

Correlations between harmonics

Jiangyong Jia

The 2nd International Conference on the Initial Stages in High-Energy Nuclear Collisions

Brookhaven National Laboratory

12/3-12/7, 2014, Napa valley, CA

Office of Science | U.S. Department of Energy

Recent accomplishments

Improved the space-time picture of bulk matter evolution

Improved extraction of the medium properties

Challenge: simultaneous control of two unknowns

Simultaneous control of initial geometry and η/s

For traditional observables, i.e.<v_n>, experimental error no-longer the limiting factors

Need new observables with new intuitive insights!

Future experimental measurements

- Pb+Pb/Au+Au top energy: as complete as possible
 - Event-by-event flow observables \rightarrow initial fluctuation & flow correlation
 - Event shape engineer & engen-mode ana. \rightarrow geometry model & hydro. response
 - Longitudinal fluctuations \rightarrow particle production & early time dynamics
 - Medium response \rightarrow relaxation mechanism for local energy deposition
 - PID $v_n \rightarrow$ hadronization and hadronic transport
- System size scan
 - e.g. Cu+Au or U+U \rightarrow hydro response to extreme geometries.
 - p+A vs peripheral $A+A \rightarrow$ onset of collectivity? onset of hydrodynamics?

Energy scan of Au+Au collisions at RHIC

- Temperature dependence of medium properties, partonic vs hadronic.
 - However lower stats & p_T reach

Event-by-event observables

Many little bangs
1104.4740, 1209.2323, 1203.5095, 1312.3572

$$\Rightarrow p(v_n, v_m, ..., \Phi_n, \Phi_m, ...) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m ... d\Phi_n d\Phi_m ...}$$
Moments:

$$\langle \cos(n_1\phi_1 + n_2\phi_2 ... + n_m\phi_m) \rangle = \langle v_n v_{n_2} ... + n_m\phi_{n_1} + n_2\Phi_{n_2} ... + n_m\Phi_{n_m}) \rangle \qquad \Sigma n_i = 0$$
e.g. $\langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle = \langle v_n^4 \cos(n\Phi_n - n\Phi_n + n\Phi_n - n\Phi_n) \rangle = \langle v_n^4 \rangle$

$$\left\langle \cos(n\phi_1 - n\phi_2 + m\phi_3 - m\phi_4) \right\rangle = \left\langle v_n^2 v_m^2 \cos(n\Phi_n - n\Phi_n + m\Phi_m - m\Phi_m) \right\rangle = \left\langle v_n^2 v_m^2 \right\rangle$$

Cumulants obtained by combining with lower order correlators:

$$\mathbf{c}_{\mathsf{n}}\{4\} = \left\langle v_{n}^{4} \right\rangle - 2\left\langle v_{n}^{2} \right\rangle^{2} \qquad \mathsf{p}(\mathsf{v}_{\mathsf{n}})$$

$$c_{n,m}\{2,2\} = \left\langle v_n^2 v_m^2 \right\rangle - \left\langle v_n^2 \right\rangle \left\langle v_m^2 \right\rangle \qquad p(v_n,v_m)$$

Event-by-event observables

	pdf's	cumulants		
	$p(v_n)$	$v_n\{2k\}, \ k = 1, 2, \dots$		
	$p(v_n,v_m)$	$\langle v_n^2 v_m^2 angle - \langle v_n^2 angle \langle v_m^2 angle$		
Flow- amplitudes	$p(v_n,v_m,v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v^2 \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \end{array} \\ \end{array} $		
		Obtained of the above		
EP- correlation	$p(\Phi_n, \Phi_m,)$	$\langle v_n^{c_n} v^c \\ \mathbf{s}^{\mathbf{t}} \mathbf{b}^{\mathbf{s}} \mathbf{c}^{\mathbf{t}} \mathbf{b}^{\mathbf{s}} \mathbf{c}^{\mathbf{t}} \mathbf{c}^{\mathbf{s}} \mathbf{c}^{\mathbf{t}} \mathbf{c}^{\mathbf{s}} \mathbf{c}^{\mathbf{t}} \mathbf{c}^{\mathbf{s}} \mathbf{c}^{\mathbf{s}$		
Mixed- correlation	$p(v_l, \Phi_n, \Phi_m,)$	$ \begin{array}{c} & & & & \\ \langle v_l^2 v_n^{c_n} & \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ & & & \sum_k k c_k = 0 \end{array} $		

