks[iV*fvecLen + i];
131
132 for(int ip = 0; ip < 2; ++ip)
133 sTrack.rParam.p[ip] = vTrack.rParam.p[ip][i];
134 sTrack.rParam.z = vTrack.rParam.z;

69

!
The finial output, saved in the file must be the same for scalar and vector version. The time should be

about factor 4 different. !

135 for(int ic = 0; ic < 3; ++ic)
136 sTrack.rCovMatrix.c[ic] = vTrack.rCovMatrix.c[ic][i];
137 sTrack.chi2 = vTrack.chi2[i];
138 sTrack.ndf = vTrack.ndf[i];
139 }
140 }
141 }

Part of the source code of KFLineFitter_solution2_simd.cpp

Typical output of KFLineFitter.cpp

 Begin
Time: 2.35605 ms
 End

Typical output of KFLineFitter_solution2_simd.cpp

 Begin
Time: 0.647068 ms
 End

70

HPC Practical Course
Part 2.3

!
Vector classes (Vc)

http://code.compeng.uni-frankfurt.de/projects/vc

V. Akishina, I. Kisel,
I. Kulakov, M. Zyzak

Goethe University of Frankfurt am Main
!

14 May 2014

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

a

2

Computer architectures

Taken from: http://en.wikipedia.org/wiki/Flynn's_taxonomy

Single Instruction Single Data
Single Instruction Multiple Data

Multiple Instruction Multiple Data

vc = va+vb

71

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Vc

3

• All functionality of SIMD headers
!

• Branch operators SIMDization using masks
!

• Random memory access using gather and scatter operators
!

• Many other additions

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Masks

4

float a(2); !
 … !
if (a < 0)
 a = - a; !
 … !
if (a > 2)
 return;

float_v a(2); !
 … !
float_m mask = (a < 0);
a(mask) = - a; !
 … !
float_m mask2 = (a > 2);
if (mask2.isFull())
 return;

Scalar Vc

float a[4] = {2,2,2,2}; !
 … !
if (a[0] < 0) a[0] = - a[0];
if (a[1] < 0) a[1] = - a[1];
if (a[2] < 0) a[2] = - a[2];
if (a[3] < 0) a[3] = - a[3]; !
 … !
if (a[0] > 2 && a[1] > 2 &&
 a[2] > 2 && a[3] > 2)
 return;

Equivalent Scalar

SIMDization

72

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Gather. Scatter

5

float a[4], b[4];
float array[1000]; !
 … !
a[0] = array[0];
a[1] = array[2];
a[2] = array[5];
a[3] = array[6]; !
 … !
array[0] = b[0];
array[2] = b[1];
array[5] = b[2];
array[6] = b[3];

float_v a, b;
float array[1000]; !
 … !
uint_v indexes;
 // fill indexes with {0,2,5,6} !
a.gather(array, indexes); !
 … !
b.scatter(array, indexes);

Scalar Vc

SIMDization

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Gather. Scatter

6

 struct MyData {
 float d1;
 int d2;
 }; !
MyData array[1000]; // AoS
float a[4], b[4]; // SoA !
 … !
a[0] = array.d1[0];
a[1] = array.d1[2];
a[2] = array.d1[5];
a[3] = array.d1[6]; !
 … !
array.d1[0] = b[0];
array.d1[2] = b[1];
array.d1[5] = b[2];
array.d1[6] = b[3];

 struct MyData {
 float d1;
 int d2;
 }; !
MyData array[1000];
float_v a, b; !
 … !
uint_v indexes;
 // fill indexes with {0,2,5,6} !
a.gather(array, &MyData::d1, indexes); !
 … !
b.scatter(array, &MyData::d1, indexes);

Scalar Vc

73

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak 7

Exercises

Exersices/2_Vc/0_Memory

Task: Check out 2 ways to pack data in Vc

Exersices/2_Vc/1_Matrix

See the previous SIMD-exersices.
Task: Implement with Vc using three different initial data formats: AoS, SoA, AoSoA.

Exersices/2_Vc/2_QuadraticEquation

In order to make compiler know about Vc run:
 . AddVcPath.sh
If Vc needs reinstallation follow instructions in Vc/readme.txt

See the previous SIMD-exersices.
Task: Implement them with Vc

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak 8

Exercises
Exersices/3_Vc/3_Newton

http://www.math.uakron.edu/~dpstory/tutorial/demos/newton.pdf
Task: Vectorize using Vc

● Repeat until (xn - xn-1) > epsilon

74

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak 9

Exercises

Exersices/3_Vc/4_RandomAccess

Task: Implement random access using gather and scatter operators.
Follow the directions in the comments.

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Future CBM (FAIR/GSI) Experiment

10

75

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

CBM Kalman Filter Track Fit on Cell

11

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak 12

Application of Kalman Filter to the CBM Track Fit

The state vector and its covariance matrix:

Model of the measurement:

Prediction matrix:

Noise matrix:

76

 of 13 14 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak 13

Kalman Filter Track Fit for CBM experiment

!
Task:
Vectorize using Vc,
results should be the same within 0.1%

• 3D
• Non-homogeneous magnetic field (sophisticated extrapolation)
• 5 tracks parameters: x, y, tx, ty, q/p
• 2D measurements (hits): x, y
• Vectorized using headers

ln -s ../../../../data data !!
make single (or “make singleVc”) !!
./single !!
cd QualityHisto
root –l –q histo_particle.C; root –l Pulls.C
(keep attention to sigma of distributions
 and number of entries)

Set up !!
Compile !!
Run !!
Check results

Exersices/3_Vc/5_CBM_KF

m]µ) [mc - xrecoResidual (x
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 124

Overflow 113

Constant 702.8

Mean 0.6087

Sigma 43.24

m]µ) [mc - yrecoResidual (y
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 60

Overflow 64

Constant 782.9

Mean -0.2387

Sigma 39.01

) mradmc
x - treco

x
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

Entries 20000

Underflow 21

Overflow 29

Constant 2331

Mean -0.004328

Sigma 0.3064

) mradmc
y - treco

y
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

Entries 20000

Underflow 12

Overflow 7

Constant 2854

Mean 0.00313

Sigma 0.2527

*100%mc)/pmc - precoResidual (p
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

Entries 20000

Underflow 20

Overflow 15

Constant 1670

Mean -0.0262

Sigma 0.9343

Pull x
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 43

Overflow 38

Constant 841.3

Mean 0.0159

Sigma 1.122

Pull y
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 25

Overflow 31

Constant 868.6

Mean 0.001533

Sigma 1.088

Pull tx
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 54

Overflow 56

Constant 795.2

Mean -0.01697

Sigma 1.181

Pull ty
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 46

Overflow 44

Constant 846.9

Mean 0.01134

Sigma 1.109

Pull q/p
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 107

Overflow 98

Constant 700.5

Mean 0.0138

Sigma 1.317

m]µ) [mc - xrecoResidual (x
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 124

Overflow 113

Constant 702.8

Mean 0.6087

Sigma 43.24

m]µ) [mc - yrecoResidual (y
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 60

Overflow 64

Constant 782.9

Mean -0.2387

Sigma 39.01

) mradmc
x - treco

x
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

Entries 20000

Underflow 21

Overflow 29

Constant 2331

Mean -0.004328

Sigma 0.3064

) mradmc
y - treco

y
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

Entries 20000

Underflow 12

Overflow 7

Constant 2854

Mean 0.00313

Sigma 0.2527

*100%mc)/pmc - precoResidual (p
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

Entries 20000

Underflow 20

Overflow 15

Constant 1670

Mean -0.0262

Sigma 0.9343

Pull x
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 43

Overflow 38

Constant 841.3

Mean 0.0159

Sigma 1.122

Pull y
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 25

Overflow 31

Constant 868.6

Mean 0.001533

Sigma 1.088

Pull tx
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 54

Overflow 56

Constant 795.2

Mean -0.01697

Sigma 1.181

Pull ty
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 46

Overflow 44

Constant 846.9

Mean 0.01134

Sigma 1.109

Pull q/p
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 107

Overflow 98

Constant 700.5

Mean 0.0138

Sigma 1.317

77

78

2.3. Vector classes Library!
!
Exercises are located at Exercises/3_Vc/
Solutions are located at Exercises/3_Vc/***/***_solution.cpp
To compile and run exercise programs use the line given in the head-comments in the code.
The results given here are obtained on Intel E7-4860 CPU with gcc4.7.3.

Vc Introduction!
Vector classes (Vc) is a free software library to ease explicit vectorization of C++ code. It has an intuitive

interface and provides portability between different compilers and compiler versions as well as portability
between different vector instruction sets. Thus an application written with Vc can be compiled for AVX, SSE,
XeonPhi (MIC) and others SIMD instructions . 1

Similar to the SIMD header files, it provides all basic arithmetic operations and functions, and much
more in addition. All functionality, which the headers provide for fvec can be used similarly with the class
float_v. The most useful functionalities of Vc are masks and random memory access.

The mask functionality allows conditioning calculations. For example, an absolute value of a can be
calculated as:

float_m mask = (a < 0); a(mask) = - a;
Here mask saves the comparison result for each entry of a in a form, which can be represented like

[true;true;false;true] and operator() applies the assignment only to those entries, where the mask is true.
The random memory access functionality is provided by the gather and scatter functions. For example:
gather fills a vector a from an array A taking elements with indexes stored in a vector I:

a.gather(A, I); // A[I] -> a
scatter makes the opposite - fills an array entries from a vector:

a.scatter(A, I); // a -> A[I]

3_Vc/0_Matrix: description!
The Matrix exercise requires to parallelize the square root extraction over a set of float variables

arranged in a square matrix using the Vc library. The initial code implements scalar and vector parts using
the SIMD header, the space for the Vc implementation is blank. Therefore the initial output shows 0 time for
vector calculations and infinite speed up factor, that should be currently ignored.

 !
Part of the source code of Matrix.cpp

26 float a[N][N] __attribute__ ((aligned(16)));
27 float c[N][N] __attribute__ ((aligned(16)));
28 float c_simd[N][N] __attribute__ ((aligned(16)));
29 float c_simdVc[N][N] __attribute__ ((aligned(16)));
30
31 template<typename T> // required calculations
32 T f(T x) {
33 return sqrt(x);
34 }
…
49 int main() {
50
51 // fill classes by random numbers
52 for(int i = 0; i < N; i++) {

 http://code.compeng.uni-frankfurt.de/projects/vc1

79

!
3_Vc/0_Matrix: solution!

Since float_v is stored in memory in the same way as fvec and the function f(…) is a template, the part
for Vc can be exactly the same, simply the name of the type must be changed: !

53 for(int j = 0; j < N; j++) {
54 a[i][j] = float(rand())/float(RAND_MAX); // put a random value, from 0 to

1
55 }
56 }
57
58 /// -- CALCULATE --
59 /// SCALAR
60 TStopwatch timerScalar;
61 for(int ii = 0; ii < NIter; ii++)
62 for(int i = 0; i < N; i++) {
63 for(int j = 0; j < N; j++) {
64 c[i][j] = f(a[i][j]);
65 }
66 }
67 timerScalar.Stop();
68
69 /// SIMD VECTORS
70 TStopwatch timerSIMD;
71 for(int ii = 0; ii < NIter; ii++)
72 for(int i = 0; i < N; i++) {
73 for(int j = 0; j < N; j+=fvecLen) {
74 fvec &aVec = (reinterpret_cast<fvec&>(a[i][j]));
75 fvec &cVec = (reinterpret_cast<fvec&>(c_simd[i][j]));
76 cVec = f(aVec);
77 }
78 }
79 timerSIMD.Stop();
80
81 /// Vc
82 TStopwatch timerVc;
83 //TODO write the code using Vc
84 timerVc.Stop();

Part of the source code of Matrix.cpp

Typical output

Time scalar: 798.745 ms
Time headers: 201.086 ms, speed up 3.97215
Time Vc: 0 ms, speed up inf
SIMD and scalar results are the same.
ERROR! SIMD and scalar results are not the same.

Part of the source code of Matrix_solution.cpp

81 /// Vc

80

!
Since 4 float variables fit into a single SIMD vector, all calculations are done in parallel and no overhead

operations are required, the expected speed-up factor should be 4.

3_Vc/1_QuadraticEquation: description!
The QuadraticEquation exercise requires to vectorize using Vc the solution of a set of quadratic

equations in three different ways, based on tree different data setups: (1) Array of Structures (AoS), (2)
Structure of Arrays (SoA) (3) Array of Structures of Arrays (AoSoA).

It is recommended to compile the code with -fno-tree-vectorize option to prevent auto-vectorization of
the scalar code, otherwise the comparison of the vectorized and scalar codes will not be direct.

The input data is given already in the required formats. An elemental structure DataAOSElement, which
contains parameters of the equations and the resulting maximum root, is declared for the AoS format.
_mm_malloc function is used to allocate aligned memory. !

!
The SoA format is declared as a whole structure, which contains dynamic arrays. !

82 TStopwatch timerVc;
83 for(int ii = 0; ii < NIter; ii++)
84 for(int i = 0; i < N; i++) {
85 for(int j = 0; j < N; j+=float_v::Size) {
86 float_v &aVec = (reinterpret_cast<float_v&>(a[i][j]));
87 float_v &cVec = (reinterpret_cast<float_v&>(c_simd[i][j]));
88 cVec = f(aVec);
89 }
90 }
91 timerVc.Stop();

Part of the source code of Matrix_solution.cpp

Typical output after solution

Time scalar: 798.728 ms
Time headers: 201.078 ms, speed up 3.97223
Time Vc: 201.079 ms, speed up 3.97221
SIMD and scalar results are the same.
SIMD and scalar results are the same.

Part of the source code of QuadraticEquation.cpp

23 struct DataAOSElement {
24 float a, b, c, // coefficients
25 x; // a root
26 };
27
28 struct DataAOS {
29 DataAOS(const int N) {
30 data = (DataAOSElement*) _mm_malloc(sizeof(DataAOSElement)*N,16);
31 }
32 ~DataAOS() {
33 if(data) _mm_free(data);
34 }
35 DataAOSElement *data;
36 };

81

!
To define the AoSoA format an elemental structure DataAOSOAElement is declared to contain

information about float_v::Size (4) equations, similarly to DataSOA. The elemental structures are packed
together in the DataAOSOA structure similarly to DataAOS. Memory for all information is allocated in one
go in DataAOSOA to ensure compact data allocation, afterwards the memory is distributed between
elemental structures using SetMemory function. !

Part of the source code of QuadraticEquation.cpp

38 struct DataSOA {
39
40 DataSOA(const int N) {
41 a = (float*) _mm_malloc(sizeof(float)*N,16);
42 b = (float*) _mm_malloc(sizeof(float)*N,16);
43 c = (float*) _mm_malloc(sizeof(float)*N,16);
44 x = (float*) _mm_malloc(sizeof(float)*N,16);
45 }
46 ~DataSOA()
47 {
48 if(a) _mm_free(a);
49 if(b) _mm_free(b);
50 if(c) _mm_free(c);
51 if(x) _mm_free(x);
52 }
53
54 float *a, *b, *c, // coefficients
55 *x; // a root
56 };

Part of the source code of QuadraticEquation.cpp

58 struct DataAOSOAElement {
59
60 void SetMemory(float *m) {
61 a = m;
62 b = m + float_v::Size;
63 c = m + 2*float_v::Size;
64 x = m + 3*float_v::Size;
65 }
66
67 float *a, *b, *c, // coefficients
68 *x; // a root
69 };
70
71 struct DataAOSOA {
72 DataAOSOA(const int N) {
73 const int NVectors = N/float_v::Size;
74
75 data = new DataAOSOAElement[NVectors];
76 memory = (float*) _mm_malloc(sizeof(float)*4*N,16);
77
78 float *memp = memory;
79 for(int i = 0; i < NVectors; i++) {
80 data[i].SetMemory(memp);

82

!
The given structures is filled by the same random data sample and scalar implementation is given in the

exercise code. !

81 memp += float_v::Size*4;
82 }
83 }
84 ~DataAOSOA() {
85 _mm_free(memory);
86 delete[] data;
87 }
88
89 float *memory;
90 DataAOSOAElement *data;
91 };

Part of the source code of QuadraticEquation.cpp

Part of the source code of QuadraticEquation.cpp

150 // fill parameters by random numbers
151 for(int i = 0; i < N; i++) {
152 float a = 0.01 + float(rand())/float(RAND_MAX); // put a random value, from

0.01 to 1.01 (a has not to be equal 0)
153 float b = float(rand())/float(RAND_MAX);
154 float c = -float(rand())/float(RAND_MAX);
155
156 dataScalar.data[i].a = a;
157 dataScalar.data[i].b = b;
158 dataScalar.data[i].c = c;
159
160 dataSIMD1.data[i].a = a;
161 dataSIMD1.data[i].b = b;
162 dataSIMD1.data[i].c = c;
163
164 dataSIMD2.a[i] = a;
165 dataSIMD2.b[i] = b;
166 dataSIMD2.c[i] = c;
167
168 const int nV = i/float_v::Size;
169 const int iV = i%float_v::Size;
170 dataSIMD3.data[nV].a[iV] = a;
171 dataSIMD3.data[nV].b[iV] = b;
172 dataSIMD3.data[nV].c[iV] = c;
173 }
174
175 /// -- CALCULATE --
176
177 // scalar calculations
178 TStopwatch timerScalar;
179 for(int io=0; io<NIterOut; io++)
180 for(int i=0; i<N; i++)
181 {
182 float &a = dataScalar.data[i].a;

83

!
3_Vc/1_QuadraticEquation: solution!

(1) To vectorize the AoS format one needs to gather data from different instances of the
DataAOSElement structure and pack it together (in groups by 4) in float_v variables. Since the same data
(for example, the a variable) is placed in different parts of memory, data coping is necessary here. Ones
data is grouped, the solution is found using exactly the same code as one given in the scalar part. The data
is ungrouped back into the output x variable. !

183 float &b = dataScalar.data[i].b;
184 float &c = dataScalar.data[i].c;
185 float &x = dataScalar.data[i].x;
186
187 float det = b*b - 4*a*c;
188 x = (-b+sqrt(det))/(2*a);
189 }
190 timerScalar.Stop();

Part of the source code of QuadraticEquation.cpp

Typical output

Time scalar: 567.055 ms
Time Vc AOS: 0 ms, speed up inf
Time Vc SOA: 0 ms, speed up inf
Time Vc AOSOA: 0 ms, speed up inf
ERROR! SIMD and scalar results are not the same. SIMD part 1.
ERROR! SIMD and scalar results are not the same. SIMD part 2.
ERROR! SIMD and scalar results are not the same. SIMD part 3.

Part of the source code of QuadraticEquation_solution.cpp

194 for(int io=0; io<NIterOut; io++)
195 {
196 for(int i=0; i<NVectors; i++)
197 {
198 // copy input data
199 float_v aV;
200 float_v bV;
201 float_v cV;
202
203
204 for(int iV=0; iV<float_v::Size; iV++)
205 {
206 aV[iV] = dataSIMD1.data[i*float_v::Size + iV].a;
207 bV[iV] = dataSIMD1.data[i*float_v::Size + iV].b;
208 cV[iV] = dataSIMD1.data[i*float_v::Size + iV].c;
209 }
210
211 const float_v det = bV*bV - 4*aV*cV;
212 float_v xV = (-bV+sqrt(det))/(2*aV);
213
214 // copy output data
215 for(int iE=0; iE<float_v::Size; iE++)

84

(2) The second task is vectorization with the SoA data format. Since in SoA similar data is placed near

each other, the reinterpret_cast can be used. Ones the data is reinterpreted, the solution is found using
exactly the same code, as the given one in the scalar part. !

!
(3) The third task is vectorization with the AoSoA data format. The reinterpret cast can be used here in

the same way as with the SoA format, just the dereference operator must be applied in addition. The
calculations part remains the same as well. !

!

!
The speed up factor of 4 is expected due to vectorization. It is achieved with the SoA and AoSoA data

formats. With AoS additional data regrouping is required, that results in the smaller speed up of 2.6. !

216 dataSIMD1.data[i*float_v::Size+iE].x = xV[iE];
217 }
218 }

Part of the source code of QuadraticEquation_solution.cpp

Part of the source code of QuadraticEquation_solution.cpp

223 for(int io=0; io<NIterOut; io++)
224 for(int i=0; i<N; i+=float_v::Size)
225 {
226 float_v& aV = (reinterpret_cast<float_v&>(dataSIMD2.a[i]));
227 float_v& bV = (reinterpret_cast<float_v&>(dataSIMD2.b[i]));
228 float_v& cV = (reinterpret_cast<float_v&>(dataSIMD2.c[i]));
229 float_v& xV = (reinterpret_cast<float_v&>(dataSIMD2.x[i]));
230
231 const float_v det = bV*bV - 4*aV*cV;
232 xV = (-bV+sqrt(det))/(2*aV);
233 }

Part of the source code of QuadraticEquation_solution.cpp

238 for(int io=0; io<NIterOut; io++)
239 for(int i=0; i<NVectors; i++)
240 {
241 float_v& aV = *(reinterpret_cast<float_v*>(dataSIMD3.data[i].a));
242 float_v& bV = *(reinterpret_cast<float_v*>(dataSIMD3.data[i].b));
243 float_v& cV = *(reinterpret_cast<float_v*>(dataSIMD3.data[i].c));
244 float_v& xV = *(reinterpret_cast<float_v*>(dataSIMD3.data[i].x));
245
246 const float_v det = bV*bV - 4*aV*cV;
247 xV = (-bV+sqrt(det))/(2*aV);
248 }

Typical output after solution

Time scalar: 566.821 ms
Time Vc AOS: 217.513 ms, speed up 2.60592
Time Vc SOA: 142.603 ms, speed up 3.97482
Time Vc AOSOA: 143.57 ms, speed up 3.94805
SIMD 1 and scalar results are the same.
SIMD 2 and scalar results are the same.
SIMD 3 and scalar results are the same.

85

3_Vc/2_Newton: description!
The Newton exercise requires to vectorize the

Newton method for numerical solution of a group of
equations.

The method can be explained graphically as in the
Fig 1. The task is to find intersection of the curve and
the X-axis. The algorithm starts with an initial
approximation for root x0 and takes a function value at
this point. A tangent line is drown at this point, an
intersection of the tangent line with the X-axis is the
next approximation x1: !

xk ≡ xk-1 - f(xk-1)/f’(xk-1) !
Then the procedure is repeated unti l the

approximation does not change within the required
precision. !

xk - xk-1 < epsilon !
A scalar version of the algorithm is given in the exercise. A solution is proposed to perform in two steps.

First, vectorize the algorithm, which uses a fixed number of iterations (1000). Then make the number of
iterations dependent on the required precision. The vectorized version must give exactly the same result as
the scalar one. !

!
3_Vc/2_Newton: solution!

The parallelization is achieved by grouping 4 equations together. A complication in this case is that
different equations will reach the required precision at different number of iterations. This problem can be
solved using Vc masks: the loop exit condition should be stored as a mask. Then the loop is continued until
the mask has at least one entry with the value true. A mask value should be also used during update of the
root approximation in order to reproduce the scalar result.

Part of the source code of Newton.cpp

44 float FindRootScalar(const float& p1, const float& p2)
45 {
46 float x = 1, x_new = 0;
47 for(; abs((x_new - x)/x_new) > P;) {
48 // for(int i = 0; i < 1000; ++i){
49 x = x_new;
50 x_new = x - F(x,p1,p2) / Fd(x,p1,p2);
51 }
52 return x_new;

Typical output

Scalar part:
Results are correct!
Time: 15.415 ms
SIMD part:
Results are NOT the same!
Time: 0.226021 ms
Speed up: 68.2015

Fig. 1. Explanation of the Newton task.

86

!

!
A typical speed up factor of vectorization is 4, but since mask is used, the parallelization is not full and at

the final iterations only a part of the SIMD vector entries is used. Therefore, the speed up factor is about
3.5.

3_Vc/3_RandomAccess: description!
The RandomAccess exercise requires to use different forms of the gather and scatter functions. For

that an input array of float is provided and randomly filled. Also an array of random indices is provided. It is
required to (1) gather data from the input array to the tmp float_v variable according to the index array; (2)
similarly, gather the data, but only when it satisfies a given condition; (3) put the data from the tmp float_v
variable to the output array, when it satisfies a given condition. !

Part of the source code of Newton_solution.cpp

56 float_v FindRootVector(const float_v& p1, const float_v& p2)
57 {
58 float_v x = 1.f, x_new = 0.f;
59 float_m mask(true);
60 for(; !mask.isEmpty();) {
61 // for(int i = 0; i < 1000; ++i){
62 x = x_new;
63 x_new(mask) = x - F(x,p1,p2) / Fd(x,p1,p2);
64 mask = abs((x_new - x)/x_new) > P;
65 }
66 return x_new;
67 }

Typical output after solution

Scalar part:
Results are correct!
Time: 15.3401 ms
SIMD part:
Results are the same!
Time: 4.49395 ms
Speed up: 3.4135

Part of the source code of RandomAccess.cpp

21 float input[N];
22 float output[N];
23
24 int main() {
25
26 unsigned int index[float_v::Size];
27
30 // fill input array with random numbers from 0 to 1
31 for(int i = 0; i < N; i++) {
32 input[i] = float(rand())/float(RAND_MAX);
33 }
34
35 // fill output array with 0
36 for(int i = 0; i < N; i++) {
37 output[i] = 0;
38 }

87

!
3_Vc/3_RandomAccess: solution!

(1) To gather data from the given places in an array, one needs to create a uint_v vector with
corresponding indexes, then the gather function can be applied directly. !

!
(2) To gather data under the given condition, one needs to create a mask with a corresponding type.

Since the data is float, the float_m mask must be created, then the gather function with the mask

39
40 // fill indices with random numbers from 0 to N-1
41 for(int i = 0; i < float_v::Size; i++) {
42 index[i] = static_cast<unsigned int>(float(rand())/float(RAND_MAX)*N);
43 }
44
45 cout << "Indices: ";
46 for(int i=0; i<float_v::Size; i++)
47 cout << index[i] << " ";
48 cout << endl;
49
50 /// gather without masking
51 float_v tmp;
52 //TODO gather data with indices "index" from the array "input" into float_v

tmp
53 // Use void gather (const float *array, const uint_v &indexes)
…
65 /// gather with masking
66 float_v tmp2;
67 //TODO gather data with indices "index" from the array "input" into float_v

tmp2, if the value of "input" large then 0.5
68 // Use void gather (const float *array, const uint_v &indexes, const float_m

&mask)
…
91 //TODO create mask for values for an obtained tmp values, which are large

than 0.5 and
92 //TODO put all values smaller than 0.5 from tmp to the array "output" at the

places given by indices "index"
93 // Use void scatter (float *array, const uint_v &indexes, const float_m

&mask) const

Part of the source code of RandomAccess.cpp

Typical output

Indices: 25 96 76 42
Gather without masking: results are WRONG.
-4.67253e+33 is not equal to 0.988475
4.59163e-41 is not equal to 0.912037
0 is not equal to 0.80679
Gather with masking: results are WRONG.
Scatter with masking: results are correct.

Part of the source code of RandomAccess_solution.cpp

53 uint_v ind(index);
54 tmp.gather(input,ind);

88

parameter is applied directly. To ensure that the entries, which were masked out, have meaningful values,
we need to initialise the output variable before gathering. !

!
(3) To scatter data under the given condition one needs to create a mask with a corresponding type.

Since the data is float, the same mask can be used as in (2), then the scatter function with the mask
parameter is applied directly. !

!
3_Vc/5_CBM_KF: description!

For the next vectorisation exercise we will have a closer look at Kalman filter (KF) algorithm in the case
of 3 dimensional task of tracks reconstruction in magnetic field. The CBM KF package version, which is
already vectorized using headers is given. The task is to implement the CBM KF with Vc instead of
headers.

The related to this exercises parts of the package are: Fit.cxx; FitClasses.h; Fit.h; Stopwatch.h;
Makefile and openlab_mod directory, and QualityHisto directory.

Fit.cxx file contains the main function and other high-level functions are described here, including
ReadInput, FitTracksV and WriteOutput. ReadInput and WriteOutput functions read and write data,
which is at the data directory. FitTracksV is the function, which packs data into fvec-variables and
implements the KF method. !

