Correlations between harmonics

Jiangyong Jia

The 2nd International Conference on the Initial Stages in High-Energy Nuclear Collisions

Recent accomplishments

Improved the space-time picture of bulk matter evolution

Improved extraction of the medium properties

Challenge: simultaneous control of two unknowns

Simultaneous control of initial geometry and η / s

For traditional observables, i.e. $<\mathrm{v}_{\mathrm{n}}>$,
experimental error no-longer the limiting factors
Need new observables with new intuitive insights!

Future experimental measurements

- $\mathrm{Pb}+\mathrm{Pb} / \mathrm{Au}+\mathrm{Au}$ top energy: as complete as possible
- Event-by-event flow observables \rightarrow initial fluctuation \& flow correlation
- Event shape engineer \& engen-mode ana. \rightarrow geometry model \& hydro. response
- Longitudinal fluctuations \rightarrow particle production \& early time dynamics
- Medium response \rightarrow relaxation mechanism for local energy deposition
- PID $\mathrm{v}_{\mathrm{n}} \rightarrow$ hadronization and hadronic transport
- System size scan
- e.g. $\mathrm{Cu}+\mathrm{Au}$ or $\mathrm{U}+\mathrm{U} \rightarrow$ hydro response to extreme geometries.
- $\mathrm{p}+\mathrm{A}$ vs peripheral $\mathrm{A}+\mathrm{A} \rightarrow$ onset of collectivity? onset of hydrodynamics?
- Energy scan of $\mathrm{Au}+\mathrm{Au}$ collisions at RHIC
- Temperature dependence of medium properties, partonic vs hadronic.
- However lower stats \& p_{T} reach

Event-by-event observables

Many little bangs
1104.4740, 1209.2323,1203.5095, 1312.3572

$$
p\left(v_{n}, v_{m}, \ldots, \Phi_{n}, \Phi_{m}, \ldots\right)=\frac{1}{N_{\mathrm{evts}}} \frac{d N_{\mathrm{evts}}}{d v_{n} d v_{m} \ldots d \Phi_{n} d \Phi_{m} \cdots}
$$

Moments:

$$
\begin{aligned}
& \left\langle\cos \left(n_{1} \phi_{1}+n_{2} \phi_{2} \ldots+n_{m} \phi_{m}\right)\right\rangle= \\
& \quad\left\langle v_{n_{1}} v_{n_{2}} \ldots v_{n_{m}} \cos \left(n_{1} \Phi_{n_{1}}+n_{2} \Phi_{n_{2} \ldots}+n_{m} \Phi_{n_{m}}\right)\right\rangle \quad \Sigma n_{i}=0
\end{aligned}
$$

e.g. $\left\langle\left\langle\cos \left(n \phi_{1}-n \phi_{2}+n \phi_{3}-n \phi_{4}\right)\right\rangle=\left\langle v_{n}^{4} \cos \left(n \Phi_{n}-n \Phi_{n}+n \Phi_{n}-n \Phi_{n}\right)\right\rangle=\left\langle v_{n}^{4}\right\rangle\right.$

$$
\left\langle\cos \left(n \phi_{1}-n \phi_{2}+m \phi_{3}-m \phi_{4}\right)\right\rangle=\left\langle v_{n}^{2} v_{m}^{2} \cos \left(n \Phi_{n}-n \Phi_{n}+m \Phi_{m}-m \Phi_{m}\right)\right\rangle=\left\langle v_{n}^{2} v_{m}^{2}\right\rangle
$$

Cumulants obtained by combining with lower order correlators:

$$
\begin{array}{rlrl}
\mathrm{c}_{\mathrm{n}}\{4\} & =\left\langle v_{n}^{4}\right\rangle-2\left\langle v_{n}^{2}\right\rangle^{2} & \mathrm{p}\left(\mathrm{v}_{\mathrm{n}}\right) \\
\mathrm{c}_{\mathrm{n}, \mathrm{~m}}\{2,2\} & =\left\langle v_{n}^{2} v_{m}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle & & \mathrm{p}\left(\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{m}}\right)
\end{array}
$$

