

Event-shape fluctuations and flow correlations

Jiangyong Jia

ATHIC 2014 Conference

Brookhaven National Laboratory

8/5-8/9, 2014, Osaka

Office of Science | U.S. Department of Energy

Geometry and harmonic flow

- Probes: initial geometry and transport properties of QGP
 - How $(\varepsilon_n, \Phi_n^*)$ are transferred to (v_n, Φ_n) ?
 - What is the nature of final state (non-linear) dynamics?
 - What is the nature of longitudinal flow dynamics?

Event-by-event observables

Many little bangs
1104.4740, 1209.2323,1203.5095,1312.3572

$$p(v_n, v_m,, \Phi_n, \Phi_m,) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m ... d\Phi_n d\Phi_m}$$
Moments:

$$\langle \cos(n_1\phi_1 + n_2\phi_2... + n_m\phi_m) \rangle = \sum n_i = 0$$
Examples:

$$\langle v_{n_1}v_{n_2}...v_{n_m} \cos(n_1\Phi_{n_1} + n_2\Phi_{n_2}... + n_m\Phi_{n_m}) \rangle$$

$$\langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle = \langle v_n^4 \cos(n\Phi_n - n\Phi_n + n\Phi_n - n\Phi_n) \rangle = \langle v_n^2 v_m^2 \rangle$$

$$\langle \cos(n\phi_1 - n\phi_2 + m\phi_3 - m\phi_4) \rangle = \langle v_n^2 v_m^2 \cos(n\Phi_n - n\Phi_n + m\Phi_m - m\Phi_m) \rangle = \langle v_n^2 v_m^2 \rangle$$

$$\langle \cos(3\phi_1 + 3\phi_2 - 6\phi_3) \rangle = \langle v_3^2 v_6 \cos 6(\Phi_3 - \Phi_6) \rangle$$

Cumulants obtained by combining with lower order correlators:

$$\langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle_c = \langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2 \qquad \mathsf{p}(\mathsf{v}_\mathsf{n})$$
$$\langle \cos(n\phi_1 - n\phi_2 + m\phi_3 - m\phi_4) \rangle_c = \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle \qquad \mathsf{p}(\mathsf{v}_\mathsf{n},\mathsf{v}_\mathsf{m})$$

Event-by-event observables

Many little bangs

1104.4740, 1209.2323,1203.5095 ,1312.3572

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

	pdf's	cumulants	event-shape method
	$p(v_n)$	$v_n\{2k\}, \ k = 1,2,$	NA
	$p(v_n,v_m)$	$\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$	yes
Flow- amplitudes	$p(v_n,v_m,v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $	yes
		Obtained recursively as above	yes
EP- correlation	$p(\Phi_n,\Phi_m,)$	$ \begin{array}{l} \langle v_n^{c_n} v_m^{c_m} \cos(c_n n \Phi_n + c_m m \Phi_m +) \rangle \\ \sum_k k c_k = 0 \end{array} $	yes
Mixed- correlation	$p(v_l, \Phi_n, \Phi_m,)$	$ \langle v_l^2 v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0 $	yes

Flow fluctuation: $p(v_n)$

$p(v_2)$, $p(v_3)$ and $p(v_4)$ distributions

• The non-zero v_n {4,6..} either due to

- average geometry such as $v_2^{RP} \neq 0$ or
- non-Gaussianness in the flow fluctuation

Cumulants from $p(v_2)$

Non-gaussianess is reflected by a 1-2% change beyond 4th order cumulants

Event-plane correlations $p(\Phi_n, \Phi_m...)$

1403.0489

 $\begin{array}{l} \langle \cos 4(\Phi_2 - \Phi_4) \rangle \\ \langle \cos 8(\Phi_2 - \Phi_4) \rangle \\ \langle \cos 12(\Phi_2 - \Phi_4) \rangle \\ \langle \cos 6(\Phi_2 - \Phi_3) \rangle \\ \langle \cos 6(\Phi_2 - \Phi_3) \rangle \\ \langle \cos 6(\Phi_3 - \Phi_6) \rangle \\ \langle \cos 12(\Phi_3 - \Phi_4) \rangle \\ \langle \cos 10(\Phi_2 - \Phi_5) \rangle \end{array}$

