

ATLAS measurements of the ridge(s) in p+Pb collisions using two-particle correlations and cumulants

Sooraj Radhakrishnan

On behalf of the ATLAS collaboration Phys.Rev.Lett. 110,182302(2013) and arXiv:1303.2084

LowX Israel2013 May 30 – June 4

Ridge in Heavy Ion collisions

- Long-range structures in $\Delta \eta$ seen in pair distributions on the near side $(\Delta \phi \sim 0)$ and away side $(\Delta \phi \sim \pi)$ by RHIC and LHC experiments.
- Well explained by initial shape and density fluctuations followed by hydrodynamic evolution.

Ridge in p+p collisions!

(CMS Collaboration: JHEP09(2010)091)

- A ridge structure extended in pseudorapidity on the near side (Δφ ~ 0), was observed in high multiplicity p+p collisions by CMS, albeit much smaller in magnitude compared to that in heavy ion collisions,
- Source of these correlations are not well understood.
 - Initial state (CGC) effects?
 - Flow as in heavy ions?

Ridge in p+Pb collisions

- Not surprisingly(!), a similar near side ridge is observed in p+Pb collisions by CMS, ALICE and ATLAS.
- Nature and origin of these ridge correlations?

Ridge in p+Pb collisions

- Not surprisingly(!), a similar near side ridge is observed in pPb collisions by CMS, ALICE and ATLAS.
- Is there an away side ridge?
 - If so, how does it look like?
 - *p_T*, multiplicity and charge dependence?

ATLAS Detector

ATLAS Detector

- Inner Detector Used the reconstructed charged particle tracks in Inner detector for constructing correlations
- Forward Calorimeter(Pb fragmentation side) Used for determination of 'event activity class'

Event activity classes

- 'Event activity' is characterized either by the Number of reconstructed tracks with pt> 0.4Gev in the Inner Detector or by the Energy deposited in the Forward Calorimeter in the Pb fragmentation side
- Using Forward Calorimeter energy implies no autocorrelation bias in event activity class definition.

Event activity classes in ΣE_T^{Pb}

- 12 fine and 4 broad event activity classes in ΣE_T^{Pb} defined for detailed analysis
 - ΣE_T^{Pb} >80 GeV contains top 2% and ΣE_T^{Pb} < 20 GeV contains bottom 52% of all events.

Ridge and event activity

The ridge structure is absent in the peripheral event class while its clearly visible in the central event class

Per Trigger Yield (PTY)

 The correlations in central and peripheral event classes can be compared at the (background subtracted) Per Trigger Yield (Y(Δφ)) level.

• $Y(\Delta \Phi) = \frac{N^{pairs}(\Delta \Phi)}{N^{trig}} - b_{ZYAM}$

 $N^{trig} \Rightarrow$ Number of trigger particles in a given kinematic window. $N^{pairs}(\Delta \phi) \Rightarrow$ Number of pairs in the kinematic window at $\Delta \phi$ $b_{ZYAM} \Rightarrow$ Combinatorial background from ZYAM

- Peripheral event class shows no near side ridge, but the away side peak from jet fragmentation
- Central event class shows near side ridge and an enhancement on the away side

Integrated yield on near side and away side

- Integrated yields (Y_{int}) defined in the windows $0 < |\Delta \phi| < \frac{\pi}{3}$ and $\frac{2\pi}{3} < |\Delta \phi| < \pi$ for near side and away side respectively.
- The yield difference between central and peripheral classes is nearly constant in centrality!

PTY for different p_T combinations

Similar p_T dependence, near and away side

- Recoil subtracted away side has a very similar p_T dependence as near side
- Recoil subtraction doesn't significantly affect near side
- Ridge persists at least up to 6 GeV
- Ridge yield reaches maximum around 3 GeV and then drops

Fourier analysis on recoil subtracted correlation

Extract Fourier coefficients from recoil subtracted correlation function $c_n = \langle C_{R,S}(\Delta \phi) \cos(n\Delta \phi) \rangle; c_n \leftrightarrow v_{n,n}$

Fourier analysis on recoil subtracted correlation

Extract Fourier coefficients from recoil subtracted correlation function $c_n = \langle C_{R,S}(\Delta \phi) \cos(n\Delta \phi) \rangle; c_n \leftrightarrow v_{n,n}$

• Factorize as in Heavy Ion 2PCs $c_n(p_T^a, p_T^b) = s_n(p_T^a) s_n(p_T^b)$ $s_n(p_T^a) = c_n(p_T^a, p_T^b)/\sqrt{c_n(p_T^b, p_T^b)}$

Check factorization of s_n

• Use different p_T windows for factorization

Factorization is valid at 10-20% level for s₂

Charge Dependence

Results identical for same charged and opposite charged pairs

Little contribution from jets

Comparison with Heavy Ions

- Similar *p_T* dependence for second order harmonics
 - Agreement with hydro?
- Relative magnitudes of second and third harmonics different
 - Effect of larger viscosity?