Part of the source code of RandomAccess_solution.cpp

67 float_m mask = tmp > 0.5f;
68 float_v tmp2(Vc::Zero);
69 tmp2.gather(input, ind, mask);

Part of the source code of RandomAccess_solution.cpp

93 mask = tmp < 0.5f;
94 tmp.scatter(output, ind, mask);

Typical output after solution

Indices: 98 40 24 14
Gather without masking: results are correct.
Gather with masking: results are correct.
Scatter with masking: results are correct.

Part of the source code of Fit.cxx
1 #include <iostream>
2 #include <fstream>
…
11 #include "Stopwatch.h"
12 #include "Fit.h"
…
60 Station* vStations;
61
62 Track vTracks[MaxNTracks];
63 MCTrack vMCTracks[MaxNTracks];
…
72 void ReadInput(){
73
74 fstream FileGeo, FileTracks;
75
76 FileGeo.open((dataDir+"geo.dat").c_str(), ios::in);
77 FileTracks.open((dataDir+"tracks.dat").c_str(), ios::in);

89

…
178 }
179
180 void WriteOutput(){
…
233 }
234
235
236 void FitTracksV(){
237
238 double TimeTable[Ntimes];
239
240 TrackV *TracksV = new TrackV[MaxNTracks / vecN + 1];
241 Fvec_t *Z0 = new Fvec_t[MaxNTracks/vecN+1];
242
243 #ifdef VC
244 cout << " VC code is not writen yet " << endl; // DELME
245 exit(1);
246 // TODO
247 #endif
248 #ifndef MUTE
249 cout<<"Prepare data..."<<endl;
250 #endif
251 Stopwatch timer1;
252
253 for(int iV=0; iV<NTracksV; iV++){ // loop on set of 4 tracks
254 #ifndef MUTE
255 if(iV*vecN%100==0) cout<<iV*vecN<<endl;
256 #endif
257 TrackV &t = TracksV[iV];
258 for(int ist=0; ist<NStations; ist++){
259 HitV &h = t.vHits[ist];
260
261 h.x = 0.;
262 h.y = 0.;
263 h.w = 0.;
264 h.H.X = 0.;
265 h.H.Y = 0.;
266 h.H.Z = 0.;
267 }
268
269 for(int it=0; it<vecN; it++){
270 Track &ts = vTracks[iV*vecN+it];
271 #ifdef X87
272 Z0[iV] = vMCTracks[iV*vecN+it].MC_z;
273 #else
274 Z0[iV][it] = vMCTracks[iV*vecN+it].MC_z;
275 #endif
276 for(int ih=0; ih<ts.NHits; ih++){
277 Hit &hs = ts.vHits[ih];
278 HitV &h = t.vHits[hs.ista];
279 #ifdef X87
280 h.x = hs.x;
281 h.y = hs.y;

Part of the source code of Fit.cxx

90

!
FitClasses.h file contains description of the objects used during fitting, including definition of basics

types, which are used depending on the switcher.
There are number of switcher options (targets), useful for the given task are: X87, which corresponds to

the scalar version of the code, and SIMPLESIMD, which corresponds to the vectorized version using SIMD
header. The basic type, which is used for calculations, is Fvec_t, it’s length is stored in vecN variable.
Therefore for X87 Fvec_t is set to double, vecN to 1, for SIMD header it is set to F32vec4 (the different
name of fvec), vecN to 4.

The objects, which are used during track fit, are:
FieldVector - contains magnetic field components at the given point.
FieldSlice - contains magnetic field approximation at the given detector station plane.
FieldRegion - contains magnetic field approximation along the given curve (parabola, which is defined

by 3 points).
Station - contains detector plane parameters and magnetic field on the detector plane.
Hit, HitV - scalar and vector hits, they contains hit coordinates and magnetic field in the hit position.
MCTrack - contains information about simulated tracks to compare resulting reconstructed track

approximation with.
Track, TrackV - scalar and vectorized track, they contains hits and parameters of the track, obtained by

the Kalman filter.
CovV - contains covariance matrix of the estimated track’s parameters. !

282 h.w = 1.;
283 #else
284 h.x[it] = hs.x;
285 h.y[it] = hs.y;
286 h.w[it] = 1.;
287 #endif
288 }
289 }
…
346 #pragma omp parallel num_threads(tasks)
347 {
348 #pragma omp for
349 for(iV=0; iV<NTracksV; iV++){ // loop on set of 4 tracks
350 // timer_test.Start();
351 for(ifit=0; ifit<NFits; ifit++){
352 Fit(TracksV[iV], vStations, NStations);
353 }
354 // timer_test.Stop();
355 // cout<<"test time = "<<timer_test.RealTime()*1.e6<<" [us]"<<endl;
356 }
357 }
…
416 }
417
418
419 int main(int argc, char *argv[]){
..
445 ReadInput();
446 FitTracksV();
447 WriteOutput();
…
459 }
460

Part of the source code of Fit.cxx

91

Part of the source code of FitClasses.h

…
14 #elif defined(X87)
15
16 #include "openlab_mod/x87.h"
17 typedef double Fvec_t;
18 const int vecN = 1;
19 typedef double Single_t;
20 # define ALIGNMENT_NONE
…
39 #elif defined(SIMPLESIMD)
40
41 #include "openlab_mod/P4_F32vec4.h"
42 typedef F32vec4 Fvec_t;
43 const int vecN = 4;
44 typedef float Single_t;
45 # define ALIGNMENT_16
…
54 #endif
55
56 typedef int Int_t;
57
58 struct FieldVector{
59 Fvec_t X, Y, Z;
…
65 } __attribute__ ((aligned(16)));
…
69 struct FieldSlice{
70 Fvec_t X[10], Y[10], Z[10]; // polinom coeff.
…
100 } __attribute__ ((aligned(16)));
101
102
103 struct FieldRegion{
104 Fvec_t x0, x1, x2 ; // Hx(Z) = x0 + x1*(Z-z) + x2*(Z-z)^2
105 Fvec_t y0, y1, y2 ; // Hy(Z) = y0 + y1*(Z-z) + y2*(Z-z)^2
106 Fvec_t z0, z1, z2 ; // Hz(Z) = z0 + z1*(Z-z) + z2*(Z-z)^2
107 Fvec_t z;
…
157 } __attribute__ ((aligned(16)));
158
159
160 struct Station{
161 Fvec_t z, thick, zhit, RL, RadThick, logRadThick,
162 Sigma, Sigma2, Sy;
163 FieldSlice Map;
…
167 } __attribute__ ((aligned(16)));
168
169
170 struct Hit{
171 Single_t x, y;
172 Int_t ista;
173 Single_t tmp1;

92

!
Fit.h contains description of the KF functions used for parameters estimation:
ExtrapolateALight - is used for extrapolation of track parameters from one station to the next one.
Filter - is used to take into account a given hit.
FilterFirst - is used to take into account (filter) the very first hit of the track. This function is equivalent to

Filter, but optimised to cope with a numerical instability of the method when using single precision. Filter
function is not stable when applied to the very first hit. The reason is big round-off errors when initial
imprecise approximation of track parameters is combined with precise measurement.
AddMaterial - is used to take into account multiple scattering in material of the detector, that tracks are

crossing.
GuessVec - is used to obtain approximation for the initial track parameters. This function also required

to increase stability of the Kalman filter procedure in single precision.
The Fit function run the track fit process itself calling the other functions in a loop over stations. !

174 } __attribute__ ((aligned(16)));
175
176 struct MCTrack{
177 Single_t MC_x, MC_y, MC_z, MC_px, MC_py, MC_pz, MC_q;
178 } __attribute__ ((aligned(16)));
179
180 struct Track{
181 Int_t NHits;
182 Hit vHits[12];
183 Single_t T[6]; // x, y, tx, ty, qp, z
184 Single_t C[15]; // cov matr.
185 Single_t Chi2;
186 Int_t NDF;
187 } __attribute__ ((aligned(16)));
188
189 struct HitV{
190 Fvec_t x, y, w;
191 FieldVector H;
192 } __attribute__ ((aligned(16)));
193
194
195 struct CovV{
196 Fvec_t C00,
197 C10, C11,
198 C20, C21, C22,
199 C30, C31, C32, C33,
200 C40, C41, C42, C43, C44;
201 } __attribute__ ((aligned(16)));
202
203 struct TrackV{
204 HitV vHits[12];
205 Fvec_t T[6]; // x, y, tx, ty, qp, z
206 CovV C; // cov matr.
207 Fvec_t Chi2;
208 Fvec_t NDF;
209 } __attribute__ ((aligned(16)));
210
211 #endif

Part of the source code of FitClasses.h

Part of the source code of Fit.h

4 #include <math.h>

93

!
Stopwatch.h file is used to calculate a fitting time.

5 #include "FitClasses.h"
…
16 //inline // --> causes a runtime overhead and problems for the MS compiler

(error C2603)
17 void ExtrapolateALight
18 (
19 Fvec_t T [], // input track parameters (x,y,tx,ty,Q/p)
20 CovV &C, // input covariance matrix
21 const Fvec_t &z_out , // extrapolate to this z position
22 Fvec_t &qp0 , // use Q/p linearisation at this value
23 FieldRegion &F
24)
25 {
…
301 }
302
303 struct HitInfo{
304 Fvec_t cos_phi, sin_phi, sigma2, sigma216;
305 };
306
307 inline void Filter(TrackV &track, HitInfo &info, Fvec_t &u, Fvec_t &w)
…
380 inline void FilterFirst(TrackV &track, HitV &hit, Station &st)
…
399 inline void AddMaterial(TrackV &track, Station &st, Fvec_t &qp0)
…
425 inline void GuessVec(TrackV &t, Station *vStations, int NStations)
…
490 inline void Fit(TrackV &t, Station vStations[], int NStations)
491 {
…
504 GuessVec(t, vStations,NStations);
…
516 FilterFirst(t, *h, vStations[i]);
517 AddMaterial(t, vStations[i], qp0);
…
529 for(--i; i>=0; i--){
…
538 ExtrapolateALight(t.T, t.C, st.zhit, qp0, f);
540
541 AddMaterial(t, st, qp0);
542
543 Filter(t, Xinfo, h->x, h->w);
544 Filter(t, Yinfo, h->y, h->w);
…
549 }
550 }

Part of the source code of Fit.h

94

Makefile is required to organise compilation of several source files into one executable. It also allows to
chose the target (for example, to choose between scalar version, or SIMD header version or Vc version).
The compilation of the package is done with make command, which uses Makefile for directions.

The Makefile contains description of compiler options, the list of source files and the list of targeting
executables. singeVc executable is already added here to be used with Vc, it defines the switcher option
VC, which should be used in the C++ source code to distinguish the code version, which corresponds to
the Vc target. !

!
To compile package with the Makefile one simply runs: !

make [target name] !
where [target name] is the name one of the targets, for example: make single.
To run the program call the executable name (same as target) as usually: !

./single !
openlab_mod directory contains SIMD header files, used for vectorization.
QualityHisto directory contains scripts, which allows to check result of the fitting procedure.

histo_particle.C macros is used to analyse the package output and store the data in a root-file as a
histograms (the output file is histo_particle.root). Pulls.C macros is used to open the root-file, plot the
histograms on the screen and fit them with the Gaussian functions to find out the main characteristics of the
fitted distributions: widths of resolutions and pulls. To perform described analysis one simply executes: !

root -l histo_particle.C+ -q; root -l Pulls.C !
The resulting picture for single target is shown on Fig. 1. It is also given in QualityHisto/

KFTrackPull_single_etalon.pdf file. It presents residual, resolution and pulls distributions. Residual is
defined as difference between reconstructed and MC parameter values. Resolution is residual in [%] units.
Pulls are residuals normalised on the errors obtained by the KF procedure (the errors are stored in the
covariance matrix). Residuals are shown for x, y, tx, ty parameters. Since all tracks have the same length
and almost same conditions (field is smooth, material of the stations is homogenious) the shape of
residuals should be close to the Gaussian function given by red line (approximation), the width of the
function represents the quality of the fitting method. For example, the x coordinate has the Sigma
parameter equal to 43.24 microns, which is a precision of estimation of the x coordinate of the track. For
the momentum p the resolution is plotted. Pulls are show for all 5 parameters. Since pulls are residuals
normalised by the error, the width of pulls distributions should be equal to 1. It is close to one as one can
see. The biggest difference is obtained for the pull of momentum (q/p). The explanation for such a

Part of the source code of Makefile

…
17 CFLAGS = -pipe -Wall -W -D_REENTRANT $(DEFINES)
18 CXXFLAGS = -msse -msse2 -msse3 -mssse3 -O3 -Wno-long-long -Iopenlab_mod -

fno-threadsafe-statics
…
48 SOURCES = Fit.cxx Fit.h FitClasses.h
50
51 BINARIES = single singleVc tbb tbbVc omp ompVc pseudo x87 double
…
64 single: openlab_mod/P4_F32vec4.h $(SOURCES)
65 $(CXX) -DSIMPLESIMD $(CXXFLAGSSIMPL) $(LIBS) -o "$@" Fit.cxx
…
77 singleVc: $(SOURCES)

…
87 x87: $(SOURCES)
88 $(CXX) -DVC $(CXXFLAGS) $(LIBS) -o "$@" Fit.cxx -lVc
…

95

difference is approximations, which had to be done in order to
perform Kalman filter procedure in a non-homogeneous
magnetic field.

The most important parameters here are Sigmas and
number of entries (see Fig. 2.). During solution it is proposed to
use for benchmark Sigma and Entries of p resolution and q/p
pull distribution, they are equal to 0.93 43, 20000, 1.317 and
20000 respectively. Typical time is about 0.5 microseconds per
track (see Real fit/tr[us] time). !!!

!
2_Vc/5_CBM_KF: solution!

Since Fvec_t is the basic type used through the program, the solution of this exercise should start from
redefining this type for the Vc version. As it was shown in description of the package such a definitions are
done at FitClasses.h. All required definitions for the Vc version we collected in a separate file Vctypedef.h.

Typical output

Prep[us], CPU fit/tr[us], Real fit/tr[us], CPU[sec], Real[sec] = 0.5 0.575
0.579457 1.15 1.15897

Fig. 2. Important parameters of the
histograms for CBM KF track fitter.

m]µ) [mc - xrecoResidual (x
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 124

Overflow 113

Constant 702.8

Mean 0.6087

Sigma 43.24

m]µ) [mc - yrecoResidual (y
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 60

Overflow 64

Constant 782.9

Mean -0.2387

Sigma 39.01

) mradmc
x - treco

x
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

Entries 20000

Underflow 21

Overflow 29

Constant 2331

Mean -0.004328

Sigma 0.3064

) mradmc
y - treco

y
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

Entries 20000

Underflow 12

Overflow 7

Constant 2854

Mean 0.00313

Sigma 0.2527

*100%mc)/pmc - precoResidual (p
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

Entries 20000

Underflow 20

Overflow 15

Constant 1670

Mean -0.0262

Sigma 0.9343

Pull x
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 43

Overflow 38

Constant 841.3

Mean 0.0159

Sigma 1.122

Pull y
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 25

Overflow 31

Constant 868.6

Mean 0.001533

Sigma 1.088

Pull tx
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 54

Overflow 56

Constant 795.2

Mean -0.01697

Sigma 1.181

Pull ty
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 46

Overflow 44

Constant 846.9

Mean 0.01134

Sigma 1.109

Pull q/p
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 107

Overflow 98

Constant 700.5

Mean 0.0138

Sigma 1.317

m]µ) [mc - xrecoResidual (x
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 124

Overflow 113

Constant 702.8

Mean 0.6087

Sigma 43.24

m]µ) [mc - yrecoResidual (y
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 60

Overflow 64

Constant 782.9

Mean -0.2387

Sigma 39.01

) mradmc
x - treco

x
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

Entries 20000

Underflow 21

Overflow 29

Constant 2331

Mean -0.004328

Sigma 0.3064

) mradmc
y - treco

y
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

Entries 20000

Underflow 12

Overflow 7

Constant 2854

Mean 0.00313

Sigma 0.2527

*100%mc)/pmc - precoResidual (p
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

Entries 20000

Underflow 20

Overflow 15

Constant 1670

Mean -0.0262

Sigma 0.9343

Pull x
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 43

Overflow 38

Constant 841.3

Mean 0.0159

Sigma 1.122

Pull y
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 25

Overflow 31

Constant 868.6

Mean 0.001533

Sigma 1.088

Pull tx
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 54

Overflow 56

Constant 795.2

Mean -0.01697

Sigma 1.181

Pull ty
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 46

Overflow 44

Constant 846.9

Mean 0.01134

Sigma 1.109

Pull q/p
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 107

Overflow 98

Constant 700.5

Mean 0.0138

Sigma 1.317

Fig. 1. Quality histograms for CBM KF track fitter. SIMD header version.

96

It contains redefinition of Fvec_t, which is clearly should be float_v in our case, vecN, which is equal to
float_v::Size and redefinition of the input operator for a convenience. In addition rcp function redefinition is
required, the Vc function, that corresponds to it is called reciprocal. !

!
Vc requires explicit type for floating point constants, therefore everywhere where constant of Fvec_t

type are used, like 1 or 2, “.f” construct must be added to them. For example “1.f”. !
The last change to make Vc version compiled is implementation of data packing. It can be added right in

the place where input data is read. VC switch is used to separate new code from the previous, this allows
to compile the same code both for Vc and SIMDheader. To pack data into Vc classes aligned arrays of
floats are used, then constructor function of float_v type is called to load data from given memory to the Vc
type. !

Part of the source code of Fit.h

54 #elif defined(VC)
55
56 #include "Vctypedef.h"
57 typedef float Single_t;
58
59 #endif

Part of the source code of Vctypedef.h

4 #include <Vc/Vc>
5 using namespace Vc;
6 typedef float_v Fvec_t;
7 const int vecN = float_v::Size;
8
9 istream & operator>>(istream &strm, Fvec_t &a){
10 float tmp;
11 strm>>tmp;
12 a = tmp;
13 return strm;
14 }
15
16 inline Fvec_t rcp(const Fvec_t &a) {
17 return reciprocal(a);
18 }

Part of the source code of Fit.cxx

244 #ifdef VC
245 float Z0mem[vecN] __attribute__ ((aligned(16)));;
246 #endif
…
268 #ifdef VC
269 float hxmem[NStations][vecN],hymem[NStations][vecN],hwmem[NStations][vecN]

__attribute__ ((aligned(16)));;
270 for(int it=0; it<vecN; it++){
271 Track &ts = vTracks[iV*vecN+it];
272
273 Z0mem[it] = vMCTracks[iV*vecN+it].MC_z;
274
275 for(int ista=0, ih=0; ista<NStations; ista++){
276 Hit &hs = ts.vHits[ih];
277 if (hs.ista != ista) continue;

97

!
The data unpacking is already done in SIMDheader version, the same code can be used for Vc too,

since access operator operator[] exists for both. Therefore no code changes are required here.
The result is shown on Fig. 3. It is clear that difference with header version is huge.

278 ih++;
279 HitV &h = t.vHits[hs.ista];
280
281 hxmem[ista][it] = hs.x;
282 hymem[ista][it] = hs.y;
283 hwmem[ista][it] = 1.;
284 }
285
286 }
287 for(int ista=0; ista<NStations; ista++){
288 Fvec_t hxtemp(hxmem[ista]);
289 Fvec_t hytemp(hymem[ista]);
290 Fvec_t hwtemp(hwmem[ista]);
291 t.vHits[ista].x = hxtemp;
292 t.vHits[ista].y = hytemp;
293 t.vHits[ista].w = hwtemp;
294 }
295
296
297 Fvec_t Z0temp(Z0mem);
298 Z0[iV] = Z0temp;
299 #else // VC

Part of the source code of Fit.cxx

Fig. 3. Quality histograms for CBM KF track fitter. First Vc version.

m]µ) [mc - xrecoResidual (x
-200 -150 -100 -50 0 50 100 150 200

50

100

150

200

250

300

Entries 20000

Underflow 4189

Overflow 4303

Constant 211.9

Mean -3.927

Sigma 82.75

m]µ) [mc - yrecoResidual (y
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

Entries 20000

Underflow 582

Overflow 595

Constant 494.9

Mean 0.003867

Sigma 56.51

) mradmc
x - treco

x
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 2858

Overflow 2775

Constant 310.7

Mean 0.02791

Sigma 1.425

) mradmc
y - treco

y
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Entries 20000

Underflow 83

Overflow 86

Constant 1324

Mean 0.001285

Sigma 0.4989

*100%mc)/pmc - precoResidual (p
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

700

Entries 20000

Underflow 2743

Overflow 428

Constant 392.1

Mean -1.513

Sigma 3.049

Pull x
-6 -4 -2 0 2 4 6

0

2000

4000

6000

8000

10000

Entries 20000

Underflow 0

Overflow 0

Constant 1.867e+04

Mean -0.001093

Sigma 0.05338

Pull y
-6 -4 -2 0 2 4 6

0

2000

4000

6000

8000

10000

Entries 20000

Underflow 0

Overflow 0

Constant 3.158e+04

Mean -8.351e-05

Sigma 0.03956

Pull tx
-6 -4 -2 0 2 4 6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Entries 20000

Underflow 0

Overflow 0

Constant 1.14e+04

Mean 0.002911

Sigma 0.07585

Pull ty
-6 -4 -2 0 2 4 6

0

2000

4000

6000

8000

10000

Entries 20000

Underflow 0

Overflow 0

Constant 2.339e+04

Mean -0.0002848

Sigma 0.04597

Pull q/p
-6 -4 -2 0 2 4 6

0

1000

2000

3000

4000

5000

6000

Entries 20000

Underflow 70

Overflow 72

Constant 6180

Mean -0.002883

Sigma 0.1063

98

The version is compilable, but the code is still must be checked to be sure that change from fvec to
float_v is correctly done everywhere. Since code is mostly have no branches this is mostly true, but one
part where operator& is used with SIMD header to achieve effect of conditional operator. That the
conditioning must be used is clear from the scalar code. But operator& behaviour is not defined for float_v
the concept for conditioning execution in Vc is masking. Therefore instead of bool initialised the mask
should be used. !

!
The results are shown in Fig. 4. Benchmarking Sigma and Entries of p resolution and q/p pull distribution

values are equal to 0.9341, 20000, 1.316 and 20000 respectively. The results difference with header
version is less than 0.1% in Sigma and is 0 in number of entries, which is totally fine.

The time results are quite the same as with the SIMD header version. Vc can be slightly faster, because
it uses time optimised functions like reciprocal and rsqrt. !

!
In addition we can check our guess about reciprocal and rsqrt functions. When we change then

reciprocal on 1/x, which it’s definition and rsqrt on 1/sqrt. For this version the benchmarking Sigma and
Entries of p resolution and q/p pull distribution values are equal to 0.934, 20000, 1.317 and 20000
respectively. This makes the results difference with header version ~0.01% in Sigma, which is negligible. !

Part of the source code of Fit.h

337 #ifdef X87
338 bool initialised = HCH < info.sigma216;
339 if (initialised) {
340 track.Chi2 += zeta * zetawi;
341 zetawi = w* zeta *rcp(info.sigma2 + HCH);
342 } else
343 zetawi = w* zeta *rcp(HCH);
344 #elif defined(VC)
345 float_m initialised = HCH < info.sigma216;
346 wi = w*1/(info.sigma2 +HCH);
347 Fvec_t sigma(Vc::Zero);
348 sigma(initialised) = info.sigma2;
349 zetawi = w * zeta * 1/(sigma + HCH);
350 track.Chi2(initialised) += zeta * zetawi;
351 #else
352 Fvec_t initialised = Fvec_t(HCH<info.sigma216);
353 zetawi = w* zeta *rcp((initialised&info.sigma2) + HCH);
354 track.Chi2 += initialised & (zeta * zetawi);
355 #endif

Typical output

Prep[us], CPU fit/tr[us], Real fit/tr[us], CPU[sec], Real[sec] = 0.5 0.575
0.579457 1.15 1.15897

Typical output after solution

Prep[us], CPU fit/tr[us], Real fit/tr[us], CPU[sec], Real[sec] = 0.5 0.57
0.569018 1.14 1.13808

99

Fig. 4. Quality histograms for CBM KF track fitter. Vc version.

m]µ) [mc - xrecoResidual (x
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 124

Overflow 113

Constant 702.9

Mean 0.6067

Sigma 43.24

m]µ) [mc - yrecoResidual (y
-200 -150 -100 -50 0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 60

Overflow 64

Constant 782.9

Mean -0.2398

Sigma 39.01

) mradmc
x - treco

x
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

Entries 20000

Underflow 21

Overflow 29

Constant 2332

Mean -0.004452

Sigma 0.3062

) mradmc
y - treco

y
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

Entries 20000

Underflow 12

Overflow 7

Constant 2854

Mean 0.003131

Sigma 0.2527

*100%mc)/pmc - precoResidual (p
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

1800

Entries 20000

Underflow 20

Overflow 15

Constant 1670

Mean -0.02618

Sigma 0.9341

Pull x
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 43

Overflow 38

Constant 841.5

Mean 0.01586

Sigma 1.121

Pull y
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 25

Overflow 31

Constant 868.5

Mean 0.00106

Sigma 1.088

Pull tx
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 54

Overflow 56

Constant 795.4

Mean -0.01716

Sigma 1.18

Pull ty
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

900

Entries 20000

Underflow 46

Overflow 44

Constant 846.8

Mean 0.0114

Sigma 1.109

Pull q/p
-6 -4 -2 0 2 4 6

0

100

200

300

400

500

600

700

800

Entries 20000

Underflow 107

Overflow 98

Constant 701.1

Mean 0.01275

Sigma 1.316

100

HPC Practical Course
Part 2.4

!
CERN ROOT Framework

Used materials:
http://root.cern.ch/
http://ihp-lx.ethz.ch/Stamet/lectureNotes/exercises/rootintro.pdf
http://www-ekp.physik.uni-karlsruhe.de/~jwagner/WS0809/docs/SummerStudents2004.pdf

V. Akishina, I. Kisel
I. Kulakov, M. Zyzak

Goethe University of Frankfurt am Main !
28 May 2014

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak 2

!!
ROOT is an object oriented framework for data analysis!
• Read data from different sources!
• Write data (persistent object)!
• Select data with some criteria!
• Produce results as plots, fits, etc...!
Support “interactive” (C/C++ , Python) as well as “compiled” usage (C++)!!
ROOT integrates several tools:!
• Random number generators!
• Fit methods (Minuit)!
• Neural Network framework (TMVA)!
• Parallel processing framework (PROOF)!
• Vc!!
Developed and supported by High Energy Physics community!
! Homepage with documentation and tutorials: root.cern.ch

What is ROOT?

101

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

The Site

3

!!
root.cern.ch!
 !
! Latest Version!
! Tutorials!
! User’s Guide !
! Reference Guide!
! Forum

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Histograms & Functions

4
Introduction to ROOT 12

A Data Analysis & Visualisation tool

102

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Histograms & Functions

5Introduction to ROOT 13

Graphics : 1,2,3-D functions

�

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Event Display

6

103

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

ROOT Data Forman & Browser

7

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

ROOT Interactive Console

8

[08:16:13]~$ root -l
root [0] 2 + 2
(const int)4
root [1] sqrt(sin(log(1.5)))
(const double)6.28049520113152182e-01
root [2] int s = 0;
root [3] for(int i = 0; i < 10; i++) s += i;
root [4] s
(int)45
root [5] TH1F *histo = new TH1F(!
TH1F TH1F()
TH1F TH1F(const char* name, const char* title, Int_t nbinsx, Double_t xlow, Double_t xup)
TH1F TH1F(const char* name, const char* title, Int_t nbinsx, const Float_t* xbins)
TH1F TH1F(const char* name, const char* title, Int_t nbinsx, const Double_t* xbins)
TH1F TH1F(const TVectorF& v)
TH1F TH1F(const TH1F& h1f)
root [5] TH1F *histo = new TH1F("H","Title", 9, 3, 12);
root [6] histo->Fill(10);
root [7] histo->Fill(6);
root [8] histo->Fill(10);
root [9] histo->Draw();
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root [10] .q
[08:17:54]~$

CINT is the C++ interpreter of ROOT.!
Aclic is the C++ compiler invoked by ROOT.