 $\begin{array}{l} \langle \cos(2\Phi_{2} + 3\Phi_{3} - 5\Phi_{5}) \rangle \\ \langle \cos(-8\Phi_{2} + 3\Phi_{3} + 5\Phi_{5}) \rangle \\ \langle \cos(2\Phi_{2} + 4\Phi_{4} - 6\Phi_{6}) \rangle \\ \langle \cos(-10\Phi_{2} + 4\Phi_{4} + 6\Phi_{6}) \rangle \\ \langle \cos(2\Phi_{2} - 6\Phi_{3} + 4\Phi_{4}) \rangle \\ \langle \cos(-10\Phi_{2} + 6\Phi_{3} + 4\Phi_{4}) \rangle \end{array}$

Event-plane correlation results

Teaney & Yan

Event plane correlation results

Teaney & Yan

Event plane correlation results

Teaney & Yan

How $(\varepsilon_n, \Phi_n^*)$ are transferred to (v_n, Φ_n) ?

- Flow response is linear for v_2 and v_3 : $v_n \propto \varepsilon_n$ and $\Phi_n \approx \Phi_n^*$ i.e. $v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}, \quad v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$
- Higher-order flow arises from EP correlations., e.g. :

$$\begin{split} &v_4 e^{i4\Phi_4} \propto \varepsilon_4 e^{i4\Phi_4^*} + cv_2^2 e^{i4\Phi_2} + \dots & \text{Ollitrault, Luzum, Teaney, Li, Heinz, Chun} \dots \\ &v_5 e^{i5\Phi_5} \propto \varepsilon_5 e^{i5\Phi_5^*} + cv_2 v_3 e^{i(2\Phi_2 + 3\Phi_3)} + \dots \\ &v_6 e^{i6\Phi_6} \propto \varepsilon_6 e^{i6\Phi_6^*} + c_1 v_2^3 e^{i6\Phi_2} + c_2 v_3^2 e^{i6\Phi_3} + c_3 v_2 \varepsilon_4 e^{i\left(2\Phi_2 + 4\Phi_4^*\right)} \dots \end{split}$$

- Some correlators lack intuitive explanation e.g. $<\cos(2\Phi_2-6\Phi_3+4\Phi_4)$ correlation
 - Although described by EbyE hydro and AMPT

Event-shape selection technique

Can we do better?

Study the variation of v_n at fixed centrality but varying eventgeometry: "event-shape-selected v_n measurements

Event-shape selection technique

Schukraft, Timmins, and Voloshin, arXiv:1208.4563

Huo, Mohapatra, JJ arxiv:1311.7091

$$\vec{\mathbf{v}}_{n}^{\text{obs}} = \frac{1}{\Sigma w} (\Sigma w \cos n\phi_{n}, \Sigma w \sin n\phi_{n}), w = \mathbf{p}_{T}, \qquad \mathbf{v}_{n}^{\text{obs}} = \left| \vec{\mathbf{v}}_{n}^{\text{obs}} \right|$$

More info by selecting on event-shape

Fix centrality then select events with certain v_2^{obs} in large rapidity:

→ measure v_n via two-particle correlations in $|\eta|$ < 2.5

Vary ellipticity by a factor of 3!

"Boomerang" reflects stronger viscous damping at higher p_T and peripheral

"Boomerang" reflects reflects different centrality dependence, which is also sensitive to the viscosity effect.

v_n - v_2 correlations: within fixed centrality

Fix system size and vary the ellipticity!

Probe $p(v_n, v_2)$

Linear correlation for forward v_2 -selected bin \rightarrow viscous damping controlled by system size, not shape

v_n - v_2 correlations: within fixed centrality

• Fix system size and vary the ellipticity!