Event-by-event observables

Many little bangs
1104.4740, 1209.2323,1203.5095, 1312.3572

$$
p\left(v_{n}, v_{m}, \ldots, \Phi_{n}, \Phi_{m}, \ldots\right)=\frac{1}{N_{\mathrm{evts}}} \frac{d N_{\mathrm{evts}}}{d v_{n} d v_{m} \ldots d \Phi_{n} d \Phi_{m} \ldots}
$$

	pdf's	cumulants
	$p\left(v_{n}\right)$	$v_{n}\{2 k\}, k=1,2, \ldots$
Flowamplitudes	$p\left(v_{n}, v_{m}\right)$ $p\left(v_{n}, v_{m}, v_{l}\right)$	$\begin{gathered} \left\langle v_{n}^{2} v_{m}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle \\ \left\langle v_{n}^{2} v_{m}^{2} v_{l}^{2}\right\rangle+2\left\langle v_{n}^{2}\right\rangle\left\langle v^{2}\right. \\ \left\langle v_{n}^{2} v_{m}^{2}\right\rangle\left\langle v_{l}^{2}\right\rangle-\left\langle v_{m}^{2} v_{1}^{2}\right. \end{gathered}$
EP- correlation	$p\left(\Phi_{n}, \Phi_{m}, \ldots\right)$	$\left.\left\langle v_{n}^{c_{n}} v^{c} 0^{\boldsymbol{S}^{\boldsymbol{e}}} \boldsymbol{e}_{n}+c_{m} m \Phi_{m}+\ldots\right)\right\rangle$
Mixedcorrelation	$p\left(v_{l}, \Phi_{n}, \Phi_{m}, \ldots\right)$	$\begin{gathered} \left\langle v_{l}^{2} v_{n}^{c_{n}} \quad . . \cos \left(c_{n} n \Phi_{n}+c_{m} m \Phi_{m}+\ldots\right)\right\rangle- \\ \left\langle v_{l}^{2}\right\rangle\left\langle v_{n}^{c_{n}} v_{m}^{\left.c_{m} \ldots \cos \left(c_{n} n \Phi_{n}+c_{m} m \Phi_{m}+\ldots\right)\right\rangle}\right. \\ \sum_{k} k c_{k}=0 \end{gathered}$

Event-by-event observables

Many little bangs
1104.4740, 1209.2323,1203.5095, 1312.3572

$$
p\left(v_{n}, v_{m}, \ldots ., \Phi_{n}, \Phi_{m}, \ldots\right)=\frac{1}{N_{\mathrm{evts}}} \frac{d N_{\mathrm{evts}}}{d v_{n} d v_{m} \ldots d \Phi_{n} d \Phi_{m} \cdots}
$$

	pdf's	cumulants	event-shape method
Flowamplitudes	$p\left(v_{n}\right)$	$v_{n}\{2 k\}, k=1,2, \ldots$	NA
	$p\left(v_{n}, v_{m}\right)$	$\left\langle v_{n}^{2} v_{m}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle$	yes
	$p\left(v_{n}, v_{m}, v_{l}\right)$	$\begin{gathered} \left\langle v_{n}^{2} v_{m}^{2} v_{l}^{2}\right\rangle+2\left\langle v_{n}^{2}\right\rangle\left\langle v^{2}\right. \\ \left\langle v_{n}^{2} v_{m}^{2}\right\rangle\left\langle v_{l}^{2}\right\rangle-\left\langle v_{m}^{2} v_{l}^{2}\right. \end{gathered}$	yes
	...	Obtainer 0 a above	yes
EPcorrelation	$p\left(\Phi_{n}, \Phi_{m}, \ldots\right)$	$\left\langle v_{n}^{c_{n}} v^{c} \rho^{\boldsymbol{C}^{2}} \sum_{L_{k} k c_{k}=0}^{\left.\left.\mathbb{C}_{n}+c_{m} m \Phi_{m}+\ldots\right)\right\rangle}\right.$	yes
Mixedcorrelation	$p\left(v_{l}, \Phi_{n}, \Phi_{m}, \ldots\right)$	$\begin{gathered} \left\langle v_{l}^{2} v_{n}^{c_{n}} \quad . . \cos \left(c_{n} n \Phi_{n}+c_{m} m \Phi_{m}+\ldots\right)\right\rangle- \\ \left\langle v_{l}^{2}\right\rangle\left\langle v_{n}^{c_{n}} v_{m}^{c_{m}} \ldots \cos \left(c_{n} n \Phi_{n}+c_{m} m \Phi_{m}+\ldots\right)\right\rangle \\ \sum_{k} k c_{k}=0 \end{gathered}$	yes

