# Correlations and fluctuations in high-energy nuclear collisions

-- a "flow" centric review

Jiangyong Jia

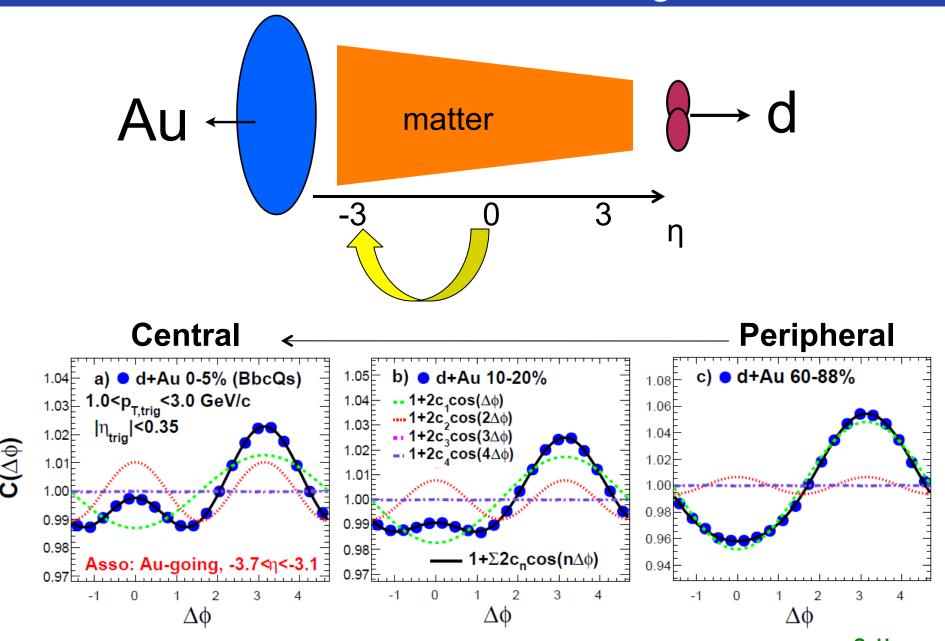
- Ridge in small systems
- Collective phenomena in A+A



