

Event-by-event flow harmonics

Jiangyong Jia

QCD Chirality Workshop

Brookhaven National Laboratory

1/21-1/23, 2015, UCLA

Office of Science | U.S. Department of Energy

Recent accomplishments

Improved the space-time picture of bulk matter evolution

Improved extraction of the medium properties

Challenge: simultaneous determination of two unknowns

Future experimental measurements

Experimental error bar no-longer the limiting factors on the η/s

• Measurement aim to provide a picture that is as complete as possible.

- Event-by-event flow observables \rightarrow initial fluctuation & flow correlation
- Event shape engineering & engen-mode ana. \rightarrow geometry & hydro. response
- Longitudinal fluctuations \rightarrow particle production & early time dynamics
- Medium response \rightarrow relaxation mechanism for local perturbation
- PID $v_n \rightarrow$ hadronization and hadronic transport
- Supplemented by system size & beam energy scan.

EbyE 3+1D hydro with AMPT initial condition

Event-by-event observables

1104.4740, 1209.2323, 1203.5095, 1312.3572

$\begin{array}{c} & & & \\ &$

Many little bangs

Also access via multi-particle correlations

$$\left| \begin{array}{c} \left\langle \cos(n_1 \phi_1 + n_2 \phi_2 \dots + n_m \phi_m) \right\rangle = \\ \left\langle v_{n_1} v_{n_2} \dots v_{n_m} \cos(n_1 \Phi_{n_1} + n_2 \Phi_{n_2} \dots + n_m \Phi_{n_m}) \right\rangle \end{array} \right| \Sigma n_i = 0$$

Event-by-event observables

1104.4740, 1209.2323, 1203.5095, 1312.3572

Many little bangs

pdf's Moments / cumulants $p(v_n)$ $v_n\{2k\}, k = 1, 2, \dots$ $\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$ $p(v_n, v_m)$ $\langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle -$ Flow $p(v_n, v_m, v_l)$ $\langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle$ amplitudes Obtained recursively as above ... EP $p(\Phi_n, \Phi_m, \ldots)$ $\langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle$ correlation $\sum_{k} kc_k = 0$ $p(v_l, \Phi_n, \Phi_m, \ldots) \begin{vmatrix} \langle v_l^2 v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \ldots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \ldots) \rangle \end{vmatrix}$ Mixedcorrelation

 $\sum_{k} kc_{k} = 0$

Event-by-event observables

7

Many little bangs 1104.4740, 1209.2323,1203.5095,1312.3572 $p(v_n, v_m, ..., \Phi_n, \Phi_m, ...) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m ... d\Phi_n d\Phi_m ...}$

	pdf's	Moments / cumulants	event-shape method
	$p(v_n)$	$v_n\{2k\}, \ k=1,2,$	NA
	$p(v_n,v_m)$	$\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$	yes
Flow- amplitudes	$p(v_n,v_m,v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $	yes
	•••	Obtained recursively as above	yes
EP- correlation	$p(\Phi_n,\Phi_m,)$	$ \begin{array}{l} \langle v_n^{c_n} v_m^{c_m} \cos(c_n n \Phi_n + c_m m \Phi_m +) \rangle \\ \sum_k k c_k = 0 \end{array} $	yes
Mixed- correlation	$p(v_l, \Phi_n, \Phi_m,)$	$ \begin{array}{l} \langle v_l^2 v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \ldots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{c_n} v_m^{c_m} \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \ldots) \rangle \\ \sum_k k c_k = 0 \end{array} $	yes

Event shape selection

arXiv:1208.4563 arxiv:1311.7091

Fourier expansion of forward E_T distri.:

$$2\pi \frac{dE_T}{d\phi} = \Sigma E_T \left[1 + 2\sum_n v_n^{\text{obs}} \cos n \left(\phi - \Phi_n^{\text{obs}} \right) \right]$$

- 0^{th} order event-shape selection: Centrality by ΣE_{T} (system size)
- 2^{nd} order event-shape selection: ellipticity by v_2^{obs} (system shape)
- 3^{rd} order event-shape selection: triangularity by v_3^{obs} (system shape)

Current measurements of E-by-E distributions

Measured distributions quantitatively described by hydro.