Event shape engineering technique

$$
p\left(v_{n}, v_{m}, \ldots, \Phi_{n}, \Phi_{m}, \ldots\right)=\frac{1}{N_{\mathrm{evts}}} \frac{d N_{\mathrm{evts}}}{d v_{n} d v_{m} \ldots d \Phi_{n} d \Phi_{m} \cdots}
$$

- Measure v_{n} or EP correlation for different v_{2} at fixed centrality

$$
p\left(v_{n}, v_{2}\right) \quad p\left(\Phi_{n}, \Phi_{m}, v_{2}\right)
$$

Applications

	pdf's	cumulants	event-shape method
Flowamplitudes	$p\left(v_{n}\right)$	$v_{n}\{2 k\}, k=1,2, \ldots$	NA
	$p\left(v_{n}, v_{m}\right)$	$\left\langle v_{n}^{2} v_{m}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle$	yes
	$p\left(v_{n}, v_{m}, v_{l}\right)$	$\begin{gathered} \left\langle v_{n}^{2} v_{m}^{2} v_{l}^{2}\right\rangle+2\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle\left\langle v_{l}^{2}\right\rangle- \\ \left\langle v_{n}^{2} v_{m}^{2}\right\rangle\left\langle v_{l}^{2}\right\rangle-\left\langle v_{m}^{2} v_{l}^{2}\right\rangle\left\langle v_{n}^{2}\right\rangle-\left\langle v_{l}^{2} v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle \end{gathered}$	yes
	...	Obtained recursively as above	yes
EP- correlation	$p\left(\Phi_{n}, \Phi_{m}, \ldots\right)$	$\begin{gathered} \left\langle v_{n}^{c_{n}} v_{m}^{c_{m}} \ldots \cos \left(c_{n} n \Phi_{n}+c_{m} m \Phi_{m}+\ldots\right)\right\rangle \\ \sum_{k} k c_{k}=0 \end{gathered}$	yes
Mixedcorrelation	$p\left(v_{l}, \Phi_{n}, \Phi_{m}, \ldots\right)$	$\begin{gathered} \left\langle v_{l}^{2} v_{n}^{c_{n}} v_{m}^{c_{m}} \ldots \cos \left(c_{n} n \Phi_{n}+c_{m} m \Phi_{m}+\ldots\right)\right\rangle- \\ \left\langle v_{l}^{2}\right\rangle\left\langle v_{n}^{c_{n}} v_{m}^{c_{m}} \ldots \cos \left(c_{n} n \Phi_{n}+c_{m} m \Phi_{m}+\ldots\right)\right\rangle \\ \sum_{k} k c_{k}=0 \end{gathered}$	yes

Current measurements of E-by-E distributions

$p\left(v_{2}\right), p\left(v_{3}\right), p\left(v_{4}\right)$

$p\left(\Phi_{n}, \Phi_{m}\right)$ and $p\left(\Phi_{\mathrm{n}}, \Phi_{\mathrm{m}}, \Phi_{\mathrm{L}}\right)$

Measured distributions quantitatively described by hydro.

Non-Gaussianity in the $\mathrm{p}\left(\mathrm{v}_{2}\right)$ distribution

- Reflected by a $1-2 \%$ change beyond $4^{\text {th }}$ order cumulants
- Note: $p\left(\mathrm{v}_{2}\right)$ contains more information than first few cumulants.