Refer to Alex Shmah for other topics

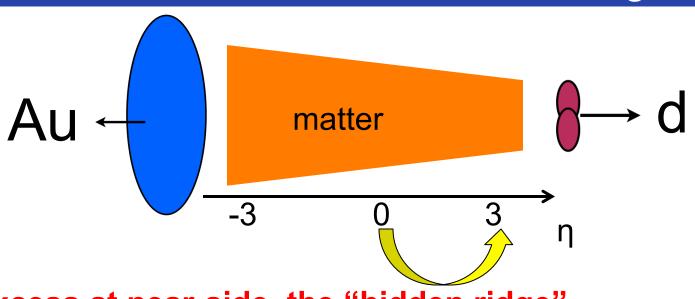


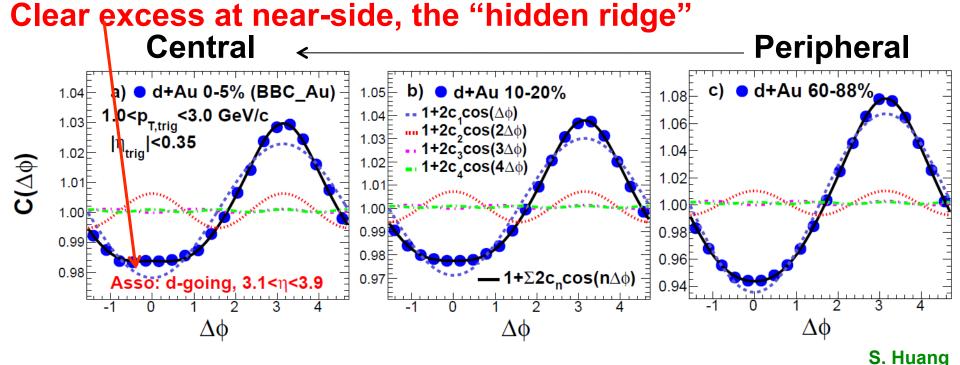
# The PHENIX d+Au ridge



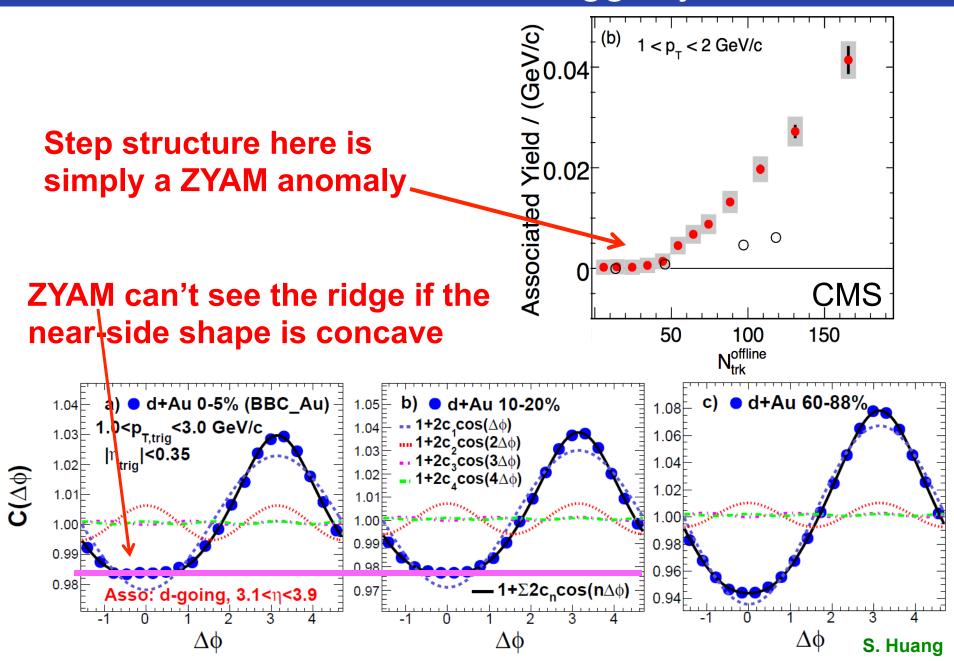
S. Huang

### The PHENIX "hidden" d+Au ridge

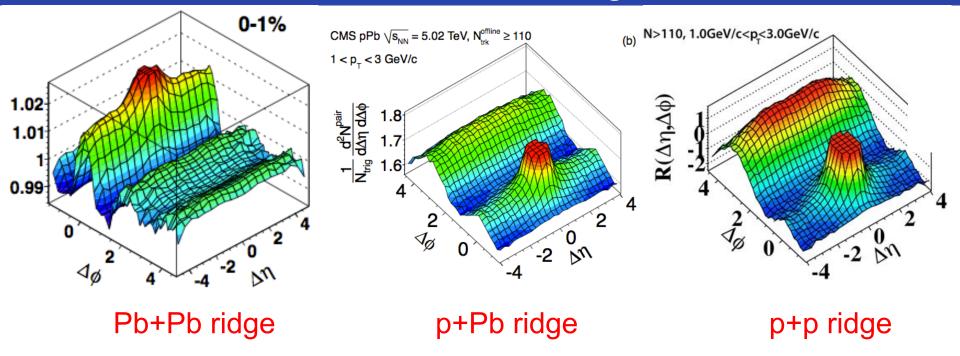




### Be careful about Per-trigger yield...

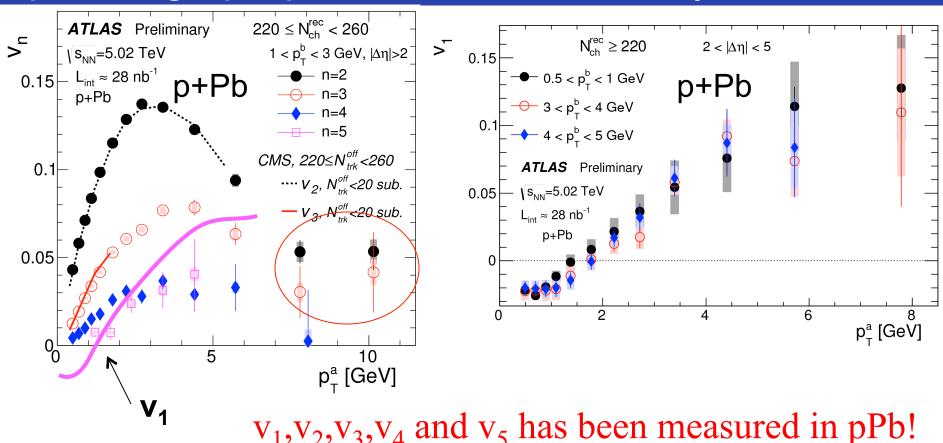


### The tale of three ridges....

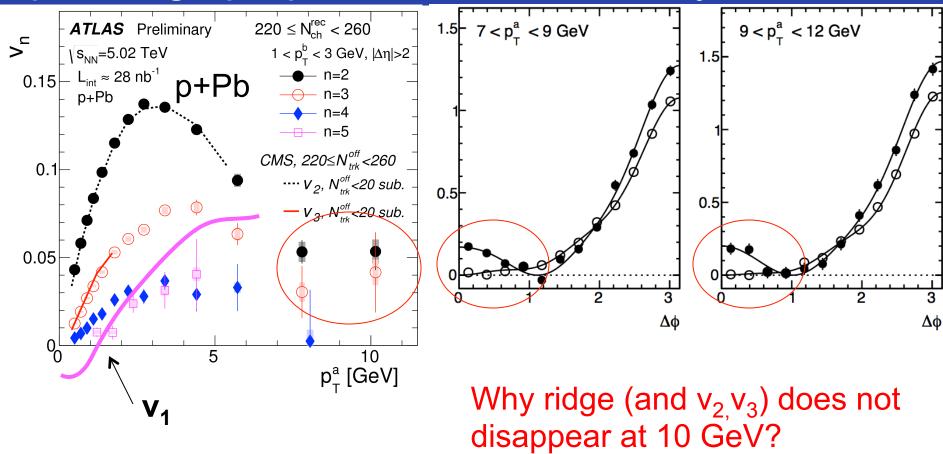


- Manifestation of QCD in different high density systems
- But is there an effective mechanism that rules them all? Is it initial state effect, final state effect or both?
- What is its detailed  $p_T$ ,  $\eta$ , and centrality dependence? How these dependences compare between different systems?