104

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

ROOT Compiler
[16:23:28]~/Praktikum/Our/Exersise/Exercises/3_ROOT$ root -l –q FittingDemoSimple_0.C+
root [0]
[compile]
Processing FittingDemoSimple_0.C+...
Info in <TUnixSystem::ACLiC>: creating shared library /u/ikulakov/Praktikum/Our/Exersise/Exercises/
2_ROOT/./FittingDemoSimple_0_C.so
In file included from /u/ikulakov/Praktikum/Our/Exersise/Exercises/2_ROOT/
FittingDemoSimple_0_C_ACLiC_dict.h:34,
 from /u/ikulakov/Praktikum/Our/Exersise/Exercises/2_ROOT/
FittingDemoSimple_0_C_ACLiC_dict.cxx:17:
/u/ikulakov/Praktikum/Our/Exersise/Exercises/2_ROOT/./FittingDemoSimple_0.C: In function 'void
FittingDemoSimple_0()':
/u/ikulakov/Praktikum/Our/Exersise/Exercises/2_ROOT/./FittingDemoSimple_0.C:25: warning: unused variable
'nBins'
/u/ikulakov/Praktikum/Our/Exersise/Exercises/2_ROOT/./FittingDemoSimple_0.C:27: warning: unused variable
'c1'
/u/ikulakov/Praktikum/Our/Exersise/Exercises/2_ROOT/./FittingDemoSimple_0.C:35: warning: unused variable
‘fitFcn‘ !
[run]
 FCN=93.5605 FROM MIGRAD STATUS=CONVERGED 54 CALLS 55 TOTAL
 EDM=1.47795e-17 STRATEGY= 1 ERROR MATRIX ACCURATE
 EXT PARAMETER STEP FIRST
 NO. NAME VALUE ERROR SIZE DERIVATIVE
 1 p0 -3.32978e+00 8.53859e-01 1.65270e-03 7.48073e-09
 2 p1 3.60739e+01 1.71118e+00 7.72138e-04 -2.53062e-09
 3 p2 -1.18800e+01 5.35181e-01 2.79446e-04 -1.69088e-08

9

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Histograms

TH1F *hist = new TH1F("name", "title", 9, 3, 12); !
hist->Fill(10);
hist->Fill(6);
hist->Fill(7);
hist->Fill(10);
hist->Fill(4); !
hist->Draw();

10

! TH1: base classes for 1-D histograms!
! TH1C: char based histogram (max content 255)!
! TH1S: short based histogram (max content 65 635)!
! TH1I: int based histogram (max content 2 147 483 647)!
! TH1F: float based histogram (precision 7 digits)!
! TH1D: double based histogram (precision 14 digits)!

! TH2, TH3 - 2-D and 3-D histograms!
! TProfile, TProfile2D - profile histograms

105

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Fitting

11

[08:44:18]~$ root -l!
root [0] TH1F *histo = new TH1F("histo", "Exponent",100,0,1);!
root [1] TRandom3 rand;!
root [2] for(int i=0; i < 10000; i++) histo->Fill(rand.Exp(1));!
root [3] TF1 *fitFcn = new TF1(“lineFunction”, "[0]*x+[1]" , 0, 1);!
root [4] histo->Fit("lineFunction");!
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1!
 FCN=121.768 FROM MIGRAD STATUS=CONVERGED 31 CALLS 32 TOTAL!
 EDM=3.4953e-20 STRATEGY= 1 ERROR MATRIX ACCURATE !
 EXT PARAMETER STEP FIRST !
 NO. NAME VALUE ERROR SIZE DERIVATIVE !
 1 p0 -5.88320e+01 2.69418e+00 6.35709e-03 2.23544e-10!
 2 p1 9.17483e+01 1.73963e+00 4.10475e-03 3.28894e-10

!
argument!

parameters to find

 of 12 28 May 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Exercises

FittingDemoSimple_0.C

FittingDemo_1.C

12

root -l FittingDemoSimple_0.C
Exersices/4_ROOT

106

2.4. ROOT Framework!
Exercises are located at Exercises/4_ROOT/
To compile and run exercise programs use the line given in the head-comments in the code.
The results given here are obtained on Intel E7-4860 CPU with gcc4.7.3.

ROOT Introduction!
ROOT is an object-oriented framework for data analysis. ROOT includes abundant functionality for data 1

processing: input, output, plots, curve fitting, minimisation, random generators, matrix computations, MIMD
and SIMD.

This manual covers very basic usage of histogram plots and curve fitting and random generators.
ROOT is interpreter based environment, this means that ROOT reads and executes statements one by

one. For comparison, compiler read full file, check for semantic errors first, create and executable, which
can be executed afterwards separately. ROOT interpreter is called CINT, it is C++ based, so basically all
standard C++ statements are allowed in CINT.

ROOT can be used in two different ways:
1. Start ROOT environment at system prompt (terminal): !

root -l !
then ROOT prompt (you will see “root[0]”) appears and you can input and execute statements from

keyboard in the same way as with system prompt. To exit ROOT prompt use .q command.
2. Create a ROOT macros and process it with ROOT using: !

 root -l RootMacrosName.C !
then ROOT will look for a function in the macros, which name is same as file name

“RootMacrosName()”, and all statements in the function will be executed with interpreter, then ROOT will
stop, allowing you to enter additional commands or to exit with .q command.

4_ROOT/FittingDemoSimple_0: description!
This exercise show you basic usage of histograms. Histogram is a plot, which shows how many data of

each type you have, it is called distribution. For example, it can shows number of days in 12 months, or
number of students with each possible heights in cm. In the last case, since height is continuous scale
(each student has it’s own height if we measured it precise enough) so called binning should be chosen. In
the example above we chose bin size equal to 1 cm and put all students with same height within 1 cm to
the one bin, that allows us to calculate height distribution. Bins with size of 10, 3 and 3.3 can be chosen
too, for example.

The given macros FittingDemoSimple_0.cpp includes required parts of ROOT, describes a function to
fit histogram fitFunction with and the main function FittingDemoSimple_0.

Instead of usual types like int, float, double, which can have different precision on different machines
ROOT introduces machine independent types: Int_t, Float_t, Double_t.

To use graphics with ROOT one needs to declare TCanvas object, which has the following constructor: !
TCanvas(const char* name, const char* title, Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh) !
here wtopx, wtopy are the pixel coordinates of the top left corner of the canvas, ww is the canvas size

in pixels along X, wh is the canvas size in pixels along Y.
Canvas should be allocated dynamically variable, otherwise it would be deleted upon function finish and

will not be seen.

 http://root.cern.ch1

107

The histogram object is called TH1F, where H states for histogram, 1 for 1-dimensional, F - for float
type: !

TH1F(const char* name, const char* title, Int_t nbinsx, Double_t xlow, Double_t xup) !
here nbins is number of bins, xlow is low edge of first bin, xup is upper edge of last bin.
To generate distribution random generator is used TRandom3 class provides the most optimal random

generator in ROOT, its member function Uniform provides floating point numbers uniformly distributed from
0 to 1. The generated numbers is added one by one to histogram using Fill function.

The histogram is fitted with quadratic function. For this TF1 object is created: !
TF1(const char* name, void* fcn, Double_t xmin, Double_t xmax, Int_t npar) !

here fcn is C++ function name, xmim, xmas is range of the function argument, npar is number of
parameters to be fitted. The fcn must have two arguments: array of arguments and array of parameters. C+
+ function fitFunction is given to the object here, it has one argument and 3 parameters. The fitting
procedure is executed by call of Fit function on histogram variable. !

Part of the source code of FittingDemoSimple_0.cpp

9 #include "TH1.h"
10 #include "TMath.h"
11 #include "TF1.h"
12 #include "TLegend.h"
13 #include "TCanvas.h"
14 #include "TRandom3.h"
15
16 // Quadratic function
17 // x - array of arguments
18 // par - array of parameters
19 Double_t fitFunction(Double_t *x, Double_t *par) {
20 return par[0] + par[1]*x[0] + par[2]*x[0]*x[0];
21 }
22
23 void FittingDemoSimple_0() {
24
25 const int nBins = 60;
26
27 TCanvas *c1 = new TCanvas("c1","Fitting Demo",10,10,700,500);
28
29 TH1F *histo = new TH1F("histo", "Quadratic Background",60,0,3);
30
31 TRandom3 rand;
32 for(int i=0; i < 1000; i++) histo->Fill((rand.Uniform()+rand.Uniform())*1.5

); // fill with triangular distribution
33
34 // create a TF1 with the range from 0 to 3 and 3 parameters
35 TF1 *fitFcn = new TF1("fitFcn",fitFunction,0,3,3);
36
37 // fit histo by fitFcn
38 histo->Fit("fitFcn");
39 }

Typical output

Processing FittingDemoSimple_0.C...

108

4_ROOT/FittingDemo_1: description!
This exercise show you more advanced usage canvas options.
Here we use data from a physics experiment, it is saved as a constant array (line 35). The given data

contains measurement, which defined by two processes: background process and signal process.
Background process gives us quadratic distribution, signal - gives Lorenz distribution. Therefore the data
should be fitted by sum of this functions (line 27). Since the function has 6 parameters fitting procedure has
no idea about, to help fitting procedure it is better to initialise them by some values, SetParameters and
SetParameter member-functions is used for this. Different options are used for fitting: 0 to do not plot fit
immediately, V for verbose mode, + to save previous fit results, , all list of options and they description can
be found at ROOT manual . Creating in addition background and lorentzianPeak functions we can draw 2

all three of them, showing background and signal components separately (lines 82-89).
The macro also shows how to change colours of canvas (lines 42-44) and style of histogram (lines

48-50), and fitting curves (lines 56-58,76,78,79).
In addition legend is drawn, it contains short description of each object on the picture. !

 FCN=93.5605 FROM MIGRAD STATUS=CONVERGED 54 CALLS 55 TOTAL
 EDM=1.47795e-17 STRATEGY= 1 ERROR MATRIX ACCURATE
 EXT PARAMETER STEP FIRST
 NO. NAME VALUE ERROR SIZE DERIVATIVE
 1 p0 -3.32978e+00 8.53859e-01 1.65270e-03 7.48073e-09
 2 p1 3.60739e+01 1.71118e+00 7.72138e-04 -2.53062e-09
 3 p2 -1.18800e+01 5.35181e-01 2.79446e-04 -1.69088e-08

Typical output

Part of the source code of FittingDemoSimple_0.cpp

12 // Quadratic background function
13 Double_t background(Double_t *x, Double_t *par) {
…
18 // Lorenzian Peak function
19 Double_t lorentzianPeak(Double_t *x, Double_t *par) {
…
25 // Sum of background and peak function
26 Double_t fitFunction(Double_t *x, Double_t *par) {

 http://root.cern.ch/root/html534/TH1.html#TH1:Fit2

109

27 return background(x,par) + lorentzianPeak(x,&par[3]);
28 }
29
30 void FittingDemo_1() {
31 //Bevington Exercise by Peter Malzacher, modified by Rene Brun
32
33 const int nBins = 60;
34
35 Double_t data[nBins] = { 6, 1,10,12, 6,13,23,22,15,21,
36 23,26,36,25,27,35,40,44,66,81,
37 75,57,48,45,46,41,35,36,53,32,
38 40,37,38,31,36,44,42,37,32,32,
39 43,44,35,33,33,39,29,41,32,44,
40 26,39,29,35,32,21,21,15,25,15};
41 TCanvas *c1 = new TCanvas("c1","Fitting Demo",10,10,700,500);
42 c1->SetFillColor(33);
43 c1->SetFrameFillColor(41);
44 c1->SetGrid();
45
46 TH1F *histo = new TH1F("histo",
47 "Lorentzian Peak on Quadratic Background",60,0,3);
48 histo->SetMarkerStyle(21);
49 histo->SetMarkerSize(0.8);
50 histo->SetStats(0);
51
52 for(int i=0; i < nBins; i++) histo->SetBinContent(i+1,data[i]);
53
54 // create a TF1 with the range from 0 to 3 and 6 parameters
55 TF1 *fitFcn = new TF1("fitFcn",fitFunction,0,3,6);
56 fitFcn->SetNpx(500);
57 fitFcn->SetLineWidth(4);
58 fitFcn->SetLineColor(kMagenta);
…
65 fitFcn->SetParameters(1,1,1,1,1,1);
66 histo->Fit("fitFcn","0");
67
68 // second try: set start values for some parameters
69 fitFcn->SetParameter(4,0.2); // width
70 fitFcn->SetParameter(5,1); // peak
71
72 histo->Fit("fitFcn","V+");
73
74 // improve the picture:
75 TF1 *backFcn = new TF1("backFcn",background,0,3,3);
76 backFcn->SetLineColor(kRed);
77 TF1 *signalFcn = new TF1("signalFcn",lorentzianPeak,0,3,3);
78 signalFcn->SetLineColor(kBlue);
79 signalFcn->SetNpx(500);
80 Double_t par[6];

Part of the source code of FittingDemoSimple_0.cpp

110

81
82 // writes the fit results into the par array
83 fitFcn->GetParameters(par);
84
85 backFcn->SetParameters(par);
86 backFcn->Draw("same");
87
88 signalFcn->SetParameters(&par[3]);
89 signalFcn->Draw("same");
90
91 // draw the legend
92 TLegend *legend=new TLegend(0.6,0.65,0.88,0.85);
93 legend->SetTextFont(72);
94 legend->SetTextSize(0.04);
95 legend->AddEntry(histo,"Data","lpe");
96 legend->AddEntry(backFcn,"Background fit","l");
97 legend->AddEntry(signalFcn,"Signal fit","l");
98 legend->AddEntry(fitFcn,"Global Fit","l");
99 legend->Draw();
100
101 }

Part of the source code of FittingDemoSimple_0.cpp

Begin of typical output

Processing FittingDemo_1.C...
 FCN=58.9284 FROM MIGRAD STATUS=CONVERGED 618 CALLS 619 TOTAL
 EDM=1.54329e-09 STRATEGY= 1 ERROR MATRIX UNCERTAINTY
1.2 per cent
 EXT PARAMETER STEP FIRST
 NO. NAME VALUE ERROR SIZE DERIVATIVE
 1 p0 -8.64715e-01 8.87889e-01 3.02210e-05 -3.15277e-06

…

111

112

HPC Practical Course
Part 3.1

!
Open Multi-Processing (OpenMP)

V. Akishina, I.Kisel,
I. Kulakov, M. Zyzak

Goethe University of Frankfurt am Main
!

2 Feb 2014

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Task Parallelism

Parallelization between cores → Task Parallelism, Parallelization, MIMD
!
Tools:
• OpenMP
• OpenCL
• Intel Threading Building Blocks (ITBB)
• Pthreads
• Intel Cilk
• Intel Array Building Blocks
• MPI

2

113

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Performance Characterization

• Performance increasing is characterized with speedup
factor

• In ideal case – perfect linear speedup

• Super-linear speedup (usually cache effect)

• Speedup in presence of the serial part

• Number of CPUs is infinite (P → ∞) – the maximal
speedup (Amdahl’s law)

Real-life example – scalability of the CBM
track finder on different platforms Amdahl’s law

3

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

CPU systems

SMP (symmetric multiprocessor) systems:

!
• Homogeneous

• “Equal-time” access for each processor to
the any part of the memory

NUMA (non uniform memory access)
systems:

• Heterogeneous
• Non uniform access to different parts of

the main memory – different speed, data
should be close to the CPU

4

114

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

OpenMP
• API for multi-processing programming

• Supports multi-platform shared memory multiprocessing programming in C, C++, and
Fortran

• Supports most processor architectures and operating systems, including Linux, Unix,
AIX, Solaris, OS X, and Microsoft Windows platforms

• Most of the constructs in OpenMP are compiler directives:
#pragma omp <construct> [clause [clause]…]

• Function prototypes and types are available only including 1 file:
#include <omp.h>

• Threads communicate by sharing variables

• Programming model – Fork-Join parallelism:

!
!
!
!

• Compilation flag for g++ – -fopenmp

5

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Simple Example with OpenMP

With clause. The number of threads
will be set to 4 only for one particular
parallel region.
!
!
!
#include <omp.h>
#include <iostream>
using namespace std; !
int main ()
{ !!
 #pragma omp parallel num_threads(4)
 {
 cout << "Hello World” << endl;
 }
}

Without clause. Using runtime function.
The number of threads will be set to 4 for
all parallel regions in the program.
!
!
!
!
#include <omp.h>
#include <iostream>
using namespace std; !
int main ()
{
 omp_set_num_threads(4); !
 #pragma omp parallel
 {
 cout << "Hello World” << endl;
 }
}

Runtime
library
routine

Construct
“parallel”

Clause

6

115

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Worksharing. Loop Construct

• The loop worksharing construct splits up loop iterations among the threads in a team

• The command is #pragma omp for

• Motivation:

!
!
!
!
!
!
!
!
!
!

• Using for construct make sure, that iterations are independent:

Without worksharing:
#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart= id * N / Nthrds;
 iend= (id+1) * N / Nthrds;
 if (id == Nthrds-1)
 iend= N;
 for(i=istart;I<iend;i++) { a[i] = a[i] + b[i];}
}

With worksharing:
!
#pragma omp parallel
#pragma omp for
 for(i=0;I<N;i++) { a[i] = a[i] + b[i];} !
Or:
!
#pragma omp parallel for
 for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

int i, j, A[N];
j = 5;
for (i=0; i<N; i++) {
 j +=2;
 A[i] = func(j);
}

int i, A[N];
#pragma omp parallel for
for (i=0; i<N; i++) {
 int j = 5 + 2*(i+1);
 A[i] = func(j);
}

7

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Reduction

• Reduction clause:

reduction(op:list)

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and

initialized depending on the “op” .
– Updates occur on the local copy.
– Local copies are reduced into a single value

and combined with the original global value.

• Example:

double ave=0.0, A[N];
int i;
#pragma omp parallel for reduction (+:ave)
for (i=0; i<N; i++) {
 ave + = A[i];
}
ave = ave/N;

Reduction operands

Operator Initial value

+ 0

* 1

- 0

& 0

| 0

^ 0

&& 1

|| 0

8

116

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Synchronization

• Synchronization is used to impose order constraints and to protect access to shared
data.

•High level synchronization:
– critical – only one thread at a time can enter a critical region;
– atomic – only one thread can operate with a memory location marked by atomic;
– barrier – each thread waits until all threads arrive;
– ordered – executes in the sequential order.

• Low level synchronization:
– Flush – forces data to be updated in memory so other threads see the most

recent value;
– locks (both simple and nested).

9

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

High Level Synchronization. Examples

Critical. Only 1 thread at a time calls f().
!
#pragma omp parallel
{
 … some code …
 for(int i=0; i<N; i++) {
 … some code …
 #pragma omp critical
 f(…);
 }
}

Atomic. Protects only read/update of X.
!
#pragma omp parallel
{
 double tmp;
 … some code …
 #pragma omp atomic
 X+= tmp;
}

Barrier.
!
#pragma omp parallel
{
 … some code …
 #pragma omp barrier
 … some code … !
 #pragma omp for
 for(int i=0; i<N; i++) { … some code … } !
 #pragma omp nowait
 #pragma omp for
 for(int i=0; i<N; i++) { … some code … }
}

Implicit
barrier

All tasks will
wait here

Implicit barrier

No implicit barrier
due to nowait

10

117

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Synchronization. Locks

• Simple lock runtime library routines: omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

• Nested Locks: omp_init_nest_lock(), omp_set_nest_lock(), omp_unset_nest_lock(),
omp_test_nest_lock(), omp_destroy_nest_lock()

• Example on the simple lock:

#include <omp.h>
#include <iostream>
using namespace std; !
int main ()
{
 omp_set_num_threads(4); !
 omp_lock_t lck;
 omp_init_lock(&lck);
 #pragma omp parallel
 {
 omp_set_lock(&lck);
 cout << "Hello World” << endl;
 omp_unset_lock(&lck);
 }
 omp_destroy_lock(&lck);
}

11

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Data Sharing Clauses

• shared – the variable is shared between threads, can not be applied to omp for loop.

• private – creates a new copy of a variable for each thread, value is uninitialized:

!
!
!
!
!
• firstprivate – like private, but initialized with the value of the master thread:

!
!
!
!
!
• lastprivate – like private, but the last value will be saved to a global variable.

• default (private or none) – sets the default clause for all variables

void f() {
 int tmp = 0;
 #pragma omp for private(tmp)
 for (int j = 0; j < 1000; ++j)
 tmp += j;
 printf(“%d\n”, tmp);
}

Is not initialized!

void f() {
 int tmp = 0;
 #pragma omp for firstprivate(tmp)
 for (int j = 0; j < 1000; ++j)
 tmp += j;
 printf(“%d\n”, tmp);
}

Here initialized with 0

12

118

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Loop Worksharing Constructs: The Schedule Clause

The schedule clause affects how loop iterations are mapped onto threads:

!
• schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

• schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all iterations have been

handled.

• schedule(guided[,chunk])
– Threads dynamically grab blocks of iterations. The size of the block starts large

and shrinks down to size “chunk” as the calculation proceeds.

• schedule(runtime)
– Schedule and chunk size taken from the OMP_SCHEDULE environment variable

(or the runtime library … for OpenMP 3.0)

13

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Common Runtime Library Routines

• Runtime environment routines:
– Modify/Check the number of threads:

omp_set_num_threads(), omp_get_num_threads(), omp_get_thread_num(),
omp_get_max_threads()

– shows are we in an active parallel region:

omp_in_parallel()
– Do you want the system to dynamically vary the number of threads from one

parallel construct to another?

omp_set_dynamic, omp_get_dynamic();
– Shows the number of processors in the system:

omp_get_num_procs()
!

• More of them you can find here: https://computing.llnl.gov/tutorials/openMP/
#RunTimeLibrary

14

119

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

CPU affinity

• To avoid jumping of threads from one core to another we should set a CPU affinity.

• For this we can use, for example, pthreads:

!
int cpuId = …

pthread_t thread = pthread_self(); // get the current thread

cpu_set_t cpuset; // declare a cpu_set_t variable

CPU_ZERO(&cpuset); //macros initializes this variable

CPU_SET(cpuId, &cpuset); //set the cpuset variable according to the cpuId

int s = pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset); //set the affinity

15

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Exercise 0. Hello World

!
– Parallelize the program with OpenMP, create 10 threads.
– Synchronize threads using omp critical. Compare the results with and without

synchronization.
–Get the id of a current thread and print it out.

#include <iostream>
using namespace std; !
int main() {

!
 int id = 0;
 cout << " Hello world " << id << endl;

!
 return 0;
}

16

120

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Exercise 1. Bugs

• Find bugs and fix them

17

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Exercise 2.

18

121

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Exercise 3. Matrix

• Parallelize the program Matrix, which we already SIMDized in previous exercises
(Exercise/Exercises/3_Vc/1_Matrix)

• Compare the time of the single-core scalar program and the fully parallelized and
vectorized program

19

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Exercise 4. CBM KF

• Parallelize the already SIMDized program (we have done it last week) using OpenMP between
cores.

• Compare the speed with a single-core program.

• Connect to the server with 80 cores (ask Maksym).

• Go to the folder /u/mzyzak/HPC/[i]

• Configure the environment: . AddVcRoot.sh

• Go to the folder hltsse/TimeHisto
• Run the bash script, which measures the scalability of the program:

 . make_data_omp.sh

• Check the scalability: root –l make_timehisto_stat_complex.C

• Set CPU affinity without specifying scheduler. Check the scalability.
• Set dynamic scheduler without specifying the chunk size, with chunk size 10, 100 and 1000.

Check the scalability.

• Set guided scheduler without specifying the chunk size (and with chunk of size 10 and 100).

• Set static scheduler without specifying the chunk size (and with chunk of size 10).

• Change the mode of speed measurement: each thread will measure its own speed, then the
speed will be added. For this uncomment the line 2 in Fit.cxx. Remeasure the scalability
without CPU affinity and without specifying a scheduler.

• Remeasure scalability with the dynamic scheduler (without chunk size, with chunk of size 10).

20

122

02 Feb 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /21

Topology of the Server

21

��������	
��
�

�������������	�
�
�

����������

���	���
�

���	��
�
�

���	���
�

 �!�����

������

�������

���	��
�
�

���	���
�

 �!�����

������

������

���	��
�
�

���	���
�

 �!����"

�����"

�������

���	��
�
�

���	���
�

 �!������

�������

�������

���	��
�
�

���	���
�

 �!�����

������

������"

���	��
�
�

���	���
�

 �!�����#

�������

�������

���	��
�
�

���	���
�

 �!����$

�������

������

���	��
�
�

���	���
�

 �!������

������"

�����
�

���	��
�
�

���	���
�

 �!�����

�����
�

�����#�

���	��
�
�

���	���
�

 �!�����"

�����
"

�����#

�������������	�
�
�

����������

���	���
�

���	��
�
�

���	���
�

 �!�����

������

�������

���	��
�
�

���	���
�

 �!�����

������

������#

���	��
�
�

���	���
�

 �!����"

�����$

�������

���	��
�
�

���	���
�

 �!������

�������

�������

���	��
�
�

���	���
�

 �!�����

������#

������$

���	��
�
�

���	���
�

 �!�����#

�������

�������

���	��
�
�

���	���
�

 �!����$

�������

������#

���	��
�
�

���	���
�

 �!������

������$

�����
�

���	��
�
�

���	���
�

 �!�����

�����
�

�����#�

���	��
�
�

���	���
�

 �!�����"

�����
$

�����##

�������������	�
�
�

����������

���	���
�

���	��
�
�

���	���
�

 �!�����

������

�������

���	��
�
�

���	���
�

 �!�����

�����

������"

���	��
�
�

���	���
�

 �!����"

�������

�������

���	��
�
�

���	���
�

 �!������

�������

������

���	��
�
�

���	���
�

 �!�����

������"

�������

���	��
�
�

���	���
�

 �!�����#

�������

�������

���	��
�
�

���	���
�

 �!����$

������

������"

���	��
�
�

���	���
�

 �!������

�������

�����
�

���	��
�
�

���	���
�

 �!�����

�����

�����#�

���	��
�
�

���	���
�

 �!�����"

�����#�

�����#"

�������������	�
�
�

����������

���	���
�

���	��
�
�

���	���
�

 �!�����

������

�������

���	��
�
�

���	���
�

 �!�����

�����#

������$

���	��
�
�

���	���
�

 �!����"

�������

�������

���	��
�
�

���	���
�

 �!������

�������

������#

���	��
�
�

���	���
�

 �!�����

������$

�������

���	��
�
�

���	���
�

 �!�����#

�������

�������

���	��
�
�

���	���
�

 �!����$

������#

������$

���	��
�
�

���	���
�

 �!������

�������

�����
�

���	��
�
�

���	���
�

 �!�����

�����
#

�����#�

���	��
�
�

���	���
�

 �!�����"

�����#�

�����#$

%�&�'�()�!�#�

*���)�&'�+�,&���(

-���'�.!��"�/����������'��'��� 0�1

123

124

3.1. OpenMP!
Exercises are located at Exercises/5_OMP/
Solutions are located at Exercises/5_OMP/***/***_solution.cpp
To compile and run exercise programs use the line given in the head-comments in the code.
The results given here are obtained on Intel E7-4860 CPU with gcc4.7.3.

OpenMP Introduction!
OpenMP is an API, which consist of a set of compiler directives, library routines and environment

variables that are used to create multithreaded applications on multiprocessor systems with a shared
memory. It defines a simple interface that allows to parallelise tasks between cores of the CPU.

The OpenMP framework supports most processor architectures and operating systems, including Linux,
Unix, AIX, Solaris, OS X, and Microsoft Windows platforms.

The programming model of OpenMP is the fork-join parallelism: the master thread is created, when a
program starts and when the calculation should be parallelised additional threads are created and the task
is distributed between them (see Fig. 1). The nested parallelism is also possible within the OpenMP
programming model. The parts of the code, which should be executed in parallel are marked with the
directives of the compiler preprocessor:

#pragma omp parallel.
Threads in the OpenMP programming model are communicated by sharing variables. Each variable can

be private or shared. The shared variables are seen by all threads. If the variable is declared as private a
local copy of it is created by each thread.