Non-BG in $\mathrm{p}\left(\varepsilon_{2}\right)$ or non-linearity of response for large ε_{2}

EP correlation: how $\left(\varepsilon_{n}, \Phi_{n}{ }^{*}\right)$ are transferred to $\left(\mathrm{v}_{\mathrm{n}}, \Phi_{\mathrm{n}}\right)$?

- Flow response is linear for v_{2} and $\mathrm{v}_{3}: v_{n} \propto \varepsilon_{n}$ and $\Phi_{n} \approx \Phi_{n}^{*}$ i.e.

$$
v_{2} e^{-i 2 \Phi_{2}} \propto \epsilon_{2} e^{-i 2 \Phi_{2}^{*}}, \quad v_{3} e^{-i 3 \Phi_{3}} \propto \epsilon_{3} e^{-i 3 \Phi_{3}^{*}}
$$

- Higher-order can arise from EP correlations (mode mixing), e.g. :

$$
\begin{array}{lr}
v_{4} e^{i 4 \Phi_{4}} \propto \varepsilon_{4} e^{i 4 \Phi_{4}^{*}}+c v_{2}^{2} e^{i 4 \Phi_{2}}+\ldots & \text { Ollitrault, Luzum, Teane } \\
v_{5} e^{i 5 \Phi_{5}} \propto \varepsilon_{5} e^{i 5 \Phi_{5}^{*}}+c v_{2} v_{3} e^{i\left(2 \Phi_{2}+3 \Phi_{3}\right)}+\ldots & \text { (14 correlators frol } \\
v_{6} e^{i 6 \Phi_{6}} \propto \varepsilon_{6} e^{i 6 \Phi_{6}^{*}}+c_{1} v_{2}^{3} e^{i 6 \Phi_{2}}+c_{2} v_{3}^{2} e^{i 6 \Phi_{3}}+c_{3} v_{2} \varepsilon_{4} e^{i\left(2 \Phi_{2}+4 \Phi_{4}^{*}\right)} \ldots
\end{array}
$$

Ollitrault, Luzum, Teaney, Li, Heinz,Chun.... (14 correlators from ATLAS)

- Some correlators lack intuitive explanation e.g. $<\cos \left(2 \Phi_{2}-6 \Phi_{3}+4 \Phi_{4}>\right.$ correlation
- Although described by EbyE hydro and AMPT

Naturally expect correlation between v_{n} and v_{2}

$\mathrm{V}_{4}-\mathrm{V}_{2}$ correlation from event-shape engineering

Compare well with expectation from EP correlations.
higher-order mode-mixing negligible

Separate geometry and mode-mixing components!!

$v_{3}-v_{2}$ correlation from event-shape engineering ${ }^{15}$

Comparison of $\mathrm{p}+\mathrm{Pb}$ with $\mathrm{Pb}+\mathrm{Pb}$

- Basar \& Teaney's conformal scaling: $\mathrm{V}_{\mathrm{n}}\left(\mathrm{p}_{\mathrm{T}}\right)_{\mathrm{pA}} \sim \boldsymbol{a} \mathrm{V}_{\mathrm{n}}\left(\mathrm{p}_{\mathrm{T}} / \mathrm{k}\right)_{\mathrm{AA}}$ at same multiplicity i.e. collective response controlled multiplicity
- $\left\langle\mathrm{p}_{\mathrm{T}}>_{\mathrm{pPb}}=\mathrm{k}\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle_{\mathrm{PbPb}}, \mathrm{k}=1.25\right.$
- $a \approx 0.66$ for $\mathrm{v}_{2} \rightarrow$ average elliptic geometry $\quad \mathrm{V}_{2}=a v_{2}$
- $a \approx 1.0$ for $\mathrm{v}_{3} \rightarrow$ dominated by fluctuations. $\mathrm{V}_{3} \approx v_{3}$
- $a \approx 0.66$ for $\mathrm{v}_{4} \rightarrow$ mode-mixing $\propto \mathrm{v}_{2}{ }^{2}$. but why also 0.66 ?
linear Mode-mixing linear Mode-mixing
$\mathrm{Pb}+\mathrm{Pb}: \quad v_{4}^{2}=\left(v_{4}^{L}\right)^{2}+\left(v_{4}^{\mathrm{NL}}\right)^{2} \quad \mathrm{p}+\mathrm{Pb}: \quad V_{4}^{2}=\left(V_{4}^{L}\right)^{2}+\left(V_{4}^{\mathrm{NL}}\right)^{2}$