Event-by-event observables

Many little bangs

1104.4740, 1209.2323, 1203.5095, 1312.3572

$$\longrightarrow p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

	pdf's	cumulants	event-shape method
	$p(v_n)$	$v_n\{2k\}, \ k = 1, 2, \dots$	NA
Flow- amplitudes	$p(v_n,v_m)$	$\langle v_n^2 v_m^2 angle - \langle v_n^2 angle \langle v_m^2 angle$	yes
	$p(v_n,v_m,v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v^2 \rangle \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \end{array} $	yes
		Obtained off a above	yes
EP- correlation	$p(\Phi_n,\Phi_m,)$	$ \langle v_n^{c_n} v^c \\ \mathbf{subset} \rangle = \begin{pmatrix} \mathbf{v}_n^{c_n} v^c \\ \mathbf{subset} \rangle \\ $	yes
Mixed- correlation	$p(v_l, \Phi_n, \Phi_m,)$	$ \begin{array}{c} \checkmark \\ \langle v_l^2 v_n^{c_n} & \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ & \sum_k k c_k = 0 \end{array} $	yes

Event shape engineering technique

• Measure v_n or EP correlation for different v_2 at fixed centrality $p(v_n, v_2)$ $p(\Phi_n, \Phi_m, v_2)$

Schukraft, Timmins, and Voloshin, arXiv:1208.4563

Huo, Mohapatra, JJ arxiv:1311.7091

8

Applications

	pdf's	cumulants	event-shape method
	$p(v_n)$	$v_n\{2k\}, \ k = 1, 2, \dots$	NA
	$p(v_n,v_m)$	$\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$	yes
Flow- amplitudes	$p(v_n,v_m,v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $	yes
		Obtained recursively as above	yes
EP- correlation	$p(\Phi_n, \Phi_m,)$	$ \begin{array}{l} \langle v_n^{c_n} v_m^{c_m} \cos(c_n n \Phi_n + c_m m \Phi_m +) \rangle \\ \sum_k k c_k = 0 \end{array} $	yes
Mixed- correlation	$p(v_l,\Phi_n,\Phi_m,)$	$ \langle v_l^2 v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0 $	yes

Current measurements of E-by-E distributions

Measured distributions quantitatively described by hydro.

Non-Gaussianity in the $p(v_2)$ distribution

Reflected by a 1-2% change beyond 4th order cumulants

• Note: $p(v_2)$ contains more information than first few cumulants.

Non-BG in $p(\varepsilon_2)$ or non-linearity of response for large ε_2

EP correlation: how $(\varepsilon_n, \Phi_n^*)$ are transferred to (v_n, Φ_n) ?

• Flow response is linear for v_2 and v_3 : $v_n \propto \varepsilon_n$ and $\Phi_n \approx \Phi_n^*$ i.e.

$$v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}, \ v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$$

• Higher-order can arise from EP correlations (mode mixing), e.g. :

- Some correlators lack intuitive explanation e.g. $<\cos(2\Phi_2-6\Phi_3+4\Phi_4)>$ correlation
 - Although described by EbyE hydro and AMPT

Naturally expect correlation between v_n and v₂

v₄-v₂ correlation from event-shape engineering ¹³

Separate geometry and mode-mixing components!!

$v_5 - v_2$ correlation from event-shape engineering 14

Separate geometry and mode-mixing components!!

v₃-v₂ correlation from event-shape engineering ¹⁵

Comparison of p+Pb with Pb+Pb

- Basar & Teaney's conformal scaling: V_n(p_T)_{pA}~*a*v_n(p_T/k)_{AA} at same multiplicity i.e. collective response controlled multiplicity
 - $< p_T >_{pPb} = k < p_T >_{PbPb}, k=1.25$
 - $a \approx 0.66$ for $v_2 \rightarrow average$ elliptic geometry $V_2 = av_2$
 - $a \approx 1.0$ for $v_3 \rightarrow$ dominated by fluctuations. $V_3 \approx v_3$
 - $a \approx 0.66$ for $v_4 \rightarrow$ mode-mixing $\propto v_2^2$. but why also 0.66?

Pb+Pb:
$$v_4^2 = \left(v_4^L\right)^2 + \left(v_4^{NL}\right)^2$$
 p+Pb: $V_4^2 = \left(V_4^L\right)^2 + \left(V_4^{NL}\right)^2$

Comparison of p+Pb with Pb+Pb

17

A detour: The meaning of cumulants?

negative c₂{4} or real v₂{4} Onset of collectivity?

What $v_2{2k} \approx$ same means? ~Gaussian?, ~power?