Most of the constructs in OpenMP are compiler directives:
#pragma omp <construct> [clause [clause]...].
The implementation of programs using OpenMP constructs allow to keep the code unchangeable with

respect to the single core version. In this case only an appropriate flag should be added during the
compilation to enable the OpenMP directives. OpenMP includes such constructs, for example, as omp for,
omp reduction(op:list), omp num_threads(), omp scheduler [clause], etc. These directives allow to
control the parallel regions, to collect the data from different threads, to synchronise threads, setting of the
scheduler.

omp for construct provides a simple and easy to use interface for loop parallelisation. Let us compare
two approaches of parallelisation - with worksharing construct and without: !

Fig. 1. Fork-join parallelism model of OpenMP.

125

Also it is important to keep iteration completely independent using omp for. Otherwise the result will be
incorrect.

omp num_threads() clause set the number of threads for the current parallel region.
Using OpenMP clauses it is possible to define if the variable shared or private:
• shared(list) - the variable is shared between threads, can not be applied to omp for loop;
• private(list) - creates a new copy of a variable for each thread, value is uninitialised;
• firstprivate(list) - like private, but copies are initialised with the value of the master thread;
• lastprivate(list) - like private, but the last value will be saved to a copy of the variable in the master
thread;
• default (private or none) - sets the default clause for all variables;
By default all variables are shared.
omp reduction(op:list) specifies the list of variables, that should be reduced at the end of the parallel

region. Each thread creates a local copy of the variable, when the parallel region is finished the master
thread collects values stored in the local copies into it’s variable, which is initialised according to the table
(depending on the specified operation): !

!
omp schedule [clause] defines the way, how the data is distributed between threads:
• schedule(static [,chunk]) - blocks of iterations of size “chunk” are gradually distributed to each
thread;
• schedule(dynamic[,chunk]) - each thread grabs “chunk” iterations off a queue, when it finished the
previous work, until all iterations have been handled;
• schedule(guided[,chunk]) - threads dynamically grab blocks of iterations, the size of the block starts
large and shrinks down to size “chunk” as the calculation proceeds;
• schedule(runtime) - schedule and chunk size taken from the OMP_SCHEDULE environment
variable (or the runtime library).
In order to control the race conditions the framework contains a set of tools for a thread synchronisation

including high level directives, like omp critical, omp atomic, omp barrier, and a set of simple lock
functionality for a low level control:

Without worksharing: With worksharing:

#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart= id * N / Nthrds;
 iend= (id+1) * N / Nthrds;
 if (id == Nthrds-1)
 iend= N;
 for(i=istart;I<iend;i++) { a[i] = a[i] + b[i];}
}

#pragma omp parallel
#pragma omp for
 for(i=0;i<N;i++) { a[i] = a[i] + b[i];} !
Or: !
#pragma omp parallel for
 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Reduction operands

Operator Initial value

+ 0

* 1

- 0

& 0

| 0

^ 0

&& 1

|| 0

126

• critical - only one thread at a time can enter a critical region;
• atomic - only one thread can operate with a memory location marked by atomic;
• barrier - each thread waits at the barrier until all threads arrive;
• ordered - threads execute in the sequential order;
• flush - forces data to be updated in memory so other threads see the most recent value;
• locks (both simple and nested) - allows to lock the part of the code, only one thread can enter the
locked region; are useful, for example, if some elements of the array shared between threads should be
locked.
OpenMP contains also a set of runtime library routines which allow, for instance, setting and to checking

the number of threads, checking the maximum number of threads, getting the number of a current thread,
checking the number of cores in a computer, to control the nested parallelism, operating with the simple

Fig. 2. The structure of the lxir075 server.

��������	
��
�

�������������	�
�
�

����������

���	���
�

���	��
�
�

���	���
�

 �!�����

������

�������

���	��
�
�

���	���
�

 �!�����

������

������

���	��
�
�

���	���
�

 �!����"

�����"

�������

���	��
�
�

���	���
�

 �!������

�������

�������

���	��
�
�

���	���
�

 �!�����

������

������"

���	��
�
�

���	���
�

 �!�����#

�������

�������

���	��
�
�

���	���
�

 �!����$

�������

������

���	��
�
�

���	���
�

 �!������

������"

�����
�

���	��
�
�

���	���
�

 �!�����

�����
�

�����#�

���	��
�
�

���	���
�

 �!�����"

�����
"

�����#

�������������	�
�
�

����������

���	���
�

���	��
�
�

���	���
�

 �!�����

������

�������

���	��
�
�

���	���
�

 �!�����

������

������#

���	��
�
�

���	���
�

 �!����"

�����$

�������

���	��
�
�

���	���
�

 �!������

�������

�������

���	��
�
�

���	���
�

 �!�����

������#

������$

���	��
�
�

���	���
�

 �!�����#

�������

�������

���	��
�
�

���	���
�

 �!����$

�������

������#

���	��
�
�

���	���
�

 �!������

������$

�����
�

���	��
�
�

���	���
�

 �!�����

�����
�

�����#�

���	��
�
�

���	���
�

 �!�����"

�����
$

�����##

�������������	�
�
�

����������

���	���
�

���	��
�
�

���	���
�

 �!�����

������

�������

���	��
�
�

���	���
�

 �!�����

�����

������"

���	��
�
�

���	���
�

 �!����"

�������

�������

���	��
�
�

���	���
�

 �!������

�������

������

���	��
�
�

���	���
�

 �!�����

������"

�������

���	��
�
�

���	���
�

 �!�����#

�������

�������

���	��
�
�

���	���
�

 �!����$

������

������"

���	��
�
�

���	���
�

 �!������

�������

�����
�

���	��
�
�

���	���
�

 �!�����

�����

�����#�

���	��
�
�

���	���
�

 �!�����"

�����#�

�����#"

�������������	�
�
�

����������

���	���
�

���	��
�
�

���	���
�

 �!�����

������

�������

���	��
�
�

���	���
�

 �!�����

�����#

������$

���	��
�
�

���	���
�

 �!����"

�������

�������

���	��
�
�

���	���
�

 �!������

�������

������#

���	��
�
�

���	���
�

 �!�����

������$

�������

���	��
�
�

���	���
�

 �!�����#

�������

�������

���	��
�
�

���	���
�

 �!����$

������#

������$

���	��
�
�

���	���
�

 �!������

�������

�����
�

���	��
�
�

���	���
�

 �!�����

�����
#

�����#�

���	��
�
�

���	���
�

 �!�����"

�����#�

�����#$

%�&�'�()�!�#�

*���)�&'�+�,&���(

-���'�.!��"�/����������'��'��� 0�1

127

lock functionality etc. They can be available by including only one file: #include <omp.h>. The most useful
functions for the practicum are:

omp_set_num_threads() - set the number of thread created in the following parallel regions (if the
number of threads is not specified by the corresponding clause there);

omp_get_num_threads() - obtain number of threads running on the current parallel region;
omp_get_thread_num() - returns id of the thread.
More of the functions together with their description can be found here:
https://computing.llnl.gov/tutorials/openMP/#RunTimeLibrary

NUMA architecture!
Most of modern many and multi-core servers are heterogeneous systems. An access speed to different

regions of memory in such systems is different for the different processing elements (for CPU cores or for
CPUs themselves). In order to achieve a maximum speed of computation, it is necessary to control the
distribution of memory between tasks. For the control the topology of a server should be known.

The topology of NUMA systems is shown on an example of the lxir075.gsi.de server (GSI, Darmstadt,
Germany) on Fig. 2. The server is equipped with four Intel Xeon E7-4860 CPUs (10 physical cores at 2.27
GHz). Each physical core of this CPU can run simultaneously two threads with the hyperthreading
technology. Therefore two logical cores correspond to each physical core. Each physical core has 32 kB of
the level one (L1) cache memory and 256 kB of the level two (L2) cache memory shared between two
logical cores. Each CPU has 24 MB of the level three (L3) cache memory, which is shared between all
cores of the CPU. The total RAM of 64 GB is equally distributed between CPUs (16 GB for each of them).

During runtime the operating system can move threads from one logical core to another depending on
the load of cores. It can happen, that the thread can jump to another CPU. For the NUMA architectures it is
preferable to use only local RAM for the maximum performance. And if the thread would be moved to
another CPU all data, which was used by this thread, would be located in the remote RAM. In order to
prevent such jumps, which ruin the performance, each thread can be pined to a certain core. OpenMP itself
doesn’t contain tools for pinning. In order to do so for example the Pthreads library can be used. To use the
library the corresponding header file should be included:

#include “pthread.h"
Then the pinning can be done using pthread_setaffinity_np() function: !
int cpuId = … // index of the logical core
pthread_t thread = pthread_self(); // get the current thread
cpu_set_t cpuset; // declare a cpu_set_t variable
CPU_ZERO(&cpuset); //macros initialises this variable
CPU_SET(cpuId, &cpuset); //set the cpuset variable according to the cpuId
int s = pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset); //set the affinity

5_OMP/0_HelloWorldParallel: description!
The first exercise on OpenMP is aimed to demonstrate how to create the parallel regions and

synchronise them. It is proposed to parallelise a simple “Hello word” program: !

!

Part of the source code of HelloWorld.cpp
13 #include <iostream>
14 using namespace std;
15
16 int main() {
17
18 int id = 0;
19 cout << " Hello world " << id << endl;
20
21 return 0;
22 }

128

The tasks for the exercise are:
• Parallelise the program with OpenMP, create 10 threads.
• Synchronise threads using omp critical. Compare the results with and without synchronisation.
• Get the id of a current thread and print it out. Use variable id for this.

5_OMP/0_HelloWorldParallel: solution!
The first task is solved by including omp.h and adding parallel region: !

!
Such program will print symbols on the screen chaotically, because all 10 threads try to do this at the

same time and only one of them can print at the current moment. To prevent such situation the threads
should be synchronised. For example, omp critical can be added to the parallel region just before the
printing: !

!
To obtain the id of the thread the function omp_get_thread_num() should be used. Each thread has

it’s own id, therefore the function should be called in the parallel region by each thread individually. Then id
is stored to the local variable of each thread and printed on the screen: !

Part of the source code of HelloWorld_solution1.cpp
12 #include <omp.h>
13 #include <iostream>
14 using namespace std;
15
16 int main() {
17
18 #pragma omp parallel num_threads(10)
19 {
20 int id = 0;
21
22 cout << " Hello world " << id << endl;
23 }
24
25 return 0;
26 }

Part of the source code of HelloWorld_solution2.cpp
16 int main() {
17
18 #pragma omp parallel num_threads(10)
19 {
20 int id = 0;
21
22 #pragma omp critical
23 cout << " Hello world " << id << endl;
24 }
25
26 return 0;
27 }

Part of the source code of HelloWorld_solution3.cpp
16 int main() {
17
18 #pragma omp parallel num_threads(10)
19 {

129

5_OMP/1_Bugs: description!
To illustrate different features of OpenMP and get familiar with it’s functionality a set of simple

programs containing bugs was created:
bug1.cpp - a program creates two arrays: input is filled with random numbers, output is filled by

copying input element-wise in a parallel loop. Because of the bug entries in the output differ from the
input and the program reports, that the output array is not correct.

bug2.cpp - a program fills two arrays: one in a scalar loop (outputScalar), another - in a parallel
(outputParallel). Each element of arrays is filled with a sum of indices of all previous elements normalised
on the current index. Because of the bug the scalar and parallel results are not the same.

bug3.cpp - a program creates an input array and fills it with random numbers. After this it calculates in a
scalar loop the sum over all elements of the array and stores into the outputScalar array corresponding
element of the input normalised by the sum. The same calculations are also done in the parallel loop but
with a bug and the result is stored in a outputParallel array. Because of the bug the scalar and parallel
results are not the same.

bug4.cpp - a program do the same, as the previous, but the omp for loop is replaced here with a
parallel construct only. Again, due to the bug in a parallel region results calculated in the scalar and parallel
loops are not the same.

The task for this exercise is to find and fix the bugs.

5_OMP/1_Bugs: solution!
bug1.cpp - in the initial program the number of elements in an array N is declared private in a parallel

for construct: !

!
With such declaration local variables N of the treads will not be initialised. It should be declared as

firstprivate in order to initialise each local copy with a value of the master thread. !

!

20 int id = omp_get_thread_num();
21
22 #pragma omp critical
23 cout << " Hello world " << id << endl;
24 }
25
26 return 0;
27 }

Part of the source code of HelloWorld_solution3.cpp

Part of the source code of bug1.cpp
33 #pragma omp parallel private(N) num_threads(NThreads)
34 {
35 #pragma omp for
36 for(int i=0; i<N; i++)
37 output[i] = input[i];
38 }

Part of the source code of bug1_solution.cpp
33 #pragma omp parallel firstprivate(N) num_threads(NThreads)
34 {
35 #pragma omp for
36 for(int i=0; i<N; i++)
37 output[i] = input[i];
38 }

130

bug2.cpp - the iterations of the loop in the parallel region are not independent: !

!
The variable tmp in current implementation depends on all previous iteration. Therefore when the loop is

divided into several parts in the parallel region, values of local variables tmp are corrupted. Taking into
account that value of tmp is a sum of the arithmetical progression, the iterations can be rewritten in an
independent way: !

!
bug3.cpp - in the initial program in the omp for construct during the sum calculation nowait clause

destroys the implicit barrier and some threads start to fill the outputParallel array when the sum is not yet
correctly calculated: !

!
The solution would be to get rid of the nowait. For example, it can be done like this: !

Part of the source code of bug2.cpp
37 #pragma omp parallel num_threads(NThreads)
38 {
39 #pragma omp for
40 for(int i=1; i<N; i++)
41 {
42 tmp += i;
43 outputParallel[i] = float(tmp)/float(i);
44 }
45 }

Part of the source code of bug2_solution.cpp
37 #pragma omp parallel num_threads(NThreads)
38 {
39 #pragma omp for
40 for(int i=1; i<N; i++)
41 {
42 tmp = (1+i)*i/2;
43 outputParallel[i] = float(tmp)/float(i);
44 }
45 }

Part of the source code of bug3.cpp
46 sum = 0;
47 #pragma omp parallel firstprivate(N) num_threads(NThreads)
48 {
49 #pragma omp for nowait
50 for(int i=0; i<N; i++)
51 {
52 #pragma omp atomic
53 sum += input[i];
54 }
55
56 #pragma omp for
57 for(int i=0; i<N; i++)
58 outputParallel[i] = input[i]/sum;
59 }

Part of the source code of bug3_solution.cpp
46 sum = 0;
47 {
48

131

!
bug4.cpp - unlike the previous exercise, here the barrier is missed: !

!
Again, because of the missed barrier threads will continue without waiting for sum calculation to be

completed. To prevent this the barrier should be put after the line 72: !

49 for(int i=0; i<N; i++)
50 {
51 sum += input[i];
52 }
53
54 #pragma omp parallel firstprivate(N) num_threads(NThreads)
55 #pragma omp for
56 for(int i=0; i<N; i++)
57 outputParallel[i] = input[i]/sum;
58 }

Part of the source code of bug3_solution.cpp

Part of the source code of bug4.cpp
57 sum = 0;
58 #pragma omp parallel num_threads(NThreads)
59 {
60 int id, i, Nthrds, istart, iend;
61 id = omp_get_thread_num();
62 Nthrds = omp_get_num_threads();
63 istart= id * N / Nthrds;
64 iend= (id+1) * N / Nthrds;
65 if (id == Nthrds-1)
66 iend= N;
67 float sumLocal = 0;
68
69 CalcuateSum(input,istart, iend, sumLocal);
70
71 #pragma omp atomic
72 sum += sumLocal;
73
74 #pragma omp for
75 for(int i=0; i<N; i++)
76 outputParallel[i] = input[i]/sum;
77 }

Part of the source code of bug4_solution.cpp
57 sum = 0;
58 #pragma omp parallel num_threads(NThreads)
59 {
60 int id, i, Nthrds, istart, iend;
61 id = omp_get_thread_num();
62 Nthrds = omp_get_num_threads();
63 istart= id * N / Nthrds;
64 iend= (id+1) * N / Nthrds;
65 if (id == Nthrds-1)
66 iend= N;
67 float sumLocal = 0;
68
69 CalcuateSum(input,istart, iend, sumLocal);
70

132

5_OMP/2_Pi: description!
The loops can be parallelised using OpenMP in two ways: manually (using only omp parallel construct

and OpenMP functions) and using constructs together with clauses. In order to illustrate the difference it is
proposed to parallelise a simple program using these two approaches.

The initial program is a scalar code to calculate the value of π by a formula:

!
The tasks for the exercise are:
• parallelise the initial program using only omp parallel construct and OpenMP functions;
• parallelise the initial program making as less changes, as possible.

71 #pragma omp atomic
72 sum += sumLocal;
73
74 #pragma omp barrier
75
76 #pragma omp for
77 for(int i=0; i<N; i++)
78 outputParallel[i] = input[i]/sum;
79 }

Part of the source code of bug4_solution.cpp

Part of the source code of pi.cpp
19 #include <stdio.h>
20 #include <omp.h>
21
22 static long num_steps = 100000000;
23 double step;
24 int main ()
25 {
26 int i;
27 double x, pi, sum = 0.0;
28 double start_time, run_time;
29
30 step = 1.0/(double) num_steps;
31
32 start_time = omp_get_wtime();
33
34 for (i=1;i<= num_steps; i++){
35 x = (i-0.5)*step;
36 sum = sum + 4.0/(1.0+x*x);
37 }
38
39 pi = step * sum;
40 run_time = omp_get_wtime() - start_time;
41 printf("\n pi with %d steps is %f in %f seconds \n",num_steps,pi,run_time);
42 }

133

5_OMP/2_Pi: solution!
For the solution of the first task it is necessary to define the number of threads (line 30), allocate

variables to store the temporary sums calculated by each thread (line 31) and set the number of threads
(line 32). In a parallel region it is needed to obtain the id of the thread (line 35, it is defined from zero to
(nThreads-1)), calculate manually the maximum index in the loop-range of the current thread (line 37) and
then perform the calculations. When calculating x the index i should be modified taking into account the
offset for the current thread (line 38). In the end local sums should be summed up together (lines 43 - 44). !

!
The solution of the second task would be to add only one line before the loop (line 30): !

Part of the source code of pi_solution1.cpp
15 #include <stdio.h>
16 #include <omp.h>
17
18 static long num_steps = 100000000;
19 double step;
20 int main ()
21 {
22
23 double pi, sum = 0.0;
24 double start_time, run_time;
25
26 step = 1.0/(double) num_steps;
27
28 start_time = omp_get_wtime();
29
30 const int nThreads = 2;
31 double sums[nThreads] = {0};
32 omp_set_num_threads(nThreads);
33 #pragma omp parallel
34 {
35 int id = omp_get_thread_num();
36
37 for (int i=1;i<= num_steps/nThreads; i++){
38 double x = (i + id* num_steps/nThreads -0.5)*step;
39 sums[id] = sums[id] + 4.0/(1.0+x*x);
40 }
41 }
42
43 for (int i = 0; i < nThreads; i++)
44 sum += sums[i];
45
46 pi = step * sum;
47 run_time = omp_get_wtime() - start_time;
48 printf("\n pi with %d steps is %f in %f seconds \n",num_steps,pi,run_time);
49 }

Part of the source code of pi_solution2.cpp
15 #include <stdio.h>
16 #include <omp.h>
17
18 static long num_steps = 100000000;
19 double step;
20 int main ()

134

!
In the parallel region x and i should be declared as private and sum should be reduced. It is also worth

to notice, that such code will compile and work even when OpenMP is disabled.

5_OMP/3_Matrix: description!
This exercise is aimed to demonstrate the full power of CPU: the already vectorised exercise with matrix

calculation (similar to 2_Vc/1_Matrix) should be parallelised between cores with OpenMP. In addition to the
vectorised code the program contains now the part prepared for parallelisation: !

5_OMP/3_Matrix: solution!
Since the calculations are absolutely independent it is enough to add only one line to the initial code (line

79): !

21 {
22 int i;
23 double x, pi, sum = 0.0;
24 double start_time, run_time;
25
26 step = 1.0/(double) num_steps;
27
28 start_time = omp_get_wtime();
29
30 #pragma omp parallel for reduction(+ : sum) private(i,x)
31 for (i=1;i<= num_steps; i++){
32 x = (i-0.5)*step;
33 sum = sum + 4.0/(1.0+x*x);
34 }
35
36 pi = step * sum;
37 run_time = omp_get_wtime() - start_time;
38 printf("\n pi with %d steps is %f in %f seconds \n",num_steps,pi,run_time);
39 }

Part of the source code of pi_solution2.cpp

Part of the source code of Matrix.cpp
75 ///OpenMP
76 TStopwatch timerOMP;
77 for(int ii = 0; ii < NIter; ii++) // repeat several times to improve time

measurement precision
78 {
79 //TODO modify the code below using OpenMP
80 for(int i = 0; i < N; i++) {
81 for(int j = 0; j < N; j+=float_v::Size) {
82 float_v &aVec = (reinterpret_cast<float_v&>(a[i][j]));
83 float_v &cVec = (reinterpret_cast<float_v&>(c_omp[i][j]));
84 cVec = sqrt(aVec);
85 }
86 }
87 }
88 timerOMP.Stop();

Part of the source code of Matrix_solution.cpp
75 ///OpenMP

135

5_OMP/4_CBM_KF: description!
In this exercise we will parallelise between cores already SIMDized KF track fitter (see exercise 3_Vc/

5_CBM_KF) using OpenMP. In the ideal case the program should scale linearly with respect to the number
of cores in a CPU. For this a speed measurement should be provided. There are two possible running
scenarios:

• a program receives a set of data and operates on it for a short amount of time; in this case we are
interested on the total speed of the program and the edge effects can not be neglected (they appear
close to the finish, for example, if tasks are distributed between threads in an non optimal way, especially
on CPUs with hyperthreading);
• a program starts threads and provides an input data to them, the data is updating with a time and

threads can work without any pause for several hours or days; in this case we can neglect edge effect,
therefor are interested in a speed of each thread and adding them together can estimate the total speed.
The SIMD KF program can measure the speed in both modes. For this a compiler preprocessor macros

#define TOTALTIME is added to the Fit.cxx file. For the first case the macros should be commented, for the
second mode - uncommented.

The tasks for the exercise are:
1. parallelise between cores the already SIMDized program using OpenMP; in order to do this the data
copying should be parallelised: !

!
and the fitting itself: !

76 TStopwatch timerOMP;
77 for(int ii = 0; ii < NIter; ii++) // repeat several times to improve time

measurement precision
78 {
79 #pragma omp parallel for num_threads(omp_get_num_procs())
80 for(int i = 0; i < N; i++) {
81 for(int j = 0; j < N; j+=float_v::Size) {
82 float_v &aVec = (reinterpret_cast<float_v&>(a[i][j]));
83 float_v &cVec = (reinterpret_cast<float_v&>(c_omp[i][j]));
84 cVec = sqrt(aVec);
85 }
86 }
87 }
88 timerOMP.Stop();

Part of the source code of Matrix_solution.cpp

Part of the source code of Fit.cxx
208 //TODO parallelize data copying
209 {
210 for (int j = 0; j < tasks; ++j) {
211 for (int i = 0; i < NCopy; ++i) {
212 if (j * NCopy + i > MaxNTracks) {
213 continue;
214 }
215 vTracks[j * NCopy + i] = vTracks[i];
216 vMCTracks[j * NCopy + i] = vMCTracks[i];
217 NTracks++;
218 }
219 }
220 }

Part of the source code of Fit.cxx
444 //TODO parallelize calculations

136

!
2. set the CPU affinity without specifying scheduler; to set the affinity the threads to cores mask should
be used: !

!
3. go to the folder hltsse/TimeHisto and run the bash script, which measures the scalability of the
program: “. make_data_omp.sh”; check the scalability:

445 {
446 timerLocal.Start();
447 for(iV=0; iV<NTracksV; iV++){ // loop on set of 4 tracks
448 for(ifit=0; ifit<NFits; ifit++){
449 Fit(TracksV[iV], vStations, NStations);
450 }
451 nFittedTracks += vecN;
452 }
453 timerLocal.Stop();
454 double cpuTimeLocal = timerLocal.CpuTime();
455 double realTimeLocal = timerLocal.RealTime();
456
457 if(fabs(cpuTimeLocal)<1.e-8) cpuTimeLocal = realTimeLocal;
458
459 #ifdef OMP
460 int curThredNum = omp_get_thread_num();
461 #else
462 int curThredNum = 0;
463 #endif
464 if(cpuTimeLocal > 0)
465 fitSpeedCPU[curThredNum] = nFittedTracks/cpuTimeLocal;
466 else
467 fitSpeedCPU[curThredNum] = 0;
468
469 if(realTimeLocal > 0)
470 fitSpeedReal[curThredNum] = nFittedTracks/realTimeLocal;
471 else
472 fitSpeedReal[curThredNum] = 0;
473 }

Part of the source code of Fit.cxx

Part of the source code of Fit.cxx
179 #ifdef OMP
180 int threadNumberToCpuMap[80];
181 /* for (int i=0; i<8; i++){
182 threadNumberToCpuMap[2*i+0] = i;
183 threadNumberToCpuMap[2*i+1] = i+8;
184 }*/
185 for (int iProc = 0; iProc < 4; iProc++) {
186 for (int i = 0; i < 8; i++) {
187 threadNumberToCpuMap[2 * i + 0 + iProc * 20] = 4 * i + iProc;
188 threadNumberToCpuMap[2 * i + 1 + iProc * 20] = 4 * i + 32 + iProc;
189 }
190 for (int i = 0; i < 2; i++) {
191 threadNumberToCpuMap[2 * i + 0 + 16 + iProc * 20] = 4 * i + iProc +

64;
192 threadNumberToCpuMap[2 * i + 1 + 16 + iProc * 20] = 4 * i + 8 +

iProc + 64;
193 }
194 }

137

 “root –l make_timehisto_stat_complex.C”;
4. set static scheduler without specifying the chunk size, with chunk size 10, 100 and 1000, check the
scalability;

5. set dynamic scheduler without specifying the chunk size (and with chunk of size 10 and 100);
6. set guided scheduler without specifying the chunk size (and with chunk of size 10);
7. change the mode of speed measurement: each thread will measure its own speed, then the speed
will be added: for this uncomment the line 2 in Fit.cxx; remeasure the scalability with the static
scheduler (without chunk size and with chunk of size 10);

8. remeasure the scalability without CPU affinity and without specifying a scheduler; change the mode
of the speed measurement (comment line 2 in Fit.cxx) and remeasure the scalability.

5_OMP/4_CBM_KF: solution!
1. To parallelise the program we should parallelise the data copying:

!
and fitting itself: !

Part of the source code of hltsse_solution/Fit.cxx
208 #pragma omp parallel reduction(+:NTracks) num_threads(tasks)
209 {
210 //#ifdef OMP
211 // int s;
212 // cpu_set_t cpuset;
213 // int cpuId = threadNumberToCpuMap[omp_get_thread_num()];
214 // pthread_t thread = pthread_self();
215 // CPU_ZERO(&cpuset);
216 // CPU_SET(cpuId, &cpuset);
217 // s = pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
218 // if (s != 0) {
219 // cout << " pthread_setaffinity_np " << endl;
220 // handle_error_en(s, "pthread_setaffinity_np");
221 // }
222 //#endif
223
224 #pragma omp for
225 for (int j = 0; j < tasks; ++j) {
226 for (int i = 0; i < NCopy; ++i) {
227 if (j * NCopy + i > MaxNTracks) {
228 continue;
229 }
230 vTracks[j * NCopy + i] = vTracks[i];
231 vMCTracks[j * NCopy + i] = vMCTracks[i];
232 #pragma omp atomic
233 NTracks++;
234 }
235 }
236 }

Part of the source code of hltsse_solution/Fit.cxx
461 #pragma omp parallel num_threads(tasks) private(iV,ifit)

firstprivate(NTracksV,NStations, nFittedTracks,timerLocal)
462 {
463 timerLocal.Start();
464 #pragma omp for nowait
465 for(iV=0; iV<NTracksV; iV++){ // loop on set of 4 tracks
466 for(ifit=0; ifit<NFits; ifit++){

138

!
variables iV and ifit should be declared private, NTracksV, NStations, nFittedTracks and timerLocal

should be initialised - therefore they are declared firstprivate.
2. Since threads are created in the first parallel region, the affinity can be set in the data copying region: !