Comparison of $\mathrm{p}+\mathrm{Pb}$ with $\mathrm{Pb}+\mathrm{Pb}$

- Basar \& Teaney's conformal scaling: $\mathrm{V}_{\mathrm{n}}\left(\mathrm{p}_{\mathrm{T}}\right)_{\mathrm{pA}} \sim \boldsymbol{a} \mathrm{V}_{\mathrm{n}}\left(\mathrm{p}_{\mathrm{T}} / \mathrm{k}\right)_{\mathrm{AA}}$ at same multiplicity i.e. collective response controlled multiplicity
- $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle_{\mathrm{ppb}}=\mathrm{k}<\mathrm{p}_{\mathrm{T}}>_{\text {PbPb }}, \mathrm{k}=1.25$
- $a \approx 0.66$ for $\mathrm{v}_{2} \rightarrow$ average elliptic geometry $\quad \mathrm{V}_{2}=a v_{2}$
- $a \approx 1.0$ for $\mathrm{v}_{3} \rightarrow$ dominated by fluctuations. $\mathrm{V}_{3} \approx v_{3}$
- $a \approx 0.66$ for $\mathrm{v}_{4} \rightarrow$ mode-mixing $\propto \mathrm{v}_{2}{ }^{2}$. but why also 0.66 ? linear Mode-mixing linear Mode-mixing $\mathrm{Pb}+\mathrm{Pb}: \quad v_{4}^{2}=\left(v_{4}^{L}\right)^{2}+\left(c v_{2}^{2}\right)^{2} \quad \mathrm{p}+\mathrm{Pb}: \quad V_{4}^{2}=\left(V_{4}^{L}\right)^{2}+\left(c V_{2}^{2}\right)^{2}$
Since: $\quad c v_{2}^{2}=b v_{4} b=0.837, v_{4}^{L}=\sqrt{1-b^{2}} v_{4} \quad \mathrm{~V}_{4}^{L} \approx v_{4}^{L} \quad V_{2}=a v_{2} a=0.66$

$$
\begin{aligned}
& =>c V_{2}^{2} \approx a^{2} c v_{2}^{2}=a^{2} b v_{4} \\
& =>V_{4}^{2}=\left[1-b^{2}+a^{4} \times b^{2}\right] v_{4}^{2} \\
& =>V_{4} \approx 0.66 v_{4}
\end{aligned}
$$

Why extrapolation of hydro prediction works so well?

$\rho_{\mathrm{T}}[\mathrm{GeV}]$

A detour: The meaning of cumulants?

negative $\mathrm{c}_{2}\{4\}$ or real $\mathrm{v}_{2}\{4\}$ Onset of collectivity?

What $\mathrm{v}_{2}\{2 \mathrm{k}\} \approx$ same means? ~Gaussian?, ~power?

$$
\left.\begin{array}{rl}
a_{n}\{2\} & \equiv c_{n}\{2\} \\
-a_{n}\{4\} & \equiv c_{n}\{4\}=\left\langle v_{n}^{2}\right\rangle \\
4 a_{n}\{6\} & \left.\equiv c_{n}\{6\}=\left\langle v_{n}^{4}\right\rangle-2\left\langle v_{n}^{2}\right\rangle^{2}\right\rangle-9\left\langle v_{n}^{4}\right\rangle\left\langle v_{n}^{2}\right\rangle+12\left\langle v_{n}^{2}\right\rangle^{3} \\
-33 a_{n}\{8\} & \equiv c_{n}\{8\}=\left\langle v_{n}^{8}\right\rangle-16\left\langle v_{n}^{6}\right\rangle\left\langle v_{n}^{2}\right\rangle-18\left\langle v_{n}^{4}\right\rangle^{2}+144\left\langle v_{n}^{4}\right\rangle\left\langle v_{n}^{2}\right\rangle^{2}-144\left\langle v_{n}^{2}\right\rangle^{4} \\
v_{n}\{2 k\} & \equiv \operatorname{sgn}\left(a_{n}\{2 k\}\right) \sqrt[2 k]{\left|a_{n}\{2 k\}\right|}
\end{array} \quad \text { Cumulants } \underset{\mathbf{n}}{ }\right)
$$