Results from 4 particle and 2 particle cumulants

- Four particle cumulants suppress short range two particle correlations
- v₂{4} values have similar p_T and centrality dependence as the recoil subtracted 2PC values
 - Some deviations at lower centrality

Comparison with Hydro

Hydro calculations: P. Bozek and W. Broniowski, Phys. Lett. B 718 (2013) 1557

Hydro calculations consistent with v₂(2PC) and v₂{4}

Comparison to CGC

- Ridge can also result
 from initial state effects
 (eg: Color Glass
 Condensate (C.G.C)
 effects)
- Ridge yield and p_T dependence well described by CGC calculations as well

Summary

- Long Range azimuthal correlations (ridge) observed by ATLAS in p+Pb collisions
- Symmetric near side and away side ridge(s)
 - Similar p_T and centrality dependence
- Ridge yield and Fourier coefficients have similar p_T dependence as in heavy ion collisions
- Cumulant analysis shows similar p_T and centrality dependence for $v_2\{4\}$
- Agreement with Hydro calculations, Ridge yield and p_T dependence reproduced by CGC calculations as well.

BACK UP

Recoil subtracted correlation

Mean N_{ch} in event activity classes

$\Sigma E_{\mathrm{T}}^{\mathrm{Pb}}$ range [GeV]	> 110	95-110	80-95	65-80	55-65	45 - 55	35 - 45	25 - 35
Percentage $[\%]$	0.21	0.45	1.24	3.11	3.99	6.37	9.71	13.80
$\langle \Sigma E_{\mathrm{T}}^{\mathrm{Pb}} \rangle [\mathrm{GeV}]$	122.4	101.2	86.4	71.4	59.6	49.7	39.7	29.7
$\langle N_{ m ch} angle$	183.1 ± 8.2	$159.9{\pm}7.2$	141.3 ± 6.4	122.5 ± 5.5	107.2 ± 4.8	$93.3{\pm}4.2$	78.8 ± 3.6	$63.3{\pm}2.9$
$\sigma_{N_{ m ch}}$	$37.0{\pm}2.1$	$33.1{\pm}1.9$	$31.5{\pm}1.8$	$29.6{\pm}1.7$	$27.6{\pm}1.6$	$25.9{\pm}1.5$	24.1 ± 1.4	$21.8{\pm}1.2$
$\Sigma E_{\mathrm{T}}^{\mathrm{Pb}}$ range [GeV]	20 - 25	15 - 20	10 - 15	< 10	> 80	55-80	25 - 55	< 20
Percentage $[\%]$	8.67	10.11	11.98	30.36	1.90	13.47	29.88	52.45
$\langle \Sigma E_{\mathrm{T}}^{\mathrm{Pb}} \rangle [\mathrm{GeV}]$	22.4	17.4	12.4	4.9	94.4	64.8	37.3	9.0
$\langle N_{ m ch} angle$	$51.0{\pm}2.3$	$41.8{\pm}1.9$	$31.7{\pm}1.5$	$15.9{\pm}0.7$	$150.3{\pm}6.8$	$113.9{\pm}5.1$	74.7 ± 3.4	24.5 ± 1.1
$\sigma_{N_{ m ch}}$	$19.6{\pm}1.1$	$17.9{\pm}1.0$	$15.7{\pm}0.9$	$11.8{\pm}0.7$	$35.2{\pm}2.0$	$29.4{\pm}1.7$	26.1 ± 1.5	$17.5{\pm}1.0$

Autocorrelation bias in N_{ch} based selection

 Away Side Yield shows a sharp drop for events required to have low <*N_{ch}*>: natural consequence of autocorrelations between <*N_{ch}*> and production of correlated pairs. N_{ch} bias with Hijing