!
3. As a result after running bash script and root macro we get a picture with a scalability of the program
(Fig. 1). The scalability is a straight line, but with hyper threading it should be a stair-like in the ideal
case. The reason why it is exactly straight is in the speed measurement mode1 and a static scheduler.
The static scheduler distributes tasks equally between threads, so all threads have the same amount of
the input data. When running even number of threads the very last thread will be running alone on its
physical core. In this case it will finish earlier (on different CPUs from 30% to 60%). But since we
measure the execution time of the whole program, it will be determined by the slowest thread. And in
such configuration adding one even thread will not give the maximum speedup to the whole program.

467 Fit(TracksV[iV], vStations, NStations);
468 }
469 nFittedTracks += vecN;
470 }
471 timerLocal.Stop();
472 double cpuTimeLocal = timerLocal.CpuTime();
473 double realTimeLocal = timerLocal.RealTime();
474
475 if(fabs(cpuTimeLocal)<1.e-8) cpuTimeLocal = realTimeLocal;
476
477 #ifdef OMP
478 int curThredNum = omp_get_thread_num();
479 #else
480 int curThredNum = 0;
481 #endif
482 if(cpuTimeLocal > 0)
483 fitSpeedCPU[curThredNum] = nFittedTracks/cpuTimeLocal;
484 else
485 fitSpeedCPU[curThredNum] = 0;
486
487 if(realTimeLocal > 0)
488 fitSpeedReal[curThredNum] = nFittedTracks/realTimeLocal;
489 else
490 fitSpeedReal[curThredNum] = 0;
491 }

Part of the source code of hltsse_solution/Fit.cxx

Part of the source code of hltsse_solution/Fit.cxx
208 #pragma omp parallel reduction(+:NTracks) num_threads(tasks)
209 {
210 #ifdef OMP
211 int s;
212 cpu_set_t cpuset;
213 int cpuId = threadNumberToCpuMap[omp_get_thread_num()];
214 pthread_t thread = pthread_self();
215 CPU_ZERO(&cpuset);
216 CPU_SET(cpuId, &cpuset);
217 s = pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
218 if (s != 0) {
219 cout << " pthread_setaffinity_np " << endl;
220 handle_error_en(s, "pthread_setaffinity_np");
221 }
222 #endif

139

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 5. With CPU affinity, static scheduler, !
chunk 1000.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 3. With CPU affinity, static scheduler, chunk 10.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 1. With CPU affinity, no scheduler.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 6. With CPU affinity, dynamic scheduler.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 4. With CPU affinity, static scheduler, chunk 100.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 2. With CPU affinity, static scheduler.

140

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 11. With CPU affinity, static scheduler,
speed measurement mode2.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 12. With CPU affinity, static scheduler,
chunk 10, speed measurement mode2.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 9. With CPU affinity, guided scheduler.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 10. With CPU affinity, guided scheduler, chunk 10.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 8. With CPU affinity, dynamic scheduler,
chunk 100.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 7. With CPU affinity, dynamic scheduler,
chunk 10.

141

4. Specifying the static scheduler will not change the picture (Fig. 2), since the default scheduler is
static and the chunk size is 1. Increasing the chunk size to 10 (Fig. 3) also will not change the picture,
since the size of the input array is divisible by 10. Increasing the chunk size to 100 (Fig. 4) will lead to
the drop of the overall speed, since we have 1000 tracks/thread in the input array, which means 250
vector-track per thread. This means, that every second thread will be idle when the last portions will be
distributed. Increasing chunk size to 1000 (Fig. 5) will increase this effect even more, since now only
every 4th thread is working and the overall speed will drop be a factor of 4.

5. Changing the scheduler to dynamic will change the picture completely (Fig. 6): the linear scalability is
destroyed because the dynamic scheduler with a default chunk size of 1 introduces an overhead
waiting for a request from threads for a new portion of data. However, on a small amount of cores we
observe a stair-like scalability as it should be on a CPU with a hyper threading technology. Increasing
the chink size to 10 (Fig. 7) will decrease an overhead and the stair-like structure will be saved.
Increasing the chunk size even more (to 100, see Fig. 8) decrease the performance, exactly like it was
for a static scheduler, and the stair-like structure disappears.

6. Since guided scheduler is something in between static and dynamic, the pictures for the default
chunk of 1 (Fig. 9) and of 10 (Fig. 10) will be also in between: the distance between odd and even
points is more smooth, than for dynamic scheduler.

7. When changing the speed measurement mode to the sec on one, the line become stair-like even for
a static scheduler with chunk size 1 (Fig. 11). This means, that the speed of the threads is absolutely
equal and really, the last even thread is waiting for all others in the end of the program. Changing the
chunk size to 10 (Fig. 12) will not change the pictures for the static scheduler.

8. Without CPU affinity the picture is changed (Fig. 13): it is divided into two sections. The first one is
sharper, since in the system numeration first logical cores correspond to different physical cores. When
two threads are running on the same physical cores, the slope of the line is smaller. When changing the
speed measurement mode to the first again (Fig. 14), the drop in the overall speed appears after the
thread 36: it is caused by hyper threading, since the speed is determined by the slowest thread and
appears when two threads are running on the same physical core the first time.

!
5_OMP/5_MonteCarlo: description!

The generally accepted key performance index for parallel programs is speed-up factor, which is defined
as serial execution time on one core, divided by parallel execution time on N cores. Naively one would
expect program running on N cores to be N times faster, which is called linear scalability. However due to

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 13. Without CPU affinity, static scheduler,
speed measurement mode2.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
/

0

10

20

30

40

50

60

70

80

90

100

Fig. 14. Without CPU affinity, static scheduler,
speed measurement mode1.

142

the normal presence of some small scalar parts in the program usually its not the case and one will see
some slowing down with the increase of cores number. The aim of this exercise is to parallelise the Monte
Carlo π calculation and measure and explain its scalability.

Monte Carlo method is a general approach to solve tough problems with the use of random numbers. In
our exercise we will compute pi value with a digital dart board. It’s not the most precise way to get pi value,
although its a nice example for scalability measurement with a simple calculations.

In a scalar version we throw a random darts with coordinates inside the
area of a square of a size 1x1. If the coordinates are truly random the
probability for dart to fall inside the circle is proportional to its area: P =
πR2; The probability of falling inside the square is one by default. Thus,
one can compute π value with an expression: !
π = 4 Ncircle /Nsquare,
here Ncircle is the number of points inside the circle, Nsquare is a total
number of points. !
One is supposed to rewrite the program in parallel which randomly
chooses points inside the square, calculates the fraction of points inside
the circle and calculates π.
In order to run program type :

g++ MonteCarlo.cpp -O3 -fopenmp -o MonteCarlo.out; ./MonteCarlo.out n 1,
where n is number of cores you want to use.
In order to calculate scalability you can use the script:
 . run_scalability.sh
And draw the speed-up factor dependence:
 root -l make_timehisto_stat_complex.C

5_OMP/5_MonteCarlo: solution!
Setting thread to core affinity for scalability measurements

Fig. 15. Scalability of the pi estimation.

143

In general case exact thread to core correspondence is not defined by default. It may happen that in
order to optimise resource usage processor sends thread from one to core to the other. Such a thread jump
takes time and may result in overhead and spoil scalability of an application. In order to avoid it and
improve performance one needs to set thread to core affinity. For this purpose one can use Pthread API.
The pthread_setaffinity_np() function sets the CPU affinity mask of the thread thread to the CPU set
pointed to by cpuset. As a result of this function the thread will be running on one of the CPUs in cpuset.
The argument cpusetsize is the length (in bytes) of the buffer pointed to by cpuset. Typically, this
argument would be specified as sizeof(cpu_set_t).

This kind of problem is intrinsically parallel, since the loop iterations are practically independent.
One can convert scalar version to parallel just by adding few lines of code, paying attention to keeping

some variables private instead of shared and using reduction clause to calculate the increment in a
manner:

 #pragma omp parallel for private(x,y,test, seed) reduction(+:Ncirc)
Now each thread will operate with its own copy of x, y, test and seed variables making code thread-

safe, as well as increment of Ncirc will be sumed up to one global variable in the end.
The final scalability after setting affinity and making loop thread-safe one can get output like in the Fig. 1. !

144

HPC Practical Course
Part 3.2

!
Intel Threading Building Blocks (ITBB)

V. Akishina, I.Kisel,
I. Kulakov, M. Zyzak

Based on the official ITBB tutorial

Goethe University of Frankfurt am Main
!

09 Jul 2014

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

aComputer Architectures

Taken from: http://en.wikipedia.org/wiki/Flynn's_taxonomy

Single Instruction Single Data

Single Instruction Multiple Data

Multiple Instruction Multiple Data

2

145

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Content

• Parallel_for
!

• Parallel_reduce
!

• Dependent threads: mutual exclusion, atomic operations
!

• Pipeline
!

• Exercises

3

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Parallel_for

Scalar

ITBB

4

void SerialApplyFoo(float a[], size_t n) {
 for(size_t i=0; i!=n; ++i)
 Foo(a[i]);
}

class ApplyFoo {
 float *const my_a;
public:
 void operator()(const blocked_range<size_t>& r) const {
 float *a = my_a;
 for(size_t i=r.begin(); i!=r.end(); ++i)
 Foo(a[i]);
 }
 ApplyFoo(float a[]) :
 my_a(a)
 {}
};

void ParallelApplyFoo(float a[], size_t n) {
 parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a));
}

independent iterations

all needed data are kept here

actual work is done here

create tasks and distribute
them between cores

146

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Parallel_reduce
Scalar

ITBB

5

 float my_sum;
 void operator()(const blocked_range<size_t>& r) {
 float *a = my_a;
 float sum = my_sum;
 size_t end = r.end();
 for(size_t i=r.begin(); i!=end; ++i)
 sum += Foo(a[i]);
 my_sum = sum;
 }

 SumFoo(SumFoo& x, split) : my_a(x.my_a), my_sum(0) {}

 void join(const SumFoo& y) {my_sum+=y.my_sum;}

float SerialSumFoo(float a[], size_t n) {
 float sum = 0;
 for(size_t i=0; i!=n; ++i)
 sum += Foo(a[i]);
 return sum;
}

float ParallelSumFoo(const float a[], size_t n) {
 SumFoo sf(a);
 parallel_reduce(blocked_range<size_t>(0,n), sf);
 return sf.my_sum;
}

result of each task

actual work is done here

split constructor

accumulate result

create tasks and distribute
them between cores

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Mutual Exclusion: Scoped_lock

6

Node* FreeList;
typedef spin_mutex FreeListMutexType;
FreeListMutexType FreeListMutex; !
Node* AllocateNode() {
 Node* n;
 {
 FreeListMutexType::scoped_lock lock(FreeListMutex);
 n = FreeList;
 if(n)
 FreeList = n->next;
 }
 if(!n)
 n = new Node();
 return n;
} !
void FreeNode(Node* n) {
 FreeListMutexType::scoped_lock lock(FreeListMutex);
 n->next = FreeList;
 FreeList = n;
}

shared variable

it is important to keep FreeList
unchanged by other threads here

it is important to keep FreeList
unchanged by other threads here

it is important to keep FreeList
unchanged by other threads here

block this the scope for all the
threads, except the current one

147

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Tread A Tread B
ta

tb

x = t
x = t

if (x == 0)
if (x == 0)

Atomic Operations

int x;
…
!
x--;
if (x == 0) Finilize();

atomic<int> x;
…
!
if (x-- == 0) Finilize();

Tread A Tread B
if (x-- == 0) Finilize();

if (x-- == 0) Finilize();

Problem:

Solution:

7

temporary copy

x -> x – 1 (not x – 2 !)

unnecessary 2nd call

this line can be called only by
one tread at one moment

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

//! Filter that changes each decimal number to its square.
class MyTransformFilter: public tbb::filter {
public:
 MyTransformFilter();
 void* operator()(void* item);
}; !
MyTransformFilter::MyTransformFilter() :
 tbb::filter(parallel)
{} !
void* MyTransformFilter::operator()(void* item) {
 TextSlice& input = *static_cast<TextSlice*>(item);
 // Add terminating null so that strtol works right even if number is at end of the input.
 *input.end() = '\0';
 char* p = input.begin();
 TextSlice& out = *TextSlice::allocate(2*MAX_CHAR_PER_INPUT_SLICE);
 char* q = out.begin();
 for(;;) {
 while(p<input.end() && !isdigit(*p))
 *q++ = *p++;
 if(p==input.end())
 break;
 long x = strtol(p, &p, 10); !
 long y = x*x;
 sprintf(q,"%ld",y);
 q = strchr(q,0);
 }
 out.set_end(q);
 input.free();
 return &out;
}

Pipeline

8

the work is done here

data from the previous filter

allocate output data

deallocate output data

give data to the next filter

Read chunk from file Square numerals
in chunk

Write chunk
to output file

148

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Pipeline: Continue

Input filter Transform filter Output filter

9

 // Create the pipeline
 tbb::pipeline pipeline; !
 // Create file-reading writing stage and add it to the pipeline
 MyInputFilter input_filter(input_file);
 pipeline.add_filter(input_filter); !
 // Create squaring stage and add it to the pipeline
 MyTransformFilter transform_filter;
 pipeline.add_filter(transform_filter); !
 // Create file-writing stage and add it to the pipeline
 MyOutputFilter output_filter(output_file);
 pipeline.add_filter(output_filter); !
 // Run the pipeline
 tbb::tick_count t0 = tbb::tick_count::now();
 // Need more than one token in flight per thread to keep all threads
 // busy; 2-4 works
 pipeline.run(nthreads*4);
 tbb::tick_count t1 = tbb::tick_count::now();

create the pipeline

add all filters consecutively

run the pipeline
on certain number of threads

Read chunk from file Square numerals
in chunk

Write chunk
to output file

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Exercises

Exercises/6_ITBB/1_Matrix

See the previous SIMD and OpenMP exercises.
Task: Implement with ITBB

Run AddPath.sh in order to make compiler know about ITBB and Vc

Exercises/6_ITBB/2_Pi

Exercises/6_ITBB/3_Counter

0.1 0.3 0.09 0.68 0.54

Random array

8 3 0 6 0

Integer function

1 2 Count 0 entries

10

149

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Exercises

Exercises/6_ITBB/4_Target

Task: Find a bug in the ITBB implementation.

1

1 5 1

1

1

1 5 2

2 5 1

1

1

1 5 2

1 2 5 1

1 5 1 1

1

Count the total
damage

Target Random shot Damage
distribution

0 3 1 8 0

2 11 15 23 4

5 13 23 5 1

1 5 16 18 2

0 1 7 3 0

11

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

qExercises
Exercises/6_ITBB/5_Pipeline

Generate data

Process data

Process data

Save data

12

Task: Parallelize with ITBB.

 TStopwatch timer;
 for(int j = 0; j < NChunks; ++j) {
 DataChunk data;

 // generate data
 for(int i = 0; i < ChunkSize; ++i)
 data.a[i] = float(rand())/float(RAND_MAX); // from 0 to 1

 // make some processing
 for(int i = 0; i < ChunkSize; ++i) {
 float &x = data.a[i];
 for(int i = 0; i < 100; ++i)
 x = sin(x);
 }

 // another processing
 for(int i = 0; i < ChunkSize; ++i) {
 float &x = data.a[i];
 for(int i = 0; i < 100; ++i)
 x = tan(x);
 }

 // write the result in the file
 for(int i = 0; i < ChunkSize; ++i)
 file << data.a[i] << endl;
 }

 timer.Stop();

150

 of 13 09 Jul 2014 HPС, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak

Kalman Filter Track Fit for CBM Experiment

!
Task:
Parallelize using ITBB

make single (or “make tbb”)
!
!
./single (or “./tbb [nThreads to run]”)
!
!
cd QualityHisto
root –l –q histo_particle.C; root –l Pulls.C
(keep attention to sigma of distributions
 and number of entries)

Compile
!
!
Run
!
!
Check results

Exersices/6_ITBB/6_CBM_KF

13

151

152

3.2. Intel Threading Building Blocks!
!
Exercises are located at Exercises/6_ITBB/
Solutions are located at Exercises/6_ITBB/***/***_solution.cpp
To compile and run exercise programs use the line given in the head-comments in the code.
The results given here are obtained on Intel E7-4860 CPU with gcc4.7.3.

6_ITBB/1_Matrix: description!
The Matrix exercise requires to parallelize the square root extraction over a set of float variables

arranged in a square matrix using both the ITBB and the Vc library. The initial code implements scalar and
vector parts using the Vc library, the space for the ITBB+Vc implementation is blank. Therefore the initial
output shows 0 time for vector calculations and an infinite speed up factor, that should be currently ignored.

 !
Part of the source code of Matrix.cpp

34 template<typename T> // required calculations
35 T f(T x) {
36 return sqrt(x);
37 }
…
52 class ApplyTBB{ // TODO: finish
53 public:
54
55 void operator()(const blocked_range<long unsigned int> &range, int cpuId =

-1) const {
56 }
57
58 // ApplyTBB(float a_[N][N], float c_[N][N]): a(a_), c(c_){}
59 ~ApplyTBB(){}
60 };
…
82 /// Vc
83 TStopwatch timerVc;
84 for(int ii = 0; ii < NIter; ii++)
85 for(int i = 0; i < N; i++) {
86 for(int j = 0; j < N; j+=float_v::Size) {
87 float_v &aVec = (reinterpret_cast<float_v&>(a[i][j]));
88 float_v &cVec = (reinterpret_cast<float_v&>(c_simd[i][j]));
89 cVec = f(aVec);
90 }
91 }
92 timerVc.Stop();
93
94 /// ITBB and Vc
95 TStopwatch timerITBB;
96 for(int ii = 0; ii < NIter; ii++)
97 {
98 // TODO
99 }

153

!
6_ITBB/1_Matrix: solution!

In order to parallelize calculations we need to provide the ApplyTBB class input and output arrays,
therefore a constructor, which includes pointers to these arrays, should be created. The operator() is filled
with the required calculations. The most natural way to distribute calculations between cores is
parallelization of the outer loop, which must be changed to a loop over blocked_range.

Simple parallel_for can be used to create and run the tasks on different cores. !

100 timerITBB.Stop();

Part of the source code of Matrix.cpp

Typical output

Time scalar: 798.12 ms
Time Vc: 200.525 ms, speed up 3.98015
Time timerITBB: 0 ms, speed up inf
Parallel and scalar results are the same.
ERROR! Parallel and scalar results are not the same.

Part of the source code of Matrix_solution.cpp

54 class ApplyTBB{
55
56 public:
57
58 float (*a)[N];
59 float (*c)[N];
60
61 void operator()(const blocked_range<long unsigned int> &range, int cpuId =

-1) const {
62 for(int i = range.begin(); i != range.end(); ++i){
63 for(int j = 0; j < N; j+=float_v::Size) {
64 float_v &aVec = (reinterpret_cast<float_v&>(a[i][j]));
65 float_v &cVec = (reinterpret_cast<float_v&>(c[i][j]));
66 cVec = f(aVec);
67 }
68 }
69 }
70
71 ApplyTBB(float a_[N][N], float c_[N][N]): a(a_), c(c_){}
72
73 ~ApplyTBB(){
74 }
75 };
…

109 /// ITBB
110 TStopwatch timerITBB;
111 for(int ii = 0; ii < NIter; ii++)
112 {
113 parallel_for(blocked_range<size_t>(0,N), ApplyTBB(a,c_tbb));
114 }
115 timerITBB.Stop();

154

!
An expected speed up from the parallelization on a computer with 40 hyper-threaded cores is about 50.

The obtained speed up is 3, that is much less. A possible reason is that calculations are extremely simple
and fast.

To check it, one can increase the amount of calculations in f() function, this leads to increase of
parallelisation speed up: !

6_ITBB/2_Pi: description!
The Pi program provides a scalar code to calculate the value of π by numerical integration. It must be

run on different cores using ITBB. !

Typical output after solution

Time scalar: 798.184 ms
Time Vc: 200.676 ms, speed up 3.97748
Time timerITBB: 65.238 ms, speed up 12.235
SIMD and scalar results are the same.
SIMD and scalar results are the same.

Part of the source code of Matrix.cpp

54 template<typename T> // required calculations
55 T f(T x) {
56 T r = x;
57 for(int i = 0; i < 20; i++)
58 r = sqrt(r);
59 return r;
60 }

Typical output after solution

Time scalar: 16779.2 ms
Time Vc: 3987.25 ms, speed up 4.20821
Time timerITBB: 164.553 ms, speed up 101.968
SIMD and scalar results are the same.
SIMD and scalar results are the same.

Part of the source code of pi.cpp
26 int i;
27 double x, pi, sum = 0.0;
28 double start_time, run_time;
29
30 step = 1.0/(double) num_steps;
31
32 // task_scheduler_init init(1); // run 1 thread only
33
34 TStopwatch timer;
35
36 // TODO parallelize the loop
37 for(int i = 1; i != num_steps; ++i){
38 const double x = (i-0.5)*step;
39 sum += 4.0/(1.0+x*x);
40 }
41
42 pi = step * sum;

155

6_ITBB/2_Pi: solution!
To parallelize this task one needs to use parallel_reduce to split the sum between different cores and

then joining together the obtained results. ApplyTBB class needs to include only the output variable,
operator() body - the integral calculations, and join() function - the simple sum. !

!
The obtained speed up on 40 hyper threaded cores is 37 times. !

Typical output

pi with 2000000000 steps is 3.141593 in 19.477509 seconds

Part of the source code of pi.cpp
26 class ApplyTBB{
27
28 double fStep;
29
30 public:
31 double sum;
32
33 void operator()(const blocked_range<long unsigned int> &range, int cpuId =

-1) {
34 for(int i = range.begin(); i != range.end(); ++i){
35 const double x = (i-0.5)*step;
36 sum += 4.0/(1.0+x*x);
37 }
38 }
39
40 ApplyTBB(ApplyTBB& x, split) : fStep(x.fStep), sum(0) {}
41 void join(const ApplyTBB& y) { sum += y.sum;}
42
43 ApplyTBB(double step_):fStep(step_), sum(0){}
44 ~ApplyTBB(){}
45 };
46
47
48 int main ()
49 {
50 int i;
51 double x, pi, sum = 0.0;
52 double start_time, run_time;
53
54 step = 1.0/(double) num_steps;
55
56 // task_scheduler_init init(1); // run 1 thread only
57
58 TStopwatch timer;
59
60 ApplyTBB at(step);
61 parallel_reduce(blocked_range<size_t>(1,num_steps), at);
62
63 pi = step * at.sum;

Typical output after solution

pi with 2000000000 steps is 3.141593 in 0.521898 seconds

156

6_ITBB/3_Count: description!
The Count exercise implements a counting process. Input floating point data is transformed to integer

data, then one needs to count how many 0 entries are in the whole data array.
This task mast be parallelized using ITBB in two different ways:
1. Using mutex to lock a region of the code.
2. Using atomic operations to lock variables. !

6_ITBB/3_Count: solution!
The parallelization is achieved by distribution of loop iterations over different threads. In this case

counter++ operation makes iterations dependent on each other and when it is performed on one thread all
other threads must wait.

1. To implement it using atomic feature one needs to declare counter variable simple as atomic<int>.
2. To implement it with mutex feature one needs to declare spin_mutex, lock it before increment and
unlock it after decrement. Unlocking can be done automatically when lock is destructed at the end of
scope. !

Part of the source code of count.cpp

28 int ComplicatedFunction(float x){ // just to simulate some time-consuming
calculations, which can be parallelized

29 return (int)(cos(sin(x*3.14)) * 10 - 5);
30 }
…

63 // fill classes by random numbers
64 for(int i = 0; i < N; i++) {
65 a[i] = (float(rand())/float(RAND_MAX)); // put a random value, from 0 to 1
66 }
67
68 TStopwatch timer;
69 for(int i = 0; i != N; ++i){
70 if (ComplicatedFunction(a[i]) == 0) counter++;
71 }
72 timer.Stop();

Typical output

 Scalar counter: 489566 Time: 161.237961 ms.
 TBB atomic counter: 0 Time: 0.000000 ms.
 TBB mutex counter: 0 Time: 0.000954 ms.

Part of the source code of count.cpp
21 int counterParM = 0; // parallelization using mutex
22 atomic<int> counterParA; // parallelization using atomic
…

29 class ApplyTBBA{
30 const float * const a;
31
32 public:
33 void operator()(const blocked_range<long unsigned int> &range, int cpuId =

-1) const {
34 for(int i = range.begin(); i != range.end(); ++i){
35 if (ComplicatedFunction(a[i]) == 0) counterParA++;
36 }

157

!
The resulting speed up with atomic is much less than the number of cores, but this one can expect,

since the threads must wait for each other. The resulting speed up with locks is even smaller, since creation
and destruction of lock takes additional time.

6_ITBB/4_Target: description!
In the Target exercise a distribution of damages made to a wall is calculated. The wall plane is divided

into cells and the damage done in each cell must be calculated. Damaging is done in shots, each shot
produces 5 damage of the cell, 1 in each of the four neighboring cells, and 0 to all others. !

A version of the code, which implements the procedure is given. It is already parallelized using ITBB, but
works either slow or can not finish the calculations at all.

One needs to find a reason to such behavior and fix it with as small changes in the code as possible. !

37 }
38
39 ApplyTBBA(const float * const a_):a(a_){}
40 ~ApplyTBBA(){}
41 };
42
43 spin_mutex Mutex;
44
45 class ApplyTBBM{
46 const float * const a;
47
48 public:
49 void operator()(const blocked_range<long unsigned int> &range, int cpuId =

-1) const {
50 for(int i = range.begin(); i != range.end(); ++i){
51 if (ComplicatedFunction(a[i]) == 0) {
52 spin_mutex::scoped_lock lock(Mutex);
53 counterParM++;
54 }
55 }
56 }
57
58 ApplyTBBM(const float * const a_):a(a_){}
59 ~ApplyTBBM(){}
60 };
…

81 timer.Start();
82 parallel_for(blocked_range<size_t>(0,N), ApplyTBBA(a));
83 timer.Stop();
84
85 float timeParA = timer.RealTime()*1000;
86
87 timer.Start();
88 parallel_for(blocked_range<size_t>(0,N), ApplyTBBM(a));
89 timer.Stop();

Part of the source code of count.cpp

Typical output after solution

 Scalar counter: 489566 Time: 159.914978 ms.
 TBB atomic counter: 489566 Time: 76.969864 ms.
 TBB mutex counter: 489566 Time: 298.513885 ms.

158

Part of the source code of target.cpp

22 const int Size = 5;
23 const int N = 1000;
24
25 struct TShot {
26 int x,y;
27 float spread;
28 };
29
30 const float PI = 3.1415926f;
31
32 float Response(float x, float spread) {
33 int s = spread;
34 for(int i = 0; i < 100000; ++i) s = sin(s); // simulate complicated

computations, which would be in a real life response function
35 return 1/spread/sqrt(2*PI)*exp(-0.5*x*x/spread/spread)*s;
36 }
37
38 void Update(float& xmm, float& xlm, float& xml, float& xrm, float& xmr, float

spread) {
39 xmm += Response(0, spread);
40 float res1 = Response(1, spread);
41 xlm += res1;
42 xml += res1;
43 xrm += res1;
44 xmr += res1;
45 }
46
47 spin_mutex mutexes[Size][Size];
48
49 class ApplyTBB{
50 TShot *shots;
51 float (*target)[Size];
52 public:
53
54 void operator()(const blocked_range<long unsigned int> &range, int cpuId =

-1) const {
55 for(int i = range.begin(); i != range.end(); ++i) {
56 const int x = shots[i].x;
57 const int y = shots[i].y;
58 const float spread = shots[i].spread;
59 {
60 spin_mutex::scoped_lock lock0(mutexes[x][y]);
61 spin_mutex::scoped_lock lock1(mutexes[x-1][y]);

159

62 spin_mutex::scoped_lock lock2(mutexes[x][y-1]);
63 spin_mutex::scoped_lock lock3(mutexes[x+1][y]);
64 spin_mutex::scoped_lock lock4(mutexes[x][y+1]);
65 Update(target[x][y], target[x-1][y], target[x][y-1], target[x+1][y],

target[x][y+1], spread);
66 }
67 }
68 }
69
70 ApplyTBB(float target_[Size][Size], TShot

*shots_):target(target_),shots(shots_){}
71 ~ApplyTBB(){}
72 };
73
74 bool CompareResults(float a1[Size][Size], float a2[Size][Size]) {
75 bool ok = 1;
76 for(int i = 0; i < Size; i++)
77 for(int i2 = 0; i2 < Size; i2++) {
78 ok &= (a1[i][i2] == a2[i][i2]);
79 //printf(" %d %d : %f - %f \n", i, i2, a1[i][i2], a2[i][i2]);
80 }
81 return ok;
82 }
83
84 int main ()
85 {
86 float target[Size][Size];
87 TShot shots[N];
88
89 // prepare data
90 for(int i = 0; i < Size; i++)
91 for(int i2 = 0; i2 < Size; i2++)
92 target[i][i2] = 0;
93
94 for(int i = 0; i < N; i++) {
95 shots[i].x = float(rand())/float(RAND_MAX)*(Size-2) + 1; // put a random

value, from 1 to Size-1
96 shots[i].y = float(rand())/float(RAND_MAX)*(Size-2) + 1;
97

 shots[i].spread = float(rand())/float(RAND_MAX)*8 + 1; // from 1 to 10

98 }
99

100 TStopwatch timer;
101 for(int i = 0; i != N; ++i) {
102 const int x = shots[i].x;
103 const int y = shots[i].y;
104 const float spread = shots[i].spread;
105 Update(target[x][y], target[x-1][y], target[x][y-1], target[x+1][y],

target[x][y+1], spread);
106 }
107 timer.Stop();
108
109 float targetScalar[Size][Size];

Part of the source code of target.cpp

160

!
6_ITBB/4_Target: solution!