Cumulants for azimuthal correlations

No fluctuation

Bessel-Gaussian fluctuation

Same answer!:

$$
\begin{array}{ll}
c_{n}\{2\}=\left(v_{n}^{0}\right)^{2}+2 \delta^{2} & c_{n}\{4\}=-\left(v_{n}^{0}\right)^{4} \\
c_{n}\{6\}=4\left(v_{n}^{0}\right)^{6} & c_{n}\{8\}=-33\left(v_{n}^{0}\right)^{8}
\end{array}
$$

$$
v_{n}\{4\}=v_{n}\{6\}=v_{n}\{8\}=. .=v_{n}^{0}
$$

Can cumulants capture all details of $p\left(v_{n}\right)$?

$\left.p\left(v_{n}\right) \propto v_{n} \exp \left(\frac{-\left(v_{n}^{2}+\left(v_{n}^{0}\right)^{2}\right.}{2 \delta_{n}^{2}}\right) I_{0} \frac{v_{n} v_{n}^{0}}{\delta_{n}^{2}}\right)$
$v_{n}{ }^{0}=\delta \sqrt{ } 2$ as example

- Divide B-G distri. to 2 equal parts, and calculate cumulants separately. $v_{n}\{2\} \quad v_{n}\{4\} \quad v_{n}\{6\} \quad v_{n}\{8\}$ In units of $v_{n}{ }^{0}$

all	1.414	1	1	1
A	0.851	0.759	0.746	0.744
B	1.809	1.690	1.701	1.701

- $\mathrm{v}\{2\}$ and $\mathrm{v}\{4\} \rightarrow$ width and mean of $\mathrm{p}(\mathrm{v})$, higher-order diff. very small Higher-order cumulants not sensitive to $p\left(v_{n}\right)$ beyond mean and width?

Cumulants for narrow distribution

- Simple central moment expansion $\quad \theta_{j}=\int\left(\frac{v_{n}-\left\langle v_{n}\right\rangle}{\left\langle v_{n}\right\rangle}\right)^{j} p\left(v_{n}\right) d v_{n}$

$$
\left\langle v_{n}^{2 k}\right\rangle=\left\langle v_{n}\right\rangle^{2 k} \int\left(1+\frac{v_{n}-\left\langle v_{n}\right\rangle}{\left\langle v_{n}\right\rangle}\right)^{2 k} p\left(v_{n}\right) d v_{n}=\left\langle v_{n}\right\rangle^{2 k}\left(1+\sum_{j=2}^{2 k} C_{2 k}^{j} \theta_{j}\right)
$$

- Keep up to θ_{4} :

$$
\begin{aligned}
& v_{n}\{2\} /\left\langle v_{n}\right\rangle \approx 1+\frac{1}{2} \theta_{2}-\frac{3}{8} \theta_{2}^{2} \\
& v_{n}\{4\} /\left\langle v_{n}\right\rangle \approx 1-\frac{1}{2} \theta_{2}-\theta_{3}-\frac{1}{4} \theta_{4}+\frac{1}{8} \theta_{2}^{2} \\
& v_{n}\{6\} /\left\langle v_{n}\right\rangle \approx 1-\frac{1}{2} \theta_{2}-\frac{2}{3} \theta_{3}+\frac{1}{4} \theta_{4}-\frac{11}{8} \theta_{2}^{2} \\
& v_{n}\{8\} /\left\langle v_{n}\right\rangle \approx 1-\frac{1}{2} \theta_{2}-\frac{7}{11} \theta_{3}+\frac{31}{132} \theta_{4}-\frac{117}{88} \theta_{2}^{2}
\end{aligned}
$$