Cumulants for azimuthal correlations

Same answer!:

$$c_{n}\{2\} = (v_{n}^{0})^{2} + 2\delta^{2} \quad c_{n}\{4\} = -(v_{n}^{0})^{4}$$
$$c_{n}\{6\} = 4(v_{n}^{0})^{6} \qquad c_{n}\{8\} = -33(v_{n}^{0})^{8}$$

$$v_n\{4\} = v_n\{6\} = v_n\{8\} = \dots = v_n^0$$

Can cumulants capture all details of $p(v_n)$? ²⁰

Divide B-G distri. to 2 equal parts, and calculate cumulants separately.

	$v_n\{2\}$	$v_n\{4\}$	$v_n\{6\}$	$v_n\{8\}$	In units of v_n^0
all	1.414	1	1	1	
Α	0.851	0.759	0.746	0.744	
В	1.809	1.690	1.701	1.701	

v{2} and v{4} → width and mean of p(v), higher-order diff. very small
 Higher-order cumulants not sensitive to p(v_n) beyond mean and width?

Cumulants for narrow distribution

Simple central moment expansion

$$\theta_j = \int \left(\frac{v_n - \langle v_n \rangle}{\langle v_n \rangle}\right)^j p(v_n) dv_n$$

$$\left\langle v_n^{2k} \right\rangle = \left\langle v_n \right\rangle^{2k} \int \left(1 + \frac{v_n - \left\langle v_n \right\rangle}{\left\langle v_n \right\rangle} \right)^{2k} p(v_n) dv_n = \left\langle v_n \right\rangle^{2k} \left(1 + \sum_{j=2}^{2k} C_{2k}^j \theta_j \right)$$

• Keep up to θ_4 :

$$\begin{aligned} v_n\{2\}/\langle v_n \rangle &\approx 1 + \frac{1}{2}\theta_2 - \frac{3}{8}\theta_2^2 \\ v_n\{4\}/\langle v_n \rangle &\approx 1 - \frac{1}{2}\theta_2 - \theta_3 - \frac{1}{4}\theta_4 + \frac{1}{8}\theta_2^2 \\ v_n\{6\}/\langle v_n \rangle &\approx 1 - \frac{1}{2}\theta_2 - \frac{2}{3}\theta_3 + \frac{1}{4}\theta_4 - \frac{11}{8}\theta_2^2 \\ v_n\{8\}/\langle v_n \rangle &\approx 1 - \frac{1}{2}\theta_2 - \frac{7}{11}\theta_3 + \frac{31}{132}\theta_4 - \frac{117}{88}\theta_2^2 \end{aligned}$$

Some useful relations (again only true for narrow distribution)

$$\frac{\sigma_n}{\langle v_n \rangle} \equiv \sqrt{\theta_2} \approx \sqrt{\frac{v_n^2 \{2\} - v_n^2 \{4\}}{v_n^2 \{2\} + v_n^2 \{4\}}}$$

Voloshin etc

$$v_n\{6\} - v_n\{4\} \approx \langle v_n \rangle \left(\frac{1}{3}\theta_3 + \frac{\theta_4 - 3\theta_2^2}{2}\right)$$
$$v_n\{8\} - v_n\{6\} \approx \langle v_n \rangle \left(\frac{1}{33}\theta_3 - \frac{\theta_4 - 3\theta_2^2}{66}\right)$$

21

Broad distribution -I

p(x)

- Width controlled by *a*.
- v{2k}, k>1 close to each other for a<0.5.
 then deviates and flip sign (v{6},v{8}<0).

Broad distribution -II

- Width controlled by *a*.
- v{2k}, k>1 close to each other for a<0.5.
 then deviates and flip sign (v{4},v{6},v{8}<0).
- Unless have a-priori knowledge of its shape,
 i.e. close to BG, cumulants
 - Difficult to constrain p(v) beyond mean and width
 - In principle can't use c_n{4}<0 as sign of onset of collectivity

a

Summary

- Future measurements should provide direct physics insights
 - Obtain a complete picture at top \sqrt{s} , then apply to other systems and energies.
- Explore new observables sensitive to event-shape fluctuations:

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

- Augmented by the event-shape engineering technique
- Applications:
 - $p(v_2)$ is sensitive to non-linear response to $p(\varepsilon_2)$.
 - Event plane correlations and v_n-v₂ correlations allow quantitative separation of initial geometry and mode-mixing components
 - v_2 and v_3 are mainly controlled by ε_2 and ε_3
 - v₄, v₅, and v₆ contains both geometry and mode-mixing components, can be separated by data-driven methods.
 - Novel anti-correlation between v_3 and v_2 reflects the ε_3 - ε_2 anti-correlation
 - Taking mode-mixing into account, conformal scaling explains the similarity of v₄ in pA and AA (in addition to v₂ and v₃)
- Cumulants not very sensitive to the $p(v_n)$ beyond its mean and width.

Eccentricity scaling: v_n/ϵ_n