The problem with the initial code is a wrong locks order. When both lock1 (for cell x-1) and lock3 (for cell
x+1) are locked, after lock0 (for cell x) a dead lock situation is possible. Consider one thread is working with
x=5, the other one with x=6. The first thread locks cell 5, the second one - cell 6. Then the first thread tries
to lock cell 6, but it is locked by the second one, so the first one must wait until the second thread is
finished and unlocks cell 6. Similarly, the second thread needs cell 5 and must wait for it to be unlocked.
Both threads will wait for an infinite time.

To avoid such possibility one needs to call locks in the same order by all threads. To achieve this one
can sort locks by coordinates: !

!
A minor speed up on the 40-core system is achieved now. The reason for that is that the grid size is 5 by

5 (there are only 9 possible positions for shots, most of them mutually exclude each other). When the grid
size is increased to 82x82, the speed up factor of 18 is achieved, which is expected taking into account the
dependence between the threads and an overhead from locks. !

110 // save result
111 for(int i = 0; i < Size; i++)
112 for(int i2 = 0; i2 < Size; i2++)
113 targetScalar[i][i2] = target[i][i2];
114
115 float timeScalar = timer.RealTime()*1000;
116
117 printf(" Scalar Time: %f ms. \n", timeScalar);
118
119 // prepare data
120 for(int i = 0; i < Size; i++)
121 for(int i2 = 0; i2 < Size; i2++)
122 target[i][i2] = 0;
123
124 // task_scheduler_init init(1); // run 1 thread only
125
126 timer.Start();
127 parallel_for(blocked_range<size_t>(0,N), ApplyTBB(target,shots));
128 timer.Stop();

Part of the source code of target.cpp

Typical output

 Scalar Time: 1062.815186 ms.
[program hangs]

Part of the source code of target.cpp

65 spin_mutex::scoped_lock lock1(mutexes[x-1][y]);
66 spin_mutex::scoped_lock lock2(mutexes[x][y-1]);
67 spin_mutex::scoped_lock lock0(mutexes[x][y]);
68 spin_mutex::scoped_lock lock4(mutexes[x][y+1]);
69 spin_mutex::scoped_lock lock3(mutexes[x+1][y]);

Typical output after solution

 Scalar Time: 1062.598999 ms.
 TBB Time: 966.996887 ms.
 Results are the same

161

!
6_ITBB/5_Pipeline: description!

The Pipeline exercise proposes to parallelize a short pipeline, which consists of 4 stages: 1) generating
the data, 2) first processing of the data, 3) second processing stage, 4) saving the data. The task is to finish
parallelisation of the process by running these 4 stages on different cores using tbb::pipeline. Calls of the
filters are implemented, one needs to implement properly the filter classes, one per each stage. !

!
6_ITBB/5_Pipeline: solution!

The data is already divided into chunks, therefore we can create chunks one by one, that makes
parallelization between chunks possible. The InputFilter class must implement operator(), which allocate
memory for chunk of data, fills it and returns a pointer to the allocated memory. Also one needs to check the
number of chunks processed to stop eventually. Since this is the very first filter, the argument is not used.

The Process1Filter operator() receives data chunk as an argument, then it needs to be processed and
returned to the next filter. The processing stage can be put as a member-function for clearness. The
Process2Filter is implemented in the same way. The OutputFilter writes each data in the chunk into a file
and then returns 0, since this is the final stage.

Typical output after solution

 Scalar Time: 1036.182861 ms.
 TBB Time: 57.986977 ms.
 Results are the same

Part of the source code of pipeline.cpp
45 for(int j = 0; j < NChunks; ++j) {
46 DataChunk data;
47
48 // generate data
49 for(int i = 0; i < ChunkSize; ++i)
50 data.a[i] = float(rand())/float(RAND_MAX); // from 0 to 1
51
52 // make some processing
53 for(int i = 0; i < ChunkSize; ++i) {
54 float &x = data.a[i];
55 for(int i = 0; i < 100; ++i)
56 x = sin(x);
57 }
58
59 // another processing
60 for(int i = 0; i < ChunkSize; ++i) {
61 float &x = data.a[i];
62 for(int i = 0; i < 100; ++i)
63 x = tan(x);
64 }
65
66 // write the result in the file
67 file << data.a[i] << endl;
68 file << data.a[i] << endl;
69 }

Typical output

 Time: 776.716003 ms.

162

!
Part of the source code of pipeline.cpp

37 class InputFilter: public tbb::filter {
38 public:
39 InputFilter(): filter(serial_in_order){}
40 ~InputFilter(){}
41 private:
42 void* operator()(void*);
43 };
44
45 void* InputFilter::operator()(void*) {
46
47 if (++nChunks > NChunks) return 0;
48
49 DataChunk* data = new DataChunk;
50
51 // generate
52 for(int i = 0; i < ChunkSize; ++i)
53 data->a[i] = float(rand())/float(RAND_MAX); // from 0 to 1
54
55 #ifndef MUTE
56 cout << " ChunkCreated " << endl;
57 #endif
58 return data;
59 }
60
61 /// ---------------------------------
62
63 class Process1Filter: public tbb::filter {
64 public:
65 Process1Filter(): filter(serial_in_order){}
66 ~Process1Filter(){}
67 private:
68 void* operator()(void*);
69
70 void Core(float& x){
71 for(int i = 0; i < 100; ++i)
72 x = sin(x);
73 }
74 };
75
76 void* Process1Filter::operator()(void* d) {
77 DataChunk* data = static_cast<DataChunk*>(d);
78
79 for(int i = 0; i < ChunkSize; ++i)
80 Core(data->a[i]);
81
82 return data;
83 }
84
85 /// ---------------------------------
86
87 class Process2Filter: public tbb::filter {
88 public:

163

!
The obtained speed up factor is 2. The small speed up factor is due to dependence of all threads, which

makes data saving into the Input/Output device. Note, that writing to the disk is the most time-consuming
operation.

89 Process2Filter(): filter(serial_in_order){}
90 ~Process2Filter(){}
91 private:
92 void* operator()(void*);
93
94 void Core(float& x){
95 for(int i = 0; i < 100; ++i)
96 x = tan(x);
97 }
98 };
99

100 void* Process2Filter::operator()(void* d) {
101 DataChunk* data = static_cast<DataChunk*>(d);
102
103 for(int i = 0; i < ChunkSize; ++i)
104 Core(data->a[i]);
105
106 return data;
107 }
108
109 /// ---------------------------------
110
111 class OutputFilter: public tbb::filter {
112 public:
113

 OutputFilter(ofstream& file_): filter(serial_in_order), fFile(file_){}

114 ~OutputFilter(){}
115 private:
116 ofstream& fFile;
117 void* operator()(void*);
118 };
119
120 void* OutputFilter::operator()(void* d) {
121 DataChunk* data = static_cast<DataChunk*>(d);
122
123 for(int i = 0; i < ChunkSize; ++i)
124 fFile << data->a[i] << endl;
125
126 #ifndef MUTE
127 cout << " ChunkStored " << endl;
128 #endif
129 return 0;
130 }

Part of the source code of pipeline.cpp

Typical output after solution

 Time: 404.545074 ms.

164

HPC Practical Course
Part 4.1

!
Open Computing Language (OpenCL)

V. Akishina, I. Kisel,
I. Kulakov, M. Zyzak

Goethe University of Frankfurt am Main
!

11 June 2014

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Computer Architectures

2

Taken from: http://en.wikipedia.org/wiki/Flynn's_taxonomy

Single Instruction Single Data

Single Instruction Multiple Data

Multiple Instruction Multiple Data

165

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

OpenCL Architecture

3

• Platform Layer API
- A hardware abstraction layer over diverse computational resources
- Query, select and initialise compute devices
- Create compute contexts and work-queues

• Runtime API
- Execute compute kernels
- Manage scheduling, compute, and memory resources

• Language Specification
- C-based cross-platform programming interface
- Subset of ISO C99 with language extensions - familiar to developers
- Defined numerical accuracy - IEEE 754 rounding with specified

maximum error
- Online or offline compilation and build of compute kernel

executables
- Rich set of built-in functions

• Practicality, flexibility and retargetability

OpenCL is a framework for writing programs that execute across heterogeneous
platforms consisting of central processing unit (CPUs), graphics processing unit
(GPUs), and other processors.

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Programming Model

4

© Copyright Khronos Group, 2011 - Page 15

OpenCL Platform Model
• One Host + one or more Compute Devices
- Each Compute Device is composed of one or more Compute Units
- Each Compute Unit is further divided into one or more Processing Elements

• Host
- run the main program
- run the compilation
- distributes tasks between compute devices
- tasks are distributed via queues

• Compute devises
- example - CPU or GPU
- consists of one or more Compute units

• Compute units
- example - set of cores of CPU, streaming multiprocessor of GPU
- consists of one more Processing elements

• Processing elements
- example - one core of CPU, one core of GPU

166

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Memory Model

5

global memory space - largest memory
space available to the device.
!
Each compute unit on the device has a
local memory, which is typically on the
processor die, and therefore has much
higher bandwidth and lower latency
than global memory. Local memory
can be read and written by any work-
item in a work-group, and thus allows
for local communication between
work-groups.
!
Addi t iona l ly, a t tached to each
processing element is a private
memory, which is typically not used
directly by programmers, but is used
to hold data for each work-item that
does not f i t in the processing
element’s registers.

© Copyright Khronos Group, 2011 - Page 18

OpenCL Memory Model

Memory management is Explicit
You must move data from host -> global -> local … and back

•Private Memory
–Per work-item

•Local Memory
–Shared within a workgroup

•Global/Constant Memory
–Visible to all workgroups

•Host Memory
–On the CPU

Workgroup

Work-Item

Compute Device

Work-Item

Workgroup

Host

Private
Memory

Private
Memory

Local Memory Local Memory

Global/Constant Memory

Host Memory

Work-Item Work-Item

Private
Memory

Private
Memory

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Execution Model

6

• OpenCL application runs on a host which submits work to
the compute devices
- Context: The environment within which work-items executes,

includes devices and their memories and command queues
- Program: Collection of kernels and other functions (Analogous to a

dynamic library)
- Kernel: the code for a work item. Basically a C function
- Work item: the basic unit of work on an OpenCL device
- Each processing element works on one work item
- Work items are combined into working group
- Each working group is assigned to the compute unit

• Applications queue kernel execution
- Executed in-order or out-of-order

Generic GPU architecture and the OpenCL terminology
... the software side

work group

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m...
work group size

work group

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m...
work group size

work group

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m...
work group size

...

global size

Direct correspondence to the hardware:
work groups are assigned to the compute units
each processing element works on one work item

167

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Host-program structure

7

• Get a platform

• Get a device

• Set a context

• Create a command-queue

• Create memory buffer

• Write the buffer

• Create a program

• Compile the program

• Create a kernel

• Set the kernel arguments

• Call the kernel

• Read the buffer

• Clean the memory

© Copyright Khronos Group, 2011 - Page 22

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

arg[0] value

arg[1] value

arg[2] value

Images Buffers
In

Order
Queue

Out of
Order
Queue

GPU

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

OpenCL

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Host Program Structure

8

Platform
!
!
!
Device
!
!
!
!
!
!
!
!
Context

//"Returns"the"error"code"
cl_int"oclGetPlatformID"(cl_platform_id"*platforms)"""//"Pointer"to"the"platform"object

//"Returns"the"error"code"
cl_int"clGetDeviceIDs""(cl_platform_id"platform,"
"""""""""""cl_device_type"device_type,"""//"Bitfield"identifying"the"type."For"the"GPU"
we"use"CL_DEVICE_TYPE_GPU"
"""""""""""cl_uint"num_entries,"""//"Number"of"devices,"typically"1"
"""""""""""cl_device_id"*devices,"""//"Pointer"to"the"device"object"
"""""""""""cl_uint"*num_devices)"""//"Puts"here"the"number"of"devices"matching"the"
device_type

//"Returs"the"context"
cl_context"clCreateContext"(const"cl_context_properties"*properties,"""//"Bitwise"with"
the"properties"(see"specification)"
""""""""""""""""cl_uint"num_devices,"""//"Number"of"devices"
""""""""""""""""const"cl_device_id"*devices,"""//"Pointer"to"the"devices"object"
""""""""""""""""void"(*pfn_notify)(const"char"*errinfo,"const"void"*private_info,"
size_t"cb,"void"*user_data),"""//"(don't"worry"about"this)"
""""""""""""""""void"*user_data,"""//"(don't"worry"about"this)"
""""""""""""""""cl_int"*errcode_ret)"""//"error"code"result

http://opencl.codeplex.com/wikipage?title=OpenCL%20Tutorials%20-%201

168

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

//"Returns"the"cl_mem"object"referencing"the"memory"allocated"on"the"device"

cl_mem"clCreateBuffer"(cl_context"context,"""//"The"context"where"the"memory"will"be"

allocated"

""""""""""cl_mem_flags"flags,"

""""""""""size_t"size,"""//"The"size"in"bytes"

""""""""""void"*host_ptr,"

""""""""""cl_int"*errcode_ret)"

Host Program Structure

9

Command
queue
!
!
!
Buffer:
create
!
!
!
!
!
!
!
!
Buffer:
write

cl_command_queue"clCreateCommandQueue"(cl_context"context,"

""""""""""""""""cl_device_id"device,""

""""""""""""""""cl_command_queue_properties"properties,"""//"Bitwise"with"the"

properties"

""""""""""""""""cl_int"*errcode_ret)"""//"error"code"result

 CL_MEM_READ_WRITE
 CL_MEM_WRITE_ONLY
 CL_MEM_READ_ONLY
 CL_MEM_USE_HOST_PTR
 CL_MEM_ALLOC_HOST_PTR
 CL_MEM_COPY_HOST_PTR

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

cl_int"clGetProgramBuildInfo"(cl_program"program,"""

""""""""""""""""cl_device_id"device,""

""""""""""""""""cl_program_build_info"param_name,"""//"The"parameter"we"want"to"know"

""""""""""""""""size_t"param_value_size,"

""""""""""""""""void"*param_value,""""//"The"answer"

""""""""""""""""size_t"*param_value_size_ret)"

Host Program Structure

10

Program:
create
!
!
!
!
!
Program:
build
!
!
!
!
!
Error log:
!
!
!
!
!
Kernel:
create

CL_PROGRAM_BUILD_STATUS
CL_PROGRAM_BUILD_OPTIONS
CL_PROGRAM_BUILD_LOG

//"Returns"the"OpenCL"program"

cl_program"clCreateProgramWithSource"(cl_context"context,"

""""""""""""""""""cl_uint"count,"""//"number"of"files"

""""""""""""""""""const"char"**strings,"""//"array"of"strings,"each"one"is"a"file"

""""""""""""""""""const"size_t"*lengths,"""//"array"specifying"the"file"lengths"

""""""""""""""""""cl_int"*errcode_ret)"""//"error"code"to"be"returned

cl_int"clBuildProgram"(cl_program"program,""

""""""""""""""""""cl_uint"num_devices,"

""""""""""""""""""const"cl_device_id"*device_list,"

""""""""""""""""""const"char"*options,"""//"Compiler"options,"see"the"specifications"

for"more"details"

""""""""""""""""""void"(*pfn_notify)(cl_program,"void"*user_data),""

""""""""""""""""""void"*user_data)

cl_kernel"clCreateKernel"(cl_program"program,"""//"The"program"where"the"kernel"is"

"""""""""const"char"*kernel_name,"""//"The"name"of"the"kernel,"i.e."the"name"of"the"

kernel"function"as"it's"declared"in"the"code"

"""""""""cl_int"*errcode_ret)

169

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Host Program Structure

11

Kernel:
arguments
!
!
!
!
!
Kernel:
call
!
!
!
!
!
!
!
!
!
Profile

cl_int""clSetKernelArg"(cl_kernel"kernel,"""//"Which"kernel"

""""""""""cl_uint"arg_index,"""//"Which"argument"

""""""""""size_t"arg_size,"""//"Size"of"the"next"argument"(not"of"the"value"pointed"by"

it!)"

""""""""""const"void"*arg_value)""""//"Value

cl_int""clEnqueueNDRangeKernel"(cl_command_queue"command_queue,""

""""""""""""""""""""""""""""cl_kernel"kernel,""

""""""""""""""""""""""""""""cl_uint""work_dim,""""//"Choose"if"we"are"using"1D,"2D"or"

3D"work]items"and"work]groups"

""""""""""""""""""""""""""""const"size_t"*global_work_offset,"

""""""""""""""""""""""""""""const"size_t"*global_work_size,"""//"The"total"number"of"

work]items"(must"have"work_dim"dimensions)"

""""""""""""""""""""""""""""const"size_t"*local_work_size,"""""//"The"number"of"work]

items"per"work]group"(must"have"work_dim"dimensions)"

""""""""""""""""""""""""""""cl_uint"num_events_in_wait_list,""

""""""""""""""""""""""""""""const"cl_event"*event_wait_list,""

""""""""""""""""""""""""""""cl_event"*event)"

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Host Program Structure

12

Buffer:
read
!
!
!
!
!
!
!
!
!
Clean:

cl_int""clEnqueueReadBuffer"(cl_command_queue"command_queue,""

""""""""""""""""""""""cl_mem"buffer,"""//"from"which"buffer"

""""""""""""""""""""""cl_bool"blocking_read,"""//"whether"is"a"blocking"or"non]blocking"

read"

""""""""""""""""""""""size_t"offset,"""//"offset"from"the"beginning"

""""""""""""""""""""""size_t"cb,"""//"size"to"be"read"(in"bytes)"

""""""""""""""""""""""void"*ptr,"""//"pointer"to"the"host"memory"

""""""""""""""""""""""cl_uint"num_events_in_wait_list,"

""""""""""""""""""""""const"cl_event"*event_wait_list,""

""""""""""""""""""""""cl_event"*event)"

//"Cleaning"up"

delete[]"src_a_h;"

delete[]"src_b_h;"

delete[]"res_h;"

delete[]"check;"

clReleaseKernel(vector_add_k);"

clReleaseCommandQueue(queue);"

clReleaseContext(context);"

clReleaseMemObject(src_a_d);"

clReleaseMemObject(src_b_d);"

clReleaseMemObject(res_d);

170

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Vectorization with OpenCL

13

OpenCL
!
int4
!
float4

!
vstore4()

!
vload4()
!

…

Vc
!
int_v
!
float_v
!

store()
!

load()
!

…

Example: increase 12,13,14 and 15-th elements of array A by one
!
int A[1000];
int4 a = vload4(3, A);
a++;
vstore4(a, 3, A);

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

GPU Memory

14

• Global memory
- very large, typically gigabytes
- readable and writable by all work items
- state only well defined after kernel has finished
- slow, but much faster with streaming access (coalescing)
- sometimes cached

• Constant memory
- read-only part of the global memory (writable from host)
- often cached
- prefer constant memory for constant values

• Local memory
- very fast on-chip memory
- shared among work items within the same work group
- versatile! (explicit global memory cache, etc.)

• Private memory
- private to a single work item
- usually physically a part of the global memory, slow!
- will be used to store the work items registers if the register file is exhausted (must be

avoided!)

171

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Structure of AMD Radeon HD 7970

15

AMD's Graphics Core Next Technology 13

Once the pixels fragments in a tile have been shaded, they flow to the Render Back-Ends (RBEs). The RBEs apply depth, stencil and alpha tests to determine
whether pixel fragments are visible in the final frame. The visible pixels fragments are then sampled for coverage and color to construct the final output pixels.
The RBEs in GCN can access up to 8 color samples (i.e. 8x MSAA) from the 16KB color caches and 16 coverage samples (i.e. for up to 16x EQAA) from the 4KB
depth caches per pixel. The color samples are blended using weights determined by the coverage samples to generate a final anti-aliased pixel color. The
results are written out to the frame buffer, through the memory controllers.

The graphics pipeline is orchestrated using the same set of techniques as the ACEs. Each stage of the 3D pipeline can operate concurrently, as can any ACEs.
The primitive and pixel pipelines are connected to the programmable GCN shaders through crossbar fabrics. The task queues synchronize different shaders
and fixed function hardware through cache or memory.

The advantage of GCN's flexibility is evident in the first few products that have scaled across all four dimensions. The AMD Radeon™ HD 7970 splits the
screen into 2 primitive pipelines and 4 pixel pipelines, with 32 compute units for shading and a 384-bit memory interface. The GCN pixel pipelines are organized
into 2 RBEs and 3 memory controllers, a 50% boost in memory bandwidth. In contrast, the AMD Radeon™ HD 7770 GHz Edition has a single primitive pipeline,
2 pixel pipelines and 10 compute units. The pixel pipelines in the AMD Radeon™ HD 7770 GHz Edition also scaled back to 2 memory controllers, for a 128-bit
wide interface.

Figure 7: AMD Radeon™ HD 7970

• 32 compute units
• Up to 925MHz

Engine Clock
• 3GB GDDR5 Memory
• 3.79 TFLOPS Single

Precision compute
power

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

GCN Compute Unit

16

AMD's Graphics Core Next Technology 4

Figure 3: GCN Compute Unit

Another crucial innovation in GCN is coherent caching. Historically, GPUs have relied on specialized caches (such as read-only texture caches) that do
not maintain a coherent view of memory. To communicate between cores within a GPU, the programmer or compiler must insert explicit synchronization
instructions to flush shared data back to memory. While this approach simplifies design, it increases overhead for applications which share data. GCN is
tailored for general purpose workloads, where algorithms that communicate between cores are common. The cache coherency protocol shares data
through the L2 cache, which is significantly faster and more power efficient than using off-chip graphics memory.

In tandem with cache coherency, GCN introduces virtual memory through a combination of hardware and driver support. Virtual memory eliminates the most
challenging aspects of memory management and opens up new capabilities. AMD’s unique expertise in both high performance graphics and microprocessors
was particularly beneficial, as GCN’s virtual memory model has been carefully defined to be compatible with x86. This simplifies moving data between the
CPU and the discrete GPU in initial products. More importantly, it paves the way for a single address space that is seamlessly shared by CPUs and GPUs.
Sharing, rather than copying, data is vital for performance and power efficiency and a critical element in heterogeneous systems such as AMD’s Accelerated
Processing Units (APUs).

AMD's Graphics Core Next Technology 3

COMPUTE UNIT OVERVIEW

Compute units are the basic computational building block of the GCN Architecture. These CUs implement an entirely new instruction set that is much simpler
for compilers and software developers to use and delivers more consistent performance than previous designs.

The shader arrays in earlier generations of AMD GPUs consisted of a number of SIMD engines, each of which consisted of up to 16 ALUs. Each ALU could
execute bundles of 4 or 5 independent instructions co-issued in a VLIW (Very Long Instruction Word) format, with the shader compiler being largely responsible
for scheduling and finding co-issue opportunities. SIMD engines were issued groups of 64 work items, called wavefronts, and would execute one wavefront
at a time. This design aligned well with a data flow pattern is very common in graphics processing (for manipulating RGBA color values in a pixel shader, for
example), making it possible to sustain high levels of utilization in most cases. However, the underlying data formats can be more complex and unpredictable
for general purpose applications, making it more difficult to consistently find sets of 4 or 5 independent operations that could execute in parallel every cycle
and keep the processing resources fully utilized.

In GCN, each CU includes 4 separate SIMD units for vector processing. Each of these SIMD units simultaneously executes a single operation across 16 work
items, but each can be working on a separate wavefront. This places emphasis on finding many wavefronts to be processed in parallel, rather than relying on
the compiler to find independent operations within a single wavefront.

Figure 2: VLIW4 vs. GCN

For efficiency, the SIMDs in each GCN compute unit have a combination of private and shared resources. The instruction buffering, registers and vector ALUs
are private for each of the 4 SIMDs to sustain high performance and utilization. Other resources, such as the front-end, branch unit, and data cache are shared
between the SIMDs to achieve area and power efficiency.

• 16 floats per SIMD lane
• 64 floats in total per Compute Unit

172

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Exercise 0

17

An example code is given. It computes vector sum C = A + B.

1. Part 1

1. Run and understand

2. Check error codes, returned by each function (they should be equal to CL_SUCCESS==0)

3. Play: try to change size of the arrays (try 128, 64, 16, 1023), type (try float), etc.

4. Solution is main1.cpp

2. Part 2

1. Display build log

2. Measure the execution time

1. for comparison implement scalar version

2. try more complicated computations (log, sqrt)

3. Solution is main2.cpp

3. Part 3: SIMDize

1. Solution is main3.cpp

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Exercise 0 (continue)

18

4. Part 4: Create sub devices

1. Create sub devices with

!
!
!

2. Try CL_DEVICE_PARTITION_EQUALLY, CL_DEVICE_PARTITION_BY_COUNTS and

CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN properties (more information you

can find here: http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateSubDevices.html).

Solution is main4.cpp

5. Part 5:

1. Create a function into the kernel function for a sum calculation

2. We suggest to build the program in c++-like style: clBuildProgram(program, 1,

&out_devices[0], "-x clc++", NULL, NULL);

3. Solution is main5.cpp

cl_int clCreateSubDevices (cl_device_id in_device ,
 const cl_device_partition_property *properties ,
 cl_uint num_devices ,
 cl_device_id *out_devices ,
 cl_uint *num_devices_ret)

173

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Exercise 0 (continue)

19

6. Part 6: Run on GPU

1. Try SIMD and scalar versions

2. Try different sizes of working groups

3. Solution is main6.cpp

11 June 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak /20

Exercise 1. SIMD KF

20

• Implement SIMD KF package with OpenCL:

• Implement the host part in Fit.cxx (find TODO)

• Finish the Fit.cl file: implement kernel function, describe data structures. Functionality

is already there

• Measure the scalability with OpenCL:

• cd TimeHisto

• . ~/pandaroot/trunk/build/config.sh

• root -l make_timehisto_stat_complex_opencl.C

174

4.1. OpenCL!
OpenCL (Open Computing Language) is an open royalty-free standard for general purpose parallel

programming across CPUs, GPUs and other processors. It allows to write the universal code, which can be
run both on the CPU and GPU giving software developers portable and efficient access to the power of the
heterogeneous processing platforms. OpenCL supports a wide range of applications through a low-level,
high-performance, portable abstraction. OpenCL consists of an API for coordinating parallel computation
across heterogeneous processors and a cross-platform programming language with a well-specified
computation environment. The OpenCL standard:

• supports both data- and task-based parallel programming models;
• utilises a subset of ISO C99 with extensions for parallelism;
• defines consistent numerical requirements based on IEEE 754;
• defines a configuration profile for handheld and embedded devices Efficiently interoperates with

OpenGL, OpenGL ES and other graphics APIs.