- Some useful relations (again only true for narrow distribution)

$$
\begin{aligned}
\frac{\sigma_{n}}{\left\langle v_{n}\right\rangle} \equiv \sqrt{\theta_{2}} & \approx \sqrt{\frac{v_{n}^{2}\{2\}-v_{n}^{2}\{4\}}{v_{n}^{2}\{2\}+v_{n}^{2}\{4\}}} & v_{n}\{6\}-v_{n}\{4\} & \approx\left\langle v_{n}\right\rangle\left(\frac{1}{3} \theta_{3}+\frac{\theta_{4}-3 \theta_{2}^{2}}{2}\right) \\
& \text { Voloshin etc } & v_{n}\{8\}-v_{n}\{6\} & \approx\left\langle v_{n}\right\rangle\left(\frac{1}{33} \theta_{3}-\frac{\theta_{4}-3 \theta_{2}^{2}}{66}\right)
\end{aligned}
$$

Broad distribution -I

- Width controlled by a.
- $\mathrm{v}\{2 \mathrm{k}\}, \mathrm{k}>1$ close to each other for $a<0.5$. then deviates and flip sign $(\mathrm{v}\{6\}, \mathrm{v}\{8\}<0)$.

$$
\begin{gathered}
p(x ; a)=\left\{\begin{array}{cc}
1 & |x-1| \leq a \\
0 & |x-1|>a
\end{array}, \quad x \equiv \frac{v_{n}}{\left\langle v_{n}\right\rangle}\right. \\
v_{n}\{2 k\} \equiv \operatorname{sgn}\left(a_{n}\{2 k\}\right) \sqrt[2 k]{\left|a_{n}\{2 k\}\right|}
\end{gathered}
$$

$$
v_{n}\{2 k\} \equiv \operatorname{sgn}\left(a_{n}\{2 k\}\right) \sqrt[2 k]{\left|a_{n}\{2 k\}\right|}
$$

- Unless have a-priori knowledge of its shape, i.e. close to BG, cumulants
- Difficult to constrain $\mathrm{p}(\mathrm{v})$ beyond mean and width
- In principle can't use $\mathrm{c}_{\mathrm{n}}\{4\}<0$ as sign of onset of collectivity

- Future measurements should provide direct physics insights
- Obtain a complete picture at top $\sqrt{ } \mathrm{s}$, then apply to other systems and energies.
- Explore new observables sensitive to event-shape fluctuations:

$$
p\left(v_{n}, v_{m}, \ldots, \Phi_{n}, \Phi_{m}, \ldots\right)=\frac{1}{N_{\mathrm{evts}}} \frac{d N_{\mathrm{evts}}}{d v_{n} d v_{m} \ldots d \Phi_{n} d \Phi_{m} \ldots}
$$

- Augmented by the event-shape engineering technique
- Applications:
- $\mathrm{p}\left(\mathrm{v}_{2}\right)$ is sensitive to non-linear response to $\mathrm{p}\left(\varepsilon_{2}\right)$.
- Event plane correlations and $\mathrm{v}_{\mathrm{n}}-\mathrm{v}_{2}$ correlations allow quantitative separation of initial geometry and mode-mixing components
- v_{2} and v_{3} are mainly controlled by ε_{2} and ε_{3}
- $\mathrm{v}_{4}, \mathrm{v}_{5}$, and v_{6} contains both geometry and mode-mixing components, can be separated by data-driven methods.
- Novel anti-correlation between v_{3} and v_{2} reflects the $\varepsilon_{3}-\varepsilon_{2}$ anti-correlation
- Taking mode-mixing into account, conformal scaling explains the similarity of v_{4} in pA and AA (in addition to v_{2} and v_{3})
- Cumulants not very sensitive to the $\mathrm{p}\left(\mathrm{v}_{\mathrm{n}}\right)$ beyond its mean and width.

Backup

Eccentricity scaling: v_{n} / ε_{n}

Teaney and Yan

Viscous damping expected to be larger for larger n