Linear correlation for forward v_2 -selected bin \rightarrow viscous damping controlled by system size, not shape

Clear anti-correlation,

quadratic rise from nonlinear coupling to v_2^2

v_n - v_2 correlations: within fixed centrality

• Fix system size and vary the ellipticity!

Probe $p(v_n, v_2)$

• Overlay $\varepsilon_3 - \varepsilon_2$ and $\varepsilon_4 - \varepsilon_2$ correlations, rescaled

Linear correlation for forward v_2 -selected bin \rightarrow viscous damping controlled by system size, not shape

Clear anti-correlation, mostly initial geometry effect!!

quadratic rise from nonlinear coupling to v_2^2 initial geometry only does not work!!

Initial geometry describe v_3 - v_2 but fails v_4 - v_2 correlation

Anti-correlation between v3 and v2

Can be used to fine tune initial geometry models!

Quantified by a linear fit and extract the intercept and slope

Events with zero ε_2 has larger average $\varepsilon_3 \rightarrow$ larger v_3 .

linear (ϵ_4) and non-linear (v_2^2) component of v_4^2

■ V₄-V₂ correlation for fixed centrality bin $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2}\right)^2 \Rightarrow$ Fit by $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$

• Fit $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ to separate linear (ε_4) and non-linear (v_2^2) component

linear (ϵ_4) and non-linear (v_2^2) component of v_4^{23}

■ V₄-V₂ correlation for fixed centrality bin $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2}\right)^2 \Rightarrow$ Fit by $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$

Fit $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ to separate linear (ε_4) and non-linear (v_2^2) component

What about select on one side?

Schukraft, Timmins, and Voloshin, arXiv:1208.4563

Huo, Mohapatra, JJ arxiv:1311.7091

AMPT model

- AMPT model: Glauber+HIJING+transport
 - Has fluctuating geometry and collective flow
 - Longitudinal fluctuations and initial flow

$v_2(\eta)$: select on ε_2

5

Flow suppressed

 $v_2(\eta)|_{\eta>0}$ when EP in -6< η <-2 $v_2(\eta)|_{\eta<0}$ when EP in 2< η <6 $v_2(\eta)|_{|\eta|>2}$ when EP in $|\eta|$ <1

$v_2(\eta)$: select on ϵ_2

Flow suppressed

 $v_2(\eta)|_{\eta>0}$ when EP in -6< η <-2 $v_2(\eta)|_{\eta<0}$ when EP in 2< η <6 $v_2(\eta)|_{|\eta|>2}$ when EP in $|\eta|$ <1

Symmetric distribution expected

$v_2(\eta)$: compare with selection on q_2

Suppression of flow in the selection window

enhancement of flow in the selection window

What is the origin of $v_2(\eta)$ asymmetry?

- Suppression/enhancement of flow in the selected window
- Decreasing response to flow selection outside the selection window

Longitudinal particle production

wounded nucleon model Bialas, Bzdak, Zalewski, Wozniak.... STAR/PHOBOS

 Assumes that after the collision of two nuclei, the secondary particles are produced by independent fragmentation of wounded nucleons

Emission function of one wounded nucleon

Flow longitudinal dynamics

• Shape of participants in two nuclei not the same due to fluctuation

$$\varepsilon_m^{\mathrm{F}}, \Phi_m^{*\mathrm{F}} \varepsilon_m^{\mathrm{B}}, \Phi_m^{*\mathrm{B}} \varepsilon_m, \Phi_m^{*} N_{\mathrm{part}}^{\mathrm{F}}, N_{\mathrm{part}}^{\mathrm{B}}, N_{\mathrm{part}} \varepsilon_n^{\mathrm{F}}, \Phi_n^{*\mathrm{F}} \neq \varepsilon_n^{\mathrm{B}}, \Phi_n^{*\mathrm{B}}$$

• Particles are produced by independent fragmentation of wounded nucleons, emission function $f(\eta)$ not symmetric in $\eta \rightarrow$ Wounded nucleon model