OpenCL includes runtime API, which compiles kernels, Manage scheduling, compute, and memory
resources and executes kernels.

The programming model of OpenCL (see Fig. 1) consists of a host connected to one or more OpenCL
devices. An OpenCL device is divided into one or more compute units (for example, one CPU of the server
or one streaming multiprocessor of the GPU), which are further divided into one or more processing
elements (cores of the CPU or streaming multiprocessor). The OpenCL application submits commands
from the host to execute computations on the processing elements within a device. An OpenCL application
runs on a host according to the models native to the host platform. The processing elements within a
compute unit execute a single stream of instructions as SIMD units or each processing element maintains
its own program counter.

The high abstraction level requires to specify the memory model. The memory in OpenCL is divided into
several layers (Fig. 2). The host and device memory are separated. The largest memory available to the
device is called a global memory. For CPU, for example, the global memory is RAM of the server, for GPU
- RAM of the GPU. Usually, global memory is the slowest one. Some part of the global memory is
considered as a constant memory. It is usually faster then global, because of caching. Each compute unit
on the device has a local memory, which is typically on the processor die, and therefore has much higher
bandwidth and lower latency than global memory. Local memory can be read and written by any work-item
in a work-group, and thus allows for local communication between. Additionally, attached to each
processing element is a private memory, which is typically not used directly by programmers, but is used
to hold data for each work-item that does not fit in the processing element’s registers. Usually the private
memory physically is a part of the global, therefore it is also slow.

Execution of an OpenCL program occurs in two parts: kernels that execute on one or more OpenCL
devices and a host program that executes on the host. The host program defines the context for the kernels
and manages their execution. Also it defines a queue of the tasks and runs corresponding kernels
according to the queue. The data is divided into work groups (Fig. 3), which are assigned to the compute

© Copyright Khronos Group, 2011 - Page 15

OpenCL Platform Model
• One Host + one or more Compute Devices
- Each Compute Device is composed of one or more Compute Units
- Each Compute Unit is further divided into one or more Processing Elements

Fig. 1. Programming model of OpenCL.

175

unit. Each work group consist of work items. Work item is a basic unit of work, it runs the instance of the
kernel on the individual processing element.

The structure of the host program:
• get a platform - the information about the whole;
• get a device - select the device for computations;
• set a context within which the program will work;
• create a command-queue;
• create a memory buffer;
• write the buffer (fill the buffer with the input data);
• create a program - an OpenCL object, the input for it - a *.cl file with the main kernel function;
• compile the program;
• create a kernel;
• set the kernel arguments;
• call the kernel;
• read the buffer;
• clean the memory.
Let us describe the functionality of OpenCL used for this. More detailed description can be found here:

http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/.

Generic GPU architecture and the OpenCL terminology
... the software side

work group

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m...
work group size

work group

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m...
work group size

work group

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m

w
or

k
ite

m...
work group size

...

global size

Direct correspondence to the hardware:
work groups are assigned to the compute units
each processing element works on one work item

Fig. 3. Organisation of the data in OpenCL.

© Copyright Khronos Group, 2011 - Page 18

OpenCL Memory Model

Memory management is Explicit
You must move data from host -> global -> local … and back

•Private Memory
–Per work-item

•Local Memory
–Shared within a workgroup

•Global/Constant Memory
–Visible to all workgroups

•Host Memory
–On the CPU

Workgroup

Work-Item

Compute Device

Work-Item

Workgroup

Host

Private
Memory

Private
Memory

Local Memory Local Memory

Global/Constant Memory

Host Memory

Work-Item Work-Item

Private
Memory

Private
Memory

Fig. 2. The memory model of OpenCL.

176

1) cl_int clGetPlatformIDs(cl_uint num_entries,
 cl_platform_id *platforms,
 cl_uint *num_platforms)
Obtain the list of platforms available. num_entries - the maximum number of elements in platforms array,

platforms - returned array of platform ids, num_platforms - returns number of available platforms. The
function returns the error code.

2) cl_int clGetDeviceIDs (cl_platform_id platform ,
 cl_device_type device_type ,
 cl_uint num_entries ,
 cl_device_id *devices ,
 cl_uint *num_devices)
Obtain the list of devices available on a platform. platform - id of the platform, where we are looking for a

device, device_type - type of a device (CL_DEVICE_TYPE_CPU to use CPU, CL_DEVICE_TYPE_GPU to
use GPU or CL_DEVICE_TYPE_ALL to use both of them), num_entries - the maximum number of
elements in devices array, devices - returned array of devices ids, num_devices - returns number of
OpenCL devices available that match device_type. The function returns the error code.

3) cl_context clCreateContext(const cl_context_properties *properties,
 cl_uint num_devices,
 const cl_device_id *devices,
 (void CL_CALLBACK *pfn_notify) (const char *errinfo,
 const void *private_info, size_t cb,
 void *user_data),
 void *user_data,
 cl_int *errcode_ret)
Creates an OpenCL context. An OpenCL context is created with one or more devices. Contexts are used

by the OpenCL runtime for managing objects such as command-queues, memory, program and kernel
objects and for executing kernels on one or more devices specified in the context. properties - specifies a
list of context property names and their corresponding values, num_devices - the number of devices
specified in the devices argument; devices - array with device ids, which will be used within current context;
errcode_ret - the error code returned by the function.

4) cl_command_queue clCreateCommandQueue(cl_context context,
 cl_device_id device,
 cl_command_queue_properties properties,
 cl_int *errcode_ret)
Create a command-queue on a specific device. context - valid OpenCL context created before; device -

id of a device from the context, for which the queue is created; properties - properties of the queue, if
profiling should be enabled the value should be CL_QUEUE_PROFILING_ENABLE, if the execution mode
should be out of order the value should be CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE;
errcode_ret - the error code returned by the function.

5) cl_mem clCreateBuffer (cl_context context,
 cl_mem_flags flags,
 size_t size,
 void *host_ptr,
 cl_int *errcode_ret)
Creates a buffer object. context - valid OpenCL context created before; flags - specify allocation and

usage information such as the memory arena that should be used to allocate the buffer object and how it
will be used, value can be, for example, CL_MEM_READ_WRITE, CL_MEM_WRITE_ONLY,
CL_MEM_READ_ONLY; size - the size in bytes of the buffer memory object to be allocated; host_ptr - a
pointer to the buffer data that may already be allocated by the application, the size of the buffer that
host_ptr points to must be ≥ size bytes; errcode_ret - the error code returned by the function.

6) cl_int clEnqueueWriteBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_write,
 size_t offset,
 size_t size,
 const void *ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)

177

Enqueue commands to write to a buffer object from host memory. command_queue - refers to the
command-queue in which the write command will be queued, command_queue and buffer must be created
with the same OpenCL context; buffer - refers to a valid buffer object, offset - the offset in bytes in the buffer
object to write to, size - the size in bytes of data being written; ptr - the pointer to buffer in host memory
where data is to be written from; event_wait_list, num_events_in_wait_list - array of events together with its
size to be waited before execution of the current function; event - returns an event object that identifies this
particular write command and can be used to query or queue a wait for this particular command to
complete. The function returns the error code.

7) cl_program clCreateProgramWithSource (cl_context context,
 cl_uint count,
 const char **strings,
 const size_t *lengths,
 cl_int *errcode_ret)
Creates a program object for a context, and loads the source code specified by the text strings in the

strings array into the program object. context - valid OpenCL context created before; count - number of files
(strings) to be compiled; strings - array of strings containing the source code; lengths - array with sizes of
each string; errcode_ret - the error code returned by the function.

8) cl_int clBuildProgram (cl_program program,
 cl_uint num_devices,
 const cl_device_id *device_list,
 const char *options,
 void (CL_CALLBACK *pfn_notify)(cl_program program, void

 *user_data),
 void *user_data)
Builds (compiles and links) a program executable from the program source or binary. program - the

program object; device_list - a pointer to a list of devices associated with the program; num_devices - the
number of devices listed in device_list; options - compilation options, to build the program supporting c++-
like functionality should be "-x clc++”. The program returns the error code.

9) cl_int clGetProgramBuildInfo (cl_program program,
 cl_device_id device,
 cl_program_build_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)
Returns build information for each device in the program object. We will use it to print the build log.

program - the program object being queried; device - specifies the device for which build information is
being queried; param_name - specifies the information to query, in our case should be
CL_PROGRAM_BUILD_LOG; param_value_size - the size in bytes of memory pointed to by param_value;
param_value - a pointer to memory where the appropriate result being queried is returned;
param_value_size_ret - returns the actual size of the log. The function returns the error code.

10) cl_kernel clCreateKernel (cl_program program,
 const char *kernel_name,
 cl_int *errcode_ret)
Creates a kernel object. program - a program object with a successfully built executable, kernel_name -

a function name in the program declared with the __kernel qualifier; errcode_ret - the error code returned
by the function.

11) cl_int clSetKernelArg (cl_kernel kernel,
 cl_uint arg_index,
 size_t arg_size,
 const void *arg_value)
Used to set the argument value for a specific argument of a kernel. kernel - a valid kernel object;

arg_index - the argument index, starts from 0; arg_size - specifies the size of the argument value;
arg_value - a pointer to data that should be used as the argument value for argument specified by
arg_index. The function returns the error code.

12) cl_int clEnqueueNDRangeKernel (cl_command_queue command_queue,
 cl_kernel kernel,
 cl_uint work_dim,
 const size_t *global_work_offset,
 const size_t *global_work_size,
 const size_t *local_work_size,

178

 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)
Enqueues a command to execute a kernel on a device. command_queue - a valid command-queue, the

kernel will be queued for execution on the device associated with command_queue; kernel - a valid kernel
object; work_dim - the number of dimensions used to specify the global work-items and work-items in the
work-group; global_work_offset - can be used to specify an array of work_dim unsigned values that
describe the offset used to calculate the global ID of a work-item; global_work_size - points to an array of
work_dim unsigned values that describe the number of global work-items in work_dim dimensions that will
execute the kernel function; local_work_size - points to an array of work_dim unsigned values that describe
the number of work-items that make up a work-group (also referred to as the size of the work-group) that
will execute the kernel specified by kernel; event_wait_list, num_events_in_wait_list - array of events
together with its size to be waited before execution of the current function; event - returns an event object
that identifies this particular write command and can be used to query or queue a wait for this particular
command to complete.

13) cl_int clGetEventProfilingInfo (cl_event event,
 cl_profiling_info param_name,
 size_t param_value_size,
 void *param_value,
 size_t *param_value_size_ret)
Returns profiling information for the command associated with event if profiling is enabled. event - event

to be profiled; param_name - specifies the profiling data to query (CL_PROFILING_COMMAND_QUEUED,
C L _ P R O F I L I N G _ C O M M A N D _ S U B M I T, C L _ P R O F I L I N G _ C O M M A N D _ S T A R T,
CL_PROFILING_COMMAND_END); param_value_size - specifies the size in bytes of memory pointed to
by param_value; param_value - A pointer to memory where the appropriate result being queried is
returned; param_value_size_ret - returns the actual size in bytes of data copied to param_value. The
function returns the error code.

14) cl_int clEnqueueReadBuffer (cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_read,
 size_t offset,
 size_t size,
 void *ptr,
 cl_uint num_events_in_wait_list,
 const cl_event *event_wait_list,
 cl_event *event)
Enqueue commands to read from a buffer object to the host memory. Parameters has the same

description as for clEnqueueWriteBuffer().
15) cl_int clCreateSubDevices (cl_device_id in_device ,
 const cl_device_partition_property *properties ,
 cl_uint num_devices ,
 cl_device_id *out_devices ,
 cl_uint *num_devices_ret)
Creates an array of sub-devices that each reference a non-intersecting set of compute units within

in_device. in_device - the device to be partitioned; properties - specifies how in_device should be
p a r t i t i o n e d d e s c r i b e d b y a p a r t i t i o n n a m e a n d i t s c o r r e s p o n d i n g v a l u e
(C L _ D E V I C E _ PA R T I T I O N _ E Q U A L LY, C L _ D E V I C E _ PA R T I T I O N _ B Y _ C O U N T S ,
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN); num_devices - size of memory pointed to by
out_devices specified as the number of cl_device_id entries; out_devices - the buffer where the OpenCL
sub-devices will be returned; num_devices_ret - returns the number of sub-devices that device may be
partitioned into according to the partitioning scheme specified in properties.

7_OpenCL/1_First: description!
The first exercise is a simple program, which computes vector sum C=A+B. It consist of two parts: the

host program (main.cpp) and the OpenCL kernel (vector_add_kernel.cl). The tasks for this exercise are:
Part 1:
• run and understand the code;
• check error codes, returned by each function (they should be equal to CL_SUCCESS==0);

179

• play: try to change size of the arrays (try 128, 64, 16, 1023), type (try float), etc.;
• solution is main1.cpp and vector_add_kernel.cl.
Part 2:
• display build log;
• measure the execution time

1. increase the size of the array to 1000000, increase the local_item_size;
2. because of the increased time comment the printing of the result on the screen;
3. for comparison implement scalar version;
4. try more complicated computations (log, sqrt);

• solution is main2.cpp and vector_add_kernel.cl.
Part 3:
• SIMDize;
• Solution is main3.cpp and vector_add_kernel.cl and vector_add_kernel2.cl.
Part 4:
• create sub devices;
• try CL_DEVICE_PARTITION_EQUALLY, CL_DEVICE_PARTITION_BY_COUNTS and

CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN properties (more information you can find here: http://
www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clCreateSubDevices.html);
• solution is main4.cpp and vector_add_kernel.cl and vector_add_kernel2.cl.
Part 5:
• create a function into the kernel function for a sum calculation;
• we suggest to build the program in c++-like style: clBuildProgram(program, 1, &out_devices[0], "-

x clc++", NULL, NULL);
• solution is main5.cpp and vector_add_kernel.cl4.
Part 6:
• run on GPU;
• try SIMD and scalar versions;
• try different sizes of working groups;
• solution is main6.cpp and vector_add_kernel.cl and vector_add_kernel2.cl.

7_OpenCL/1_First: solution!
Part 1.
To check the error codes we suggest to create a function: !

!
and call it after each OpenCL function, for example, after getting the platform: !

!
To change the type throughout the whole code easily we introduced a type DataType: !

!

Part of the source code of Solution/main1.cpp
22 inline void
23 checkErr(cl_int err, const char * name)
24 {
25 if (err != CL_SUCCESS) {
26 std::cerr << "ERROR: " << name
27 << " (" << err << ")" << std::endl;
28 exit(EXIT_FAILURE);
29 }
30 }

Part of the source code of Solution/main1.cpp
67 checkErr(ret, "clGetPlatformIDs");

Part of the source code of Solution/main1.cpp
32 typedef float DataType;

180

It can be set to int or float. The code of the program should be modified respectively: !

!
and the OpenCL kernel: !

!
When changing the size of the arrays to 128 and 64 the program works fine. When changing it to 16 or

1023 - the OpenCL program will not be compiled, because the size of the array should be dividable on
local_item_size. Setting local_item_size, for example, to one will solve the problem.

Part 2.
To extract the build log next lines should be added: !

Part of the source code of Solution/main1.cpp
38 DataType *A = (DataType*)malloc(sizeof(DataType)*LIST_SIZE);
39 DataType *B = (DataType*)malloc(sizeof(DataType)*LIST_SIZE);
…
80 cl_mem a_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
81 LIST_SIZE * sizeof(DataType), NULL, &ret);
82 cl_mem b_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
83 LIST_SIZE * sizeof(DataType), NULL, &ret);
84 cl_mem c_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
85 LIST_SIZE * sizeof(DataType), NULL, &ret);
…
88 ret = clEnqueueWriteBuffer(command_queue, a_mem_obj, CL_TRUE, 0,
89 LIST_SIZE * sizeof(DataType), A, 0, NULL, NULL);
90 checkErr(ret, "clEnqueueWriteBuffer");
91 ret = clEnqueueWriteBuffer(command_queue, b_mem_obj, CL_TRUE, 0,
92 LIST_SIZE * sizeof(DataType), B, 0, NULL, NULL);
…
120 DataType *C = (DataType*)malloc(sizeof(DataType)*LIST_SIZE);
121 ret = clEnqueueReadBuffer(command_queue, c_mem_obj, CL_TRUE, 0,
122 LIST_SIZE * sizeof(DataType), C, 0, NULL, NULL);

Part of the source code of Solution/main1.cpp
1 __kernel void vector_add(__global float *A, __global float *B, __global float

*C) {
2
3 // Get the index of the current element
4 int i = get_global_id(0);
5
6 // Do the operation
7 C[i] = A[i] + B[i];
8 }

Part of the source code of Solution/main2.cpp
114 // Shows the log
115 char* build_log;
116 size_t log_size;
117 // First call to know the proper size
118 clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, 0, NULL,

&log_size);
119 build_log = new char[log_size+1];
120 // Second call to get the log
121 clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, log_size,

build_log, NULL);
122 build_log[log_size] = '\0';
123 cout << build_log << endl;
124 delete[] build_log;

181

!
If we will underestimate the size, the log will be incomplete, if we will overestimate it - the log will be

displayed together with a large empty region. Therefore the first time clGetProgramBuildInfo is called to
calculate the size of the log. And the second time we get the log itself to the variable build_log.

To compare times of the OpenCL code and a normal c++ code the scalar function should be
implemented: !

!
and called together with the time measurement: !

!
To improve the precision of the time measurement the size of the array should be increased: !
!
To enable profiling of the OpenCL code the queue parameters should be modified: !

!
the event should be generated on the kernel execution and we should wait for this event: !

!
And when the event is finished we can profile it and print the time: !

!

Part of the source code of Solution/main2.cpp
37 void scalar_add(DataType A, DataType B, DataType C) {
38
39 // Do the operation
40 C = A + B;
41 }

Part of the source code of Solution/main2.cpp
164 TStopwatch timer;
165 for(i = 0; i < LIST_SIZE; i++)
166 scalar_add(A[i], B[i], C[i]);
167 timer.Stop();

Part of the source code of Solution/main2.cpp
47 const int LIST_SIZE = 1000000;

Part of the source code of Solution/main2.cpp
88 cl_command_queue command_queue = clCreateCommandQueue(context, device_id,

CL_QUEUE_PROFILING_ENABLE, &ret);

Part of the source code of Solution/main2.cpp
138 cl_event event;
139
140 ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
141 &global_item_size, &local_item_size, 0, NULL, &event);
142 checkErr(ret, "clEnqueueNDRangeKernel");
143
144 ret = clWaitForEvents(1 , &event);

Part of the source code of Solution/main2.cpp
153 cl_ulong time_start, time_end;
154 double total_time;
155 clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START,

sizeof(time_start), &time_start, NULL);
156 clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(time_end),

&time_end, NULL);
157 total_time = time_end - time_start;
158 printf("Parallel time = %0.3f ms\n", (total_time / 1000000.0));

182

To improve the performance and decrease overhead the local_item_size should be increased. But even
after this the OpenCL code is mush slower. With more complicated calculations this will change.

Part 3.
To have the SIMD and scalar code in the same file we introduced a preprocessor macro: !
!
Here we again decrease the size of the array: !
!
Also we need to introduce a new kernel (vector_add_kernel2.cl): !

!
And we need to load corresponding kernel: !

!
and modify global_item_size: !

!
Part 4.
To create subdevices the code should be added: !

Part of the source code of Solution/main3.cpp
9 #define SIMD // switch between vectorized and not vectorized versions

Part of the source code of Solution/main3.cpp
49 const int LIST_SIZE = 1024;

Part of the source code of Solution/vector_add_kernel2.cl
1 __kernel void vector_add(__global float *A, __global float *B, __global float

*C) {
2
3 // Get the index of the current element
4 int i = get_global_id(0);
5
6 // get the i-th group of 4
7 float4 a = vload4(i, A);
8 float4 b = vload4(i, B);
9
10 // store a+b to 4*i-th element
11 vstore4(a + b, i, C);
12 }

Part of the source code of Solution/main3.cpp
62 #ifdef SIMD
63 fp = fopen("vector_add_kernel2.cl", "r");
64 #else
65 fp = fopen("vector_add_kernel.cl", "r");
66 #endif

Part of the source code of Solution/main3.cpp
62 #ifdef SIMD
63 size_t global_item_size = LIST_SIZE/4; // Process the entire lists
64 #else
65 size_t global_item_size = LIST_SIZE;
66 #endif

Part of the source code of Solution/main4.cpp
89 cl_uint num_devices_ret;
90 cl_device_id out_devices[80];
91 /// CL_DEVICE_PARTITION_EQUALLY

183

!
and we will use only the first device: !

!
Part 5.
In this exercise we will work only with a SIMD version. We should load the corresponding file with a

kernel: !
!
should build the kernel with c++-option: !
!
And the function should be added to the kernel: !

92 const cl_device_partition_property props[] = {CL_DEVICE_PARTITION_EQUALLY,
2, 0};

93 ret = clCreateSubDevices (device_id, props, 80 , out_devices ,
&num_devices_ret);

94 checkErr(ret, "clCreateSubDevices");
95 /// CL_DEVICE_PARTITION_BY_COUNTS
96 // const cl_device_partition_property props[] =

{CL_DEVICE_PARTITION_BY_COUNTS, 1, 1, CL_DEVICE_PARTITION_BY_COUNTS_LIST_END,
0};

97 // ret = clCreateSubDevices (device_id, props, 80 , out_devices ,
&num_devices_ret);

98 // checkErr(ret, "clCreateSubDevices");
99 ///CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN
100 // const cl_device_partition_property props[] =

{CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN, CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE,
0};

101 // ret = clCreateSubDevices (device_id, props, 80 , out_devices ,
&num_devices_ret);

102 // checkErr(ret, "clCreateSubDevices");

Part of the source code of Solution/main4.cpp

Part of the source code of Solution/main4.cpp
109 cl_command_queue command_queue = clCreateCommandQueue(context,

out_devices[0], CL_QUEUE_PROFILING_ENABLE, &ret);
128 cl_program program = clCreateProgramWithSource(context, 1,
129 (const char **)&source_str, (const size_t *)&source_size, &ret);
139 clGetProgramBuildInfo(program, out_devices[0], CL_PROGRAM_BUILD_LOG, 0,

NULL, &log_size);

142 clGetProgramBuildInfo(program, out_devices[0], CL_PROGRAM_BUILD_LOG,
log_size, build_log, NULL);

Part of the source code of Solution/main5.cpp
60 fp = fopen("vector_add_kernel4.cl", "r");

Part of the source code of Solution/main5.cpp
127 ret = clBuildProgram(program, 1, &out_devices[0], "-x clc++", NULL, NULL);

Part of the source code of Solution/vector_add_kernel4.cl
1 void Add(float4 &a, float4 &b, float4 &sum)
2 {
3 sum = a+b;
4 }
5
6 __kernel void vector_add(__global float *A, __global float *B, __global float

*C) {
7
8 // Get the index of the current element
9 int i = get_global_id(0);

184

7_OpenCL/2_SIMDKF: description!
In the second exercise we will implement a more complex program with OpenCL. This program is SIMD

KF track fitter for the CBM experiment, which we already implemented with Vc, header files and OpenMP.
The program we will be run on CPU.

At first, the main file Fit.cxx, which call the fitting function, should be modified: the OpenCL part should
be added here to manage the devices and to distribute tracks between cores. This part should be added at
lines: !

!
The program should get the platform, then get a CPU device and create sub devices in order to be able

to measure the scalability. Then a context should be declared and within this context a command queue
and memory buffers should be created and the buffers should be filled with data. Then a program from the
Fit.cl file should be created and compiled, the log should be checked for the correctness of compilation, the
kernel should be created and initialised with arguments. When the kernel is ready it should be queued and
executed on the device. For profiling the event on kernel execution should be generated. When the
OpenCL program would finish, read the fitted tracks back to the host program and clean the memory.

The file with OpenCL kernel is Fit.cl. It is already partially created: the fitting functionality is described
there. The first task will be to describe there data structures used by the functions (see line 7): FieldVector,
FieldSlice, FieldRegion, Station, HitV, CovV and TrackV. The data structures should be identical to
those described in the FitClasses.h file. The second task is to write the kernel, which runs Fit() function
(see line 542).

To compile the program type make opencl. To run - type ./opencl n, where n is a number of threads to
be used.

When the program will be ready, check that it works correctly:
• run the program with 1 thread: ./opencl 1;
• go to the folder with QA macro: cd QualityHisto/;
• plot the fit QA histograms: root -l -b -q histo_particle.C; root -l Pulls.C;
• compare obtained KFTrackPull.pdf with the KFTrackPull_etalon.pdf, their should be almost the

same, minor changes are negligible.
After this go to the folder TimeHisto and measure the scalability:
• run bash script to collect the data: . make_data_opencl.sh ;
• plot the scalability: root -l make_timehisto_stat_complex_opencl.C .

10
11 // get the i-th group of 4
12 float4 a = vload4(i, A);
13 float4 b = vload4(i, B);
14
15 float4 sum;
16 Add(a,b,sum);
17
18 // store a+b to 4*i-th element
19 vstore4(sum, i, C);
20 }

Part of the source code of Solution/vector_add_kernel4.cl

Part of the source code of Fit.cxx
528 //TODO write your code here: get a platform, a CPU device, create

subdevices (use CL_DEVICE_PARTITION_EQUALLY),
529 //create a context, a command queue, memory buffers on the device, copy

data to the buffers,
530 //create a program from the kernel source, build the program, check the

logs, create a kernel, set its arguments,
531 //execute the kernel, read the fitted tracks, clean up the memory

185

7_OpenCL/2_SIMDKF: solution!
The host program should be modified as follows. At first, we should get the platform: !

!
Then we should get a CPU device, specifying CL_DEVICE_TYPE_CPU: !

!
Then the devise should be partitioned equally and each partition should contain tasks cores, the output

devices will be stored to the array cl_device_id out_devices[80] : !

!
Then a context with a queue should be created with profiling enabled: !

!
Then the buffers for tracks, stations and numbers of track fits and stations should be created and filled: !

Part of the source code of Solution/Fit.cxx
529 cl_platform_id platform_id = NULL;
530 cl_device_id device_id = NULL;
531 cl_uint ret_num_devices;
532 cl_uint ret_num_platforms;
533 cl_int ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms);
534 // ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_ALL, 1,
535 // &device_id, &ret_num_devices);
536 checkErr(ret, "clGetPlatformIDs");

Part of the source code of Solution/Fit.cxx
538 ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_CPU, 1,
539 &device_id, &ret_num_devices);
540 checkErr(ret, "clGetDeviceIDs");

Part of the source code of Solution/Fit.cxx
542 cl_uint num_devices_ret;
543 cl_device_id out_devices[80];
544 const cl_device_partition_property props[] = {CL_DEVICE_PARTITION_EQUALLY,

tasks, 0};
545 ret = clCreateSubDevices (device_id, props, 80 , out_devices ,

&num_devices_ret);
546 checkErr(ret, "clCreateSubDevices");

Part of the source code of Solution/Fit.cxx
548 // Create an OpenCL context
549 cl_context context = clCreateContext(NULL, 1, &out_devices[0], NULL, NULL,

&ret);
550
551 // Create a command queue
552 cl_command_queue command_queue = clCreateCommandQueue(context,

out_devices[0], CL_QUEUE_PROFILING_ENABLE, &ret);

Part of the source code of Solution/Fit.cxx
554 // Create memory buffers on the device for each vector
555 cl_mem track_mem_obj = clCreateBuffer(context, CL_MEM_READ_WRITE,
556 NTracksV * sizeof(TrackV), NULL, &ret);
557 cl_mem station_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
558 NStations * sizeof(Station), NULL, &ret);
559 cl_mem NStations_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
560 sizeof(int), NULL, &ret);
561 cl_mem NFits_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,

186

!
Then the program should be created and compiled with option “-x clc++”, which enables c++-like

functionality, and the log should be checked: !

!
Then the kernel should be created and its arguments should be set: !