Non-Gaussianity in the $p(v_2)$ distribution

Reflected by a 1-2% change beyond 4th order cumulants

Can one reconstruct p(v₂) from v₂{2k}?

Non-BG in $p(\varepsilon_2)$ or non-linearity of response for large ε_2

EP correlation: How are $(\varepsilon_n, \Phi_n^*)$ transferred to (v_n, Φ_n) ?

• EP correlation probes into the mode-mixing (14 correlators from ATLAS)

How are $(\varepsilon_n, \Phi_n^*)$ transferred to (v_n, Φ_n) ?

• Flow response is linear for v_2 and v_3 :

$$v_2 e^{i2\Phi_2} \propto \epsilon_2 e^{i2\Phi_2^*}, \ v_3 e^{i3\Phi_3} \propto \epsilon_3 e^{i3\Phi_3^*}$$

• But no-trivial correlation between ε_2 and ε_3 :

• Higher-order flow arises from EP correlations., e.g. $<\cos 4(\Phi_2 - \Phi_4)>:$

v₄-v₂ correlation from event-shape engineering ¹⁴

Separate geometry and mode-mixing components!!

$v_5 - v_2$ correlation from event-shape engineering 15

Separate geometry and mode-mixing components!!

v_3 - v_2 correlation from event-shape engineering ¹⁶

Significant magnitude anti-correlations

Eccentricity scaling: v_n/ϵ_n

Viscous correlation:

$$\frac{\Delta W_n}{w_n^{\rm id}} \sim n^2 \, \frac{\eta}{s}$$

Viscous damping expected to be larger for larger n

$$p(v_n, v_m, \dots, \Phi_n, \Phi_m, \dots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \dots d\Phi_n d\Phi_m \dots}$$

• Fluctuations can also be differential in p_T , η , PID etc.

- $v_n(pt,\eta,...) \& \Phi_n(pt,\eta,...)$
- Averaged out in most analyses.

Transverse flow fluctuations

- No-unique mapping between ε_n and v_n , though $\langle v_n \rangle \propto \langle \varepsilon_n \rangle$
 - ε_n defined by different r^m weights \rightarrow radial degrees of freedom.
- Related to flow angle and amplitude fluctuates in p_T

$$\mathbf{v}_n(p_T)e^{in\Phi(p_T)} \qquad V_{n\Delta}(p_T^a, p_T^b) \neq \mathbf{v}_n(p_T^a)\mathbf{v}_n(p_T^b)$$

• Decompose the $v_n(p_T)$ into principle modes, each mode factorize $V_{n\Delta}(p_T^a, p_T^b) = \sum_{\alpha} \langle M(p_T^a)M(p_T^b) \rangle v_n^{(\alpha)}(p_T^a)v_n^{(\alpha)}(p_T^b)$

Transverse flow fluctuations

arXiv:1410.7739,1501.03138

Magnitude and phase of leading and subleading modes fluctuates independently.

- No-unique mapping between ε_n and v_n .
 - ε_n defined by different r^m weights \rightarrow radial degrees of freedom.
- Related to flow angle and amplitude fluctuates in p_T

$$\mathbf{v}_n(p_T)e^{in\Phi(p_T)} \qquad V_{n\Delta}(p_T^a, p_T^b) \neq \mathbf{v}_n(p_T^a)\mathbf{v}_n(p_T^b)$$

• Decompose the $v_n(p_T)$ into principle modes, each mode factorize $V_{n\Delta}(p_T^a, p_T^b) = \sum \langle M(p_T^a)M(p_T^b) \rangle v_n^{(\alpha)}(p_T^a)v_n^{(\alpha)}(p_T^b)$

Transverse flow fluctuations

- No-unique mapping between ε_n and v_n .
 - ε_n defined by different r^m weights \rightarrow radial degrees of freedom.
- Related to flow angle and amplitude fluctuates in p_T

$$\mathbf{v}_n(p_T)e^{in\Phi(p_T)} \qquad V_{n\Delta}(p_T^a, p_T^b) \neq \mathbf{v}_n(p_T^a)\mathbf{v}_n(p_T^b)$$