Flow longitudinal dynamics

• Shape of participants in two nuclei not the same due to fluctuation

$$\varepsilon_m^{\mathrm{F}}, \Phi_m^{*\mathrm{F}} \ \varepsilon_m^{\mathrm{B}}, \Phi_m^{*\mathrm{B}} \ \varepsilon_m, \Phi_m^{*} \ N_{\mathrm{part}}^{\mathrm{F}}, N_{\mathrm{part}}^{\mathrm{B}}, N_{\mathrm{part}} \ \varepsilon_n^{\mathrm{F}}, \Phi_n^{*\mathrm{F}} \
eq \varepsilon_n^{\mathrm{B}}, \Phi_n^{*\mathrm{B}}$$

• Particles are produced by independent fragmentation of wounded nucleons, emission function $f(\eta)$ not symmetric in $\eta \rightarrow$ Wounded nucleon model

Flow longitudinal dynamics

• Eccentricity vector interpolates between $\vec{\epsilon}_n^{\rm F}$ and $\vec{\epsilon}_n^{\rm B}$

$$\vec{\epsilon}_n^{\text{tot}}(\eta) \approx \alpha(\eta)\vec{\epsilon}_n^{\text{F}} + (1 - \alpha(\eta))\vec{\epsilon}_n^{\text{B}} \equiv \epsilon_n^{\text{tot}}(\eta)e^{in\Phi_n^{\text{*tot}}(\eta)}$$

Asymmetry:
$$\varepsilon_n^{\rm F} \neq \varepsilon_n^{\rm B}$$
Twist: $\Phi_n^{*{\rm F}} \neq \Phi_n^{*{\rm B}}$

$\alpha(\eta)$ determined by $f(\eta)$

- Hence $\vec{v}_n(\eta) \approx c_n(\eta) \left[\alpha(\eta) \vec{\epsilon}_n^{\mathrm{F}} + (1 \alpha(\eta)) \vec{\epsilon}_n^{\mathrm{B}} \right]$ for n=2,3
 - Picture verified in AMPT simulations, magnitude estimated 1403.6077

What AMPT tell us?

- Twist in initial geometry appears as twist in the final state flow
 - Participant plane angles:

 $\Phi_n^{*\mathrm{F}} = \Phi_n^{*\mathrm{B}}$

• Final state event-plane angles

Initial twist survives to final state

Twist seen in simple 2PC analysis

 NO event-plane determination! Just select twist in large η and check correlation at center-rapidity.

- Though twist is enforced on q_2 , twist also seen for higher order v_n
- Non-linear mixing to the higher order harmonics!! .

Summary-I

Event-shape fluctuations contains a lot of information

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

• Three complementary methods:

Strong fluctuation within fixed centrality!

	$\operatorname{pdf's}$	cumulants	event-shape method
	$p(v_n)$	$v_n\{2k\}, \ k = 1,2,$	NA
	$p(v_n,v_m)$	$\langle v_n^2 v_m^2 angle - \langle v_n^2 angle \langle v_m^2 angle$	yes
Flow- amplitudes	$p(v_n,v_m,v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $	yes
	•••	Obtained recursively as above	yes
EP- correlation	$p(\Phi_n, \Phi_m,)$	$ \begin{array}{l} \langle v_n^{c_n} v_m^{c_m} \cos(c_n n \Phi_n + c_m m \Phi_m +) \rangle \\ \sum_k k c_k = 0 \end{array} $	yes
Mixed- correlation	$p(v_l, \Phi_n, \Phi_m,)$	$ \begin{cases} \langle v_l^2 v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0 \end{cases} $	yes

Summary-II

Rich patterns forward/backward EbyE flow fluctuations:

$$\vec{v}_n(\eta) \approx c_n(\eta) \left[\alpha(\eta) \vec{\epsilon}_n^{\mathrm{F}} + (1 - \alpha(\eta)) \vec{\epsilon}_n^{\mathrm{B}} \right]$$

Event-shape selection and event twist techniques

 New avenue to study initial state fluctuations, particle production and collective expansion dynamics.