562 sizeof(int), NULL, &ret);
563
564 // Copy tracks and stations to their respective memory buffers
565 ret = clEnqueueWriteBuffer(command_queue, track_mem_obj, CL_TRUE, 0,
566 NTracksV * sizeof(TrackV), TracksV, 0, NULL, NULL);
567 checkErr(ret, "clEnqueueWriteBuffer");
568 ret = clEnqueueWriteBuffer(command_queue, station_mem_obj, CL_TRUE, 0,
569 NStations * sizeof(Station), vStations, 0, NULL, NULL);
570 checkErr(ret, "clEnqueueWriteBuffer");
571 ret = clEnqueueWriteBuffer(command_queue, NStations_mem_obj, CL_TRUE, 0,
572 sizeof(int), &NStations, 0, NULL, NULL);
573 checkErr(ret, "clEnqueueWriteBuffer");
574 ret = clEnqueueWriteBuffer(command_queue, NFits_mem_obj, CL_TRUE, 0,
575 sizeof(int), &NFits, 0, NULL, NULL);
576 checkErr(ret, "clEnqueueWriteBuffer");

Part of the source code of Solution/Fit.cxx

Part of the source code of Solution/Fit.cxx
578 // Create a program from the kernel source
579 cl_program program = clCreateProgramWithSource(context, 1,
580 (const char **)&source_str, (const size_t *)&source_size, &ret);
581
582 // Build the program
583 ret = clBuildProgram(program, 1, &out_devices[0], "-x clc++", NULL, NULL);
584 checkErr(ret, "clBuildProgram");
585
586 // Shows the log
587 char* build_log;
588 size_t log_size;
589 // First call to know the proper size
590 clGetProgramBuildInfo(program, out_devices[0], CL_PROGRAM_BUILD_LOG, 0,

NULL, &log_size);
591 build_log = new char[log_size+1];
592 // Second call to get the log
593 clGetProgramBuildInfo(program, out_devices[0], CL_PROGRAM_BUILD_LOG,

log_size, build_log, NULL);
594 build_log[log_size] = '\0';
595 if(log_size > 1)
596 cout << build_log << endl;
597 delete[] build_log;

Part of the source code of Solution/Fit.cxx
599 // Create the OpenCL kernel
600 cl_kernel kernel = clCreateKernel(program, "vector_add", &ret);
601
602 // Set the arguments of the kernel
603 ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&track_mem_obj);
604 ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&station_mem_obj);
605 ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void

*)&NStations_mem_obj);
606 ret = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *)&NFits_mem_obj);

187

!
Then the kernel should be executed, the event should be generated on execution, when it will be

finished - tracks should be read back and event should be profiled: !

!
In the end the memory should be cleaned: !

!
In the Fit.cl file the classes should be described. They can be copied from FitClasses.h replacing

Fvec_t with float4. And the kernel should be added: !

Part of the source code of Solution/Fit.cxx
611 size_t global_item_size = NTracksV; // Process the entire lists
612 // size_t local_item_size = NCopy/4; // Process in groups of 64
613 size_t local_item_size = 1; // Process in groups of 64
614
615 cl_event event;
616
617 ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
618 &global_item_size, &local_item_size, 0, NULL, &event);
619 checkErr(ret, "clEnqueueNDRangeKernel");
620
621 ret = clWaitForEvents(1 , &event);
622 checkErr(ret, "clWaitForEvents");
623
624 // Read the memory buffer track_mem_obj on the device to the local variable

TracksV
625 ret = clEnqueueReadBuffer(command_queue, track_mem_obj, CL_TRUE, 0,
626 NTracksV * sizeof(TrackV), TracksV, 0, NULL, NULL);
627 checkErr(ret, "clEnqueueReadBuffer");
628
629 cl_ulong time_start, time_end;
630 clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START,

sizeof(time_start), &time_start, NULL);
631 clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(time_end),

&time_end, NULL);
632
633 total_time += (time_end - time_start) / (1.e3 * (double)NTracks *

(double)NFits);

Part of the source code of Solution/Fit.cxx
636 // Clean up
637 ret = clFlush(command_queue);
638 ret = clFinish(command_queue);
639 ret = clReleaseKernel(kernel);
640 ret = clReleaseProgram(program);
641 ret = clReleaseMemObject(track_mem_obj);
642 ret = clReleaseMemObject(station_mem_obj);
643 ret = clReleaseMemObject(NStations_mem_obj);
644 ret = clReleaseMemObject(NFits_mem_obj);
645 ret = clReleaseCommandQueue(command_queue);
646 ret = clReleaseContext(context);

Part of the source code of Solution/Fit.cxx
701 __kernel void vector_add(__global TrackV *t,
702 __global Station *vStations,
703 __global int *NStations,
704 __global int *NFits)
705 {

188

706 int i = get_global_id(0);
707 TrackV curTrack = t[i];
708 Station vStations_local[10];
709 int iStation = 0;
710 for(iStation = 0; iStation<*NStations; iStation++)
711 {
712 vStations_local[iStation] = vStations[iStation];
713 // printf("cl: %f %f \n", vStations_local[iStation].z.x,

vStations[iStation].z.x);
714 // printf("cl: %f %f \n", vStations_local[iStation].thick.x,

vStations[iStation].thick.x);
715 // printf("cl: %f %f \n", vStations_local[iStation].zhit.x,

vStations[iStation].zhit.x);
716 // printf("cl: %f %f \n", vStations_local[iStation].RL.x,

vStations[iStation].RL.x);
717 // printf("cl: %f %f \n", vStations_local[iStation].RadThick.x,

vStations[iStation].RadThick.x);
718 // printf("cl: %f %f \n", vStations_local[iStation].logRadThick.x,

vStations[iStation].logRadThick.x);
719 // printf("cl: %f %f \n", vStations_local[iStation].Sigma2.x,

vStations[iStation].Sigma2.x);
720 // printf("cl: %f %f \n", vStations_local[iStation].Sigma.x,

vStations[iStation].Sigma.x);
721 // printf("cl: %f %f \n", vStations_local[iStation].Sy.x,

vStations[iStation].Sy.x);
722 }
723 int iTimes = 0;
724
725 for(iTimes = 0; iTimes<*NFits; iTimes++)
726 Fit(curTrack,vStations_local,*NStations);
727 // if(i==0) printf("cl: %f %f %f %f ", curTrack.T[0].x, curTrack.T[5].x,

curTrack.C.C00.x, curTrack.C.C44.x);
728
729 t[i] = curTrack;
730 }

Part of the source code of Solution/Fit.cxx

m]µ) [mc - xrecoResidual (x
-200 -150 -100 -50 0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Entries 1001

Underflow 9

Overflow 4

Constant 36.15

Mean 0.4241

Sigma 39.14

m]µ) [mc - yrecoResidual (y
-200 -150 -100 -50 0 50 100 150 200
0

10

20

30

40

50

Entries 1001

Underflow 4

Overflow 5

Constant 39.86

Mean 0.8069

Sigma 36.68

) mradmc
x - treco

x
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

Entries 1001

Underflow 2

Overflow 2

Constant 117.4

Mean 0.0137

Sigma 0.3056

) mradmc
y - treco

y
Residual (t

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

Entries 1001

Underflow 1

Overflow 1

Constant 157.5

Mean 0.007444

Sigma 0.2293

*100%mc)/pmc - precoResidual (p
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

Entries 1001

Underflow 0

Overflow 0

Constant 84.79

Mean -0.006436

Sigma 0.9059

Pull x
-6 -4 -2 0 2 4 6

0

10

20

30

40

50

Entries 1001

Underflow 3

Overflow 2

Constant 40.26

Mean -0.05202

Sigma 1.111

Pull y
-6 -4 -2 0 2 4 6

0

10

20

30

40

50

Entries 1001

Underflow 1

Overflow 2

Constant 42.72

Mean 0.0103

Sigma 1.036

Pull tx
-6 -4 -2 0 2 4 6

0

10

20

30

40

50

Entries 1001

Underflow 2

Overflow 3

Constant 37.76

Mean 0.0679

Sigma 1.186

Pull ty
-6 -4 -2 0 2 4 6

0

10

20

30

40

50

Entries 1001

Underflow 2

Overflow 4

Constant 43.38

Mean -0.001895

Sigma 1.036

Pull q/p
-6 -4 -2 0 2 4 6

0

5

10

15

20

25

30

35

40

45

Entries 1001

Underflow 7

Overflow 1

Constant 36.38

Mean -0.05406

Sigma 1.184

189

!
When plotting the fitting results the picture should almost as the etalon one, which is obtained with the

single binary, the difference is caused by different optimisation of the compilers:
The scalability with OpenCL looks like follows:

!
The platos with smaller slope are caused by hyper threading.

Number of cores
0 10 20 30 40 50 60 70 80

s
µ

Tr
ac

ks
 /

0

10

20

30

40

50

60

70

190

4.1. OpenCL on GPU!
!
The exercises are at /home/kulakov/Exersises/7_OpenCL
One needs to create a folder at the Students folder and to copy the exercises into it. This will be your

working folder. !
To setup the environment run: . ~/setOCL.sh
To use local GPU in your programs you need to set: export DISPLAY=:0. It tells to the X11 applications,

which screen it should run on. The format of the DISPLAY variable is hostname:display. The omitted
hostname means that the local display will be used.

7_OpenCL/3_First_GPU: description!
One needs to run on GPU the simdized example from the previous exercise (main3.cpp).!!

7_OpenCL/3_First_GPU: solution!
To use GPU the following two changes must be done:!!
1. Change device type from CL_DEVICE_TYPE_CPU to CL_DEVICE_TYPE_GPU.!
2. Local_item_size must be set correspondingly to the system. The maximum number of tasks, that the

compute unit can proceed, is an appropriate value: size_t local_item_size = 256.!!
Scalar:!

!
SIMD:!

!
We see the negative speed up, because the tasks are very small.!!!

7_OpenCL/4_SIMDKF_opencl1.2_vector_GPU!
This exercise is the same as the solution of the exercise in the previous week.
Scalability can not be measured as before on GPU, since it can not be divided on sub-devices. The most

important for GPU is a speed dependence on local item size, since load of the system depends on it. It is
proposed to measure the dependence up to local_item_size=128, since the local memory resources are
limited.

Since only one work group can be run only on one computing unit, we must see a scalable dependence
up to the maximum number of threads on a computing unit (16 SIMD threads) - it will show gradual load of
the computing unit. Ones the local item size exceeds the computing unit capacity, the whole working group
will be divided in larger sub-tasks, this will lead to overhead decrease. Therefore, a stair-like dependence
with gradually achieved saturation must be observed.

Typical output after the solution
Parallel time = 0.519 ms
Scalar time = 0.006 ms

Typical output after the solution
Parallel time = 0.532 ms
Scalar time = 0.009 ms

191

To measure the scalability:
• set display to local: export DISPLAY=:0
• run the program with 1 thread: ./opencl 1
• go to the folder TimeHisto and measure the scalability:
• run bash script to collect the data: . make_data_opencl_GPU.sh
• if you get warnings in output file (make_opencl_GPU_time.dat) from GPU, replace them with

void string. You can use ctrl-\ command in nano to perform the replacement;
• set display to standard: export DISPLAY=localhost:11.0
• plot the scalability: root -l make_timehisto_stat_complex_opencl_GPU.C . !

The observed scalability shows linear increase in
speed up to 16, then saturation is achieved as
predicted. !!!!!!

7_OpenCL/5_SIMDKF_opencl1.1_vector_GPU!
!
This exercise is changed to OpenCL1.1 to make it
more portable (for instance, one can not run opencl1.2
on NVIDIA GPUs). OpenCL1.1 is C based, therefore
all object oriented constructs were excluded from the
code.
The measuring procedure for scalability is the same.
The observed scalability shows linear increase in
speed up to 16, then each next 16-items-region
(17-32, 33-48, …) shows the same dependence.
Some of the measurements in the picture a lower,
possible reason is particle load of the system by other
users. Here we can see a predicted stair like
dependence: each time, when the local item size is not
dividable by the computing unit size, we use it
inefficiently, the tasks will have different size and at the
final stages some parts of the computing unit will be
idle.

192

HPC Practical Course
 Part 4.2

!
Intel Xeon Phi

V. Akishina, I. Kisel,
I. Kulakov, M. Zyzak

Goethe University of Frankfurt am Main
!

02 Jul 2014

02 Jul 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak / 7

xeon-phi-dev Server

2

Intel Xeon CPU E5-2680 Intel Xeon Phi

Intel Xeon Phi

193

02 Jul 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak / 7

Intel Xeon Phi

3

• 60 physical cores

• 4 hardware threads per core

• 512-bit vector registers (16 floats)

• Cores are connected through the bidirectional ring bus

• 8 GB of the GDDR5 memory:

- 16 32-bit channels

- up to 352 GB/s maximum memory bandwidth

- 8 distributed memory controllers

• L1 cache latency is about 3 cycles, L2 - down to 14-15 cycles

02 Jul 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak / 7

Core/VPU Load Operation

4

CHAPTER 5 XEON PHI CACHE AND MEMORY SUBSYSTEM

73

Memory Transactions Flow
A good understanding of how memory requests are handled by the memory controller may help in root-causing
application performance issues running on the Xeon Phi coprocessor. This section will look at the details of how memory
transactions are generated and handled by various servers and consumers of the data inside the Xeon Phi coprocessor.

Cacheable Memory Read Transaction
The memory address ranges can be divided into two broad categories: the cacheable and uncacheable memory
ranges. Memory marked as uncacheable is not saved into cache for later access and directly delivered to the requester.
For performance reasons, most memory transactions of interest to developers of applications running on Xeon
Phi are cacheable. The memory transactions for address ranges that are cacheable in the core L1 and L2 caches are
described below and shown in Figure 5-7.

Core

Load

Load data
Update L1

Update L2

Duplicate L2

Remote L2 hit
L1 hit

L2 hit

L1 miss L2 miss

TD miss

GDDR read

L1 L2 TD/Ring Remote
L2

GDDR

Update TD

Figure 5-7. Core/VPU load operation

 1. A read transaction request for data is generated from a core or vector unit.

 2. If the data are found in L1 cache, the data are returned to the core, or else a local L2 lookup
happens.

 3. On a local L2 miss, a lookup to the TD happens. The TD contains all of the L2 occupancy
information. The TD entry looked up might not be local to the core suffering the cache
miss and sent through ring interconnect.

 4. If the data are found in the L2 cache, the data are returned to the requesting core through
an L1 update.

 5. If not found in the L2 cache, the data have to be fetched from the GDDR memory to the
L2 cache. The TD converts the address into a physical address and submits the physical
addresses to the memory controller.

www.it-ebooks.info

• The core or VPU generates load signal.

• If data is not in L1, local L2 is checked.

• On a local L2 miss, a lookup to the TD (tag directory) happens.

• TD looks over remote L2. If the data are found in the L2 cache, the data are
returned to the requesting core through an L1 update.

• If not found in the L2 cache, the data have to be fetched from the GDDR memory
to the L2 cache through the memory controller.

194

02 Jul 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak / 7

Core Structure

5

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Each Intel® Xeon Phi™ Coprocessor core is a
fully functional multi-thread vector unit

A new vector unit: 512 bits wide!
• 32 512-bit vector registers per context

– Each holds 16 floats or 8 doubles
– ALUs support int32/float32 operations,

float64 arithmetic, int64 logic ops
– Ternary ops including Fused-Multiply-Add
– Broadcast/swizzle support
– 8 vector mask registers for per lane

conditional operations
– Most ops: 4-cycle latency, 1-cycle thrput

– Matches 4-cycle round robin of integer unit
– Mostly IEEE 754 2008 compliant

– Not supported: MMX™ technology,
Streaming SIMD Extensions (SSE), Intel®
Advanced Vector Extensions (Intel AVX)

 7

Ring

Scalar
Registers

Vector
Registers

512K L2 Cache

32K L1 I-cache
32K L1 D-cache

Vector
Unit

Scalar
Unit

U V

Instruction Decoder • Scalar Unit:

- Two pipelines

- Scalar pipeline 1 clock latency

• Vector Unit:

- 32 512-bit vector registers per thread

- 8 16-bit mask registers per thread

- Most operations: 4-cycle latency, 1-cycle throughput

- Does not support MMX, SSE or AVX instruction set, supports
only IMIC instructions

Materials: presentations of Klaus-Dieter Oertel, Software and Services Group, Intel Corporation

02 Jul 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak / 7

Exercise 1. Pi

• Compile the program with SSE instructions and run the program on CPU:
- icc pi.cpp -inline-forceinline -std=c++11 -O3 -g -msse -openmp -DHOST -o piSSE -lVc
- ./piSSE 32

• Check the program on XeonPhi:
- icc pi.cpp -inline-forceinline -std=c++11 -O3 -g -mmic -openmp -L/home/mzyzak/Vc/vc/

build/lib -o piMIC -lVc_MIC
- . runMIC.sh 240

• Optimize the program for the maximum parallelisation speedup.
• Vectorize the CalculatePiSIMD() function.
• Check the speedup of vectorization and total speedup for SSE instructions on CPU.
• Compile the program with AVX instructions and run the program on CPU:

- icc pi.cpp -inline-forceinline -std=c++11 -O3 -g -mavx -openmp -DHOST -o piAVX -lVc
- ./piAVX 32

• Check the speedup of vectorization and total speedup on Xeon Phi.
• Check the speedup from hyper threading for the program on a one core of Xeon Phi.

6

195

02 Jul 2014 HPC, V. Akishina, I. Kisel, I. Kulakov, M. Zyzak / 7

Exercise 2. SIMD KF on Xeon Phi

7

• Plot scalability vs number of cores on a one Xeon Phi card:

- . make_data_omp_mic0.sh or . make_data_omp_mic1.sh

- root -l -b -q plotMic0Scalability.C or root -l -b -q plotMic1Scalability.C

• Check speedup from hyper threading

• Plot total scalability on CPU with two Xeon Phi cards:

- . make_data_omp_local_mic0_mic1.sh

- root -l -b -q plotCombinedScalability.C

• Check the SIMD scalability (vs SIMD width) on CPU:

- . make_data_singleVc_host.sh

- root -l -b -q make_timehisto_SSE.C

- . make_data_avxVc_host.sh

- root -l -b -q make_timehisto_AVX.C

• Check the SIMD scalability (vs SIMD width) on Xeon Phi:

- . make_data_singleVc_mic.sh

- root -l -b -q make_timehisto_IMIC.C

• Explain the last plot. Make the scalability vs SIMD width linear.

196

4.2. Intel Xeon Phi!
!
The exercises are at /micfs/ikulakov/Exersices/8_XeonPhi
One needs to create a folder in the Students folder and to copy the exercises into it. This will be your

working folder. !
To setup the environment run: . /home/mzyzak/SetHost.sh !

8_XeonPhi/1_PI: description!
In this exercise one needs to maximally parallelize the Pi exercise (using Vc, openMP and pthread) and

test it on the CPU with AVX instructions (8 entries per vector) and on the Phi system. The ICC compiler has
to be used on this server. !

!
To compile the example with SSE instructions and run it use:
icc pi.cpp -inline-forceinline -std=c++11 -O3 -g -msse -openmp -DHOST -o piSSE -lVc; ./piSSE
To compile the example with SSE instructions and run it use:
icc pi.cpp -inline-forceinline -std=c++11 -O3 -g -mavx -openmp -DHOST -o piAVX -lVc; ./piAVX !
To compile the example for Phi and run it use:
icc pi.cpp -inline-forceinline -std=c++11 -O3 -g -mmic -openmp -L/home/mzyzak/Vc/vc/build/lib -o

piMIC -lVc_MIC; . runMIC.sh 240
The script runMIC.sh logins to mic0 card, copies executable there and runs it. !

!

Part of the source code of pi.cpp

53 #pragma omp parallel for reduction(+ : sum) private(i,x) num_threads(nThreads)
54 for (i=1;i<= num_steps; i++){
55 x = (i-0.5)*step;
56 sum = sum + 4.0/(1.0+x*x);
57 }
58
59 pi = step * sum;

Part of the source code of runMIC.sh

3 echo "Start"
4
5 PREF0=`pwd`
6
7 echo "Initializing data on the MIC"
8 ssh mic0 "
9 export LD_LIBRARY_PATH="/micfs/mzyzak/"

10
11 cp $PREF0/piMIC .
12 ./piMIC ${1}
13 rm -rf a.out
14 exit
15 "
16
17 echo "Done"

197

8_XeonPhi/1_PI: solution!
Since each iteration has similar calculations, it is easy to vectorize the procedure. Loop iterations are

grouped by vecN iterations in a group, then vecN results are summed together. !

!!
The program is already parallelized between cores using openMP, but the cores load can be increased

using set_affinity, therefore one needs to add the code, which will fix each thread on its specific core: !

Part of the source code of pi_solution.cpp

68 float_v x, sum[nThreads];
69 double start_time;
70
71 #ifdef HOST
72 long num_steps = 10000000 * nThreads;
73 #else
74 long num_steps = 10000000 * nThreads;
75 #endif
76
77 float_v step = 1.0f/(float) num_steps;
78
79 start_time = omp_get_wtime();
80
81 for(int iTh=0; iTh<nThreads; iTh++)
82 sum[iTh]=0.f;
83
84 float_v index(int_v::IndexesFromZero());
85 index -= 0.5f;
86
87 #pragma omp parallel for private(i,x) num_threads(nThreads)
88 for (i=1;i<= num_steps; i+= vecN){
89 x = (float_v(i) + index)*step;
90 sum[omp_get_thread_num()] += float_v(4.0f)/(float_v(1.0f)+x*x);
91 }
92
93 float_v sumSIMD=0.f;
94 for(int iTh=0; iTh<nThreads; iTh++)
95 sumSIMD += sum[iTh];
96
97 double sumScalar = 0.;
98 for(int iV=0; iV<vecN; iV++)
99 sumScalar += sumSIMD[iV];

100
101 pi = step[0] * sumScalar;

Part of the source code of pi_solution.cpp

129 #pragma omp parallel num_threads(nThreads)
130 {
131 int s;
132 cpu_set_t cpuset;

198

!
Results obtained with SSE: !

!
Expected speed up factor of 4 is achieved.
Results obtained with AVX: !

!
AVX vectors have 8 entires, but speed up factor of 4.5 is achieved only. Some AVX operations are

emulated with SSE, some are implemented in hardware, but take more cycles than corresponding SSE
operations.

Results obtained with Phi: !

!
Expected SIMD speed up factor is 16, a probable reason why we get 4 is that the scalar version is auto-

vectorized.
To forbid auto-vectorization, one can recompile with -no-vec flag. !

!
The rise of speed up to 32 and decrease of precision is possibly compiler related. !!

133 int cpuId = threadNumberToCpuMap[omp_get_thread_num()];
134 pthread_t thread = pthread_self();
135 CPU_ZERO(&cpuset);
136 CPU_SET(cpuId, &cpuset);
137 s = pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
138 if (s != 0) {
139 std::cout << " pthread_setaffinity_np " << std::endl;
140 handle_error_en(s, "pthread_setaffinity_np");
141 }
142 }

Part of the source code of pi_solution.cpp

Typical output after the solution

Scalar: pi is 3.13613 in 0.0524721 seconds
SIMD: pi is 3.13614 in 0.01302 seconds, speedup is 4.0301
Parallel: pi is 3.13614 in 0.0130408 seconds, speedup is 4.02369

Typical output after the solution

Scalar: pi is 3.13956 in 0.0579562 seconds
SIMD: pi is 3.13956 in 0.0133219 seconds, speedup is 4.35045
Parallel: pi is 3.13956 in 0.01331 seconds, speedup is 4.35435

Typical output after the solution

Initializing data on the MIC
Scalar: pi is 3.14132 in 0.191382 seconds
SIMD: pi is 3.14132 in 0.0480771 seconds, speedup is 3.98073
Parallel: pi is 3.14284 in 0.0002443 seconds, speedup is 783.39

Typical output after the solution

Scalar: pi is 3.09941 in 1.2027 seconds
SIMD: pi is 3.14132 in 0.037642 seconds, speedup is 31.951
Parallel: pi is 3.14284 in 0.000241962 seconds, speedup is 4970.61

199

8_XeonPhi/2_SIMDKF: description!
This exercise is the same as the solution of the exercise in the previous week. !
1. You need to measure the scalability on first 8 cores of the Phi card (takes ~1 minute):
• go to the folder TimeHisto
• run the bash script to collect the data: . make_data_omp_mic0.sh
• build the scalability: root -l -q -b plotMic0Scalability.C
• plot the picture: evince ScalabilityMic0.pdf
If the Phi card mic0 is busy, you can use another card mic1 by change 0 to 1 in the instructions above. !
On the picture below you can see efficiency of the hyper-threaded cores: the 2-nd thread on the same

physical core adds about 40% of speed, the 3-rd one - about 10%, the 4-rd - less than 5%.

!
2. You need to measure the scalability on the whole system (CPU+2 Phi cards, takes ~4 minutes):
• go to the folder TimeHisto
• run the bash script to collect the data: . make_data_omp_local_mic0_mic1.sh
• build the scalability: root -l -q -b plotCombinedScalability.C
• plot the picture: evince ScalabilityHostMic0Mic1.pdf !

200

!
The observed scalability shows linear increase in speed up to 32, which is the number of CPU cores,

then linear increase up to 512 cores. !

201

3. You need to measure the SSE SIMD-scalability on the CPU (takes ~0.5 minutes). SIMD-scalability is
defined as dependence of speed on number of entries in SIMD-vector, which are used. To measure it you
need to:

• go to the folder TimeHisto
• run the bash script to collect the data: . make_data_singleVc_host.sh
• build the scalability: root -l -q -b make_timehisto_SSE.C
• plot the picture: evince Scalability_SSE.pdf

!
The resulted dependence is linear as expected. !
4. You need to measure the AVX SIMD-scalability on the CPU (takes ~0.5 minutes):
• go to the folder TimeHisto
• run the bash script to collect the data: . make_data_avxVc_host.sh
• build the scalability: root -l -q -b make_timehisto_AVX.C
• plot the picture: evince Scalability_AVX.pdf !

202

The resulted dependence is linear as expected, but the speed up is slightly smaller than 8. !
5. You need to measure the SIMD-scalability on Phi (takes ~5 minutes):
• go to the folder TimeHisto
• run the bash script to collect the data: . make_data_singleVc_mic.sh
• build the scalability: root -l -q -b make_timehisto_IMIC.C
• plot the picture: evince Scalability_IMIC.pdf

!
The resulted dependence is not linear. This is a task for you to fix the problem.

203

!!
8_XeonPhi/2_SIMDKF: solution!

The reason of the nonlinear SIMD scalability is that the unused entries in vectors are not initialized.
When operating with non-initialized values floating point exceptions can appear. For example, division by
zero or operations with NaN. Such exceptions need additional time to handle.

To fix this problem one can initialize all unused entries by a value of the first used entry. !

!

The resulting scalability is linear, speed up is close to 16.

Part of the source code of Fix_solution.cxx

365 for(int it=vecN; it<Fvec_t::Size; it++){
366 for(int ista=0; ista<NStations; ista++){
367 hxmem[ista][it] = hxmem[ista][0];
368 hymem[ista][it] = hymem[ista][0];
369 hwmem[ista][it] = 1.;
370 }
371 }

204

References!

!
!

1. Unix shell !
 https://pangea.stanford.edu/computing/unix/shell/commands.php
 http://www.gnu.org/software/bash/manual/bashref.html !
2. C++ !
 http://en.cppreference.com/w/Main_Page
 Bjarne Stroustrup “Programming: Principles and Practice Using C++”
 Book by Bjarne Stroustrup “The C++ Programming Language”. !
3. SIMD !
 http://msdn.microsoft.com/de-de/library/y0dh78ez(v=vs.90).aspx
 Intel® 64 and IA-32 Architectures Optimization Reference Manual !
4. Kalman filter track fit !
 http://web-docs.gsi.de/~ikisel/17_CPC_178_2008.pdf !
5. Vc !
 http://code.compeng.uni-frankfurt.de/projects/vc !
6. OpenMP !
 http://openmp.org/wp/
 http://www.openmp.org/mp-documents/spec30.pdf !
7. ITBB !
 http://threadingbuildingblocks.org
 O'Reilly Media, “Intel Threading Building Blocks” !
8. OpenCL !
 http://www.khronos.org/opencl/
 http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
 http://de.geforce.com/hardware/desktop-gpus/geforce-gtx-480/architecture !
9. Xeon Phi !
 http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
 https://software.intel.com/sites/default/files/managed/f5/60/intel-xeon-phi-coprocessor-

 quick-start-developers-guide-mpss-3.2.pdf

205

!

!

