Detector Resolution

Using the full chain of the detector simulation, track reconstruction and $ V_0$ selection, the resolution of the kinematic variables can be estimated. Fig. 6.5 shows residuals for kinematical variables $ x_F$ and $ p_t^2$ for $ K^0_S ,\, \Lambda$ and $ \bar \Lambda$. The Feynman scaling variable ($ x_F$) describes the longitudinal momentum $ P_z$ of the scattering product, expressed in terms of the maximally possible momentum $ P_{zmax}$,

$\displaystyle x_F=\frac{P_z}{P_{z max}}\: .$ (6.1)

The quoted resolutions are from fits of Gaussians to the residual distributions (see Fig. 6.5), they are summarized below:

$\displaystyle \sigma_{x_F(K^0_S)} =(0.32 \pm 0.01)\,\,\,\,\,\, \, \,\,\,\, \, \, \sigma_{p_t^2(K^0_S)} =(2.5 \pm 0.1)\,\,\,MeV^2/c^2$ (6.2)

$\displaystyle \sigma_{x_F(\Lambda)} =(0.47 \pm 0.01)\,\,\,\,\,\, \, \,\,\,\, \, \, \sigma_{p_t^2(\Lambda)} =(3.2 \pm 0.2)\,\,\,MeV^2/c^2$ (6.3)

$\displaystyle \sigma_{x_F(\bar \Lambda)} =(0.46 \pm 0.01)\,\,\,\,\,\, \, \,\,\,\, \, \, \sigma_{p_t^2(\bar \Lambda)} =(4.7 \pm 0.3)\,\,\,MeV^2/c^2$ (6.4)

Figure 6.5: Top: Resulting residual distributions $ X_{gen}$- $ X_{rec}$ for the $ x_F$ variable of $ K^0_S ,\, \Lambda ,\, \bar \Lambda$. Bottom: Resulting residual distributions $ X_{gen}$-$ X_{rec}$ for the $ p_t^2$ variable of $ K^0_S ,\, \Lambda ,\, \bar \Lambda$. Only $ V_0$ candidates which were selected by the same analysis algorithm are used for these plots.

The bin widths are chosen 0.015 for $ x_F$ variable and 0.2 $ \rm {MeV^2/c^2}$ for $ p_t^2$.

Yury Gorbunov 2010-10-21