• Decompose the $v_n(p_T)$ into principle modes, each mode factorize $V_{n\Delta}(p_T^a, p_T^b) = \sum_{\alpha} \langle M(p_T^a)M(p_T^b) \rangle v_n^{(\alpha)}(p_T^a)v_n^{(\alpha)}(p_T^b)$

2.5

 $p_T \,({\rm GeV})$

3.0

3.5

Longitudinal flow fluctuations

• Shape of participants in two nuclei not the same due to fluctuation

$$\varepsilon_n, \Phi_n^* N_{\text{part}} \quad \varepsilon_n^{\text{F}}, \Phi_n^{*\text{F}} N_{\text{part}}^{\text{F}} \quad \varepsilon_n^{\text{B}}, \Phi_n^{*\text{B}} N_{\text{part}}^{\text{B}} \quad \varepsilon_n^{\text{F}}, \Phi_n^{*\text{F}} \neq \varepsilon_n^{\text{B}}, \Phi_n^{*\text{B}}$$

• Wounded nucleon model: particles are produced by independent fragmentation of wounded nucleons, emission function $f(\eta)$ not symmetric in η

Longitudinal flow fluctuations

Eccentricity vector interpolates between $\vec{\epsilon}_n^{\rm F}$ and $\vec{\epsilon}_n^{\rm B}$ $\vec{\epsilon}$

$$\vec{\epsilon}_{n}^{\text{tot}}(\eta) \approx \alpha(\eta)\vec{\epsilon}_{n}^{\text{F}} + (1 - \alpha(\eta))\vec{\epsilon}_{n}^{\text{B}} \equiv \epsilon_{n}^{\text{tot}}(\eta)e^{in\Phi_{n}^{\text{*tot}}(\eta)}$$

Asymmetry:	$\varepsilon_n^{\mathrm{F}} \neq \varepsilon_n^{\mathrm{B}}$
Twist:	$\Phi_n^{*\mathrm{F}} \neq \Phi_n^{*\mathrm{B}}$

 $\alpha(\eta)$ determined by emission profile $f(\eta)$

• Hence
$$\vec{v}_n(\eta) \approx c_n(\eta) \left[\alpha(\eta) \vec{\epsilon}_n^{\mathrm{F}} + (1 - \alpha(\eta)) \vec{\epsilon}_n^{\mathrm{B}} \right]$$
 for n=2,3

Picture verified in AMPT simulations, magnitude estimated 1403.6077

What AMPT tell us?

• F/B asymmetry in initial geometry appears as asymmetry of flow

 $v_2^{\rm obs,F}$ more correlated with $\varepsilon_2^{\rm F}$ than with $\varepsilon_2^{\rm B}$

Initial FB asymmetry survives to final state!!

What AMPT tell us?

- Twist in initial geometry appears as twist in flow
 - Participant plane angles:

 $\Phi_n^{*\mathrm{F}} = \Phi_n^{*\mathrm{B}}$

- Final state event-plane angles
 - $\Psi_n^{\mathrm{F}} = \Psi_n^{\mathrm{B}}$

Initial twist survives to final state!!

Asymmetry

Select events with same PP but different eccentricity:

$$\Phi_n^{*F} \approx \Phi_n^{*B} \quad \varepsilon_n^F > \varepsilon_n^B$$

Observe clear F/B flow asymmetry:

Twist

$$v_n^{c}(\eta) = \langle \cos n (\phi(\eta) - \Theta_n) \rangle \leq 0$$

$$v_n^{s}(\eta) = \langle \sin n (\phi(\eta) - \Theta_n) \rangle \qquad 0$$

Select events with same eccentricity but different PP:

$$\Phi_n^{*F} > \Phi_n^{*B} \qquad \varepsilon_n^F \approx \varepsilon_n^B$$

Observe clear F/B twist of EP angle:

Twist

• Strong centrality and \sqrt{s} dependence, need both LHC & RHIC