### pPb ridge properties summarized by harmonics

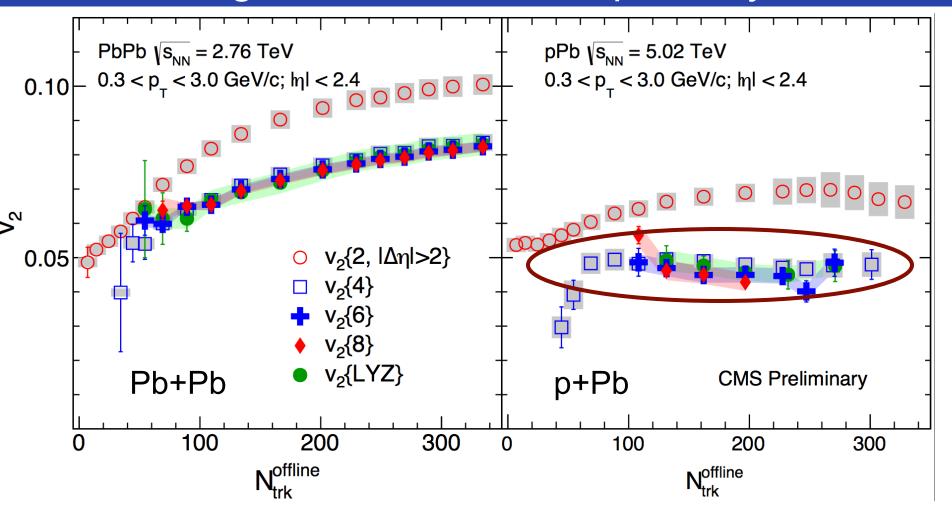


- $v_1, v_2, v_3, v_4$  and  $v_5$ , made possible with recoil subtraction
  - $v_2$ ,  $v_3$  out to 10 GeV, remain 3-5%, small jet modifications?
  - $v_n$  decrease with n for n=2-5
  - Significant  $v_1$  comparable with  $v_3$  at 4 GeV.



- $v_1, v_2, v_3, v_4$  and  $v_5$ , made possible with recoil subtraction
  - $v_2$ ,  $v_3$  out to 10 GeV, remain 3-5%, small jet modifications?
  - $v_n$  decrease with n for n=2-5
  - Significant  $v_1$  comparable with  $v_3$  at 4 GeV.

### Is there global correlation in p+Pb system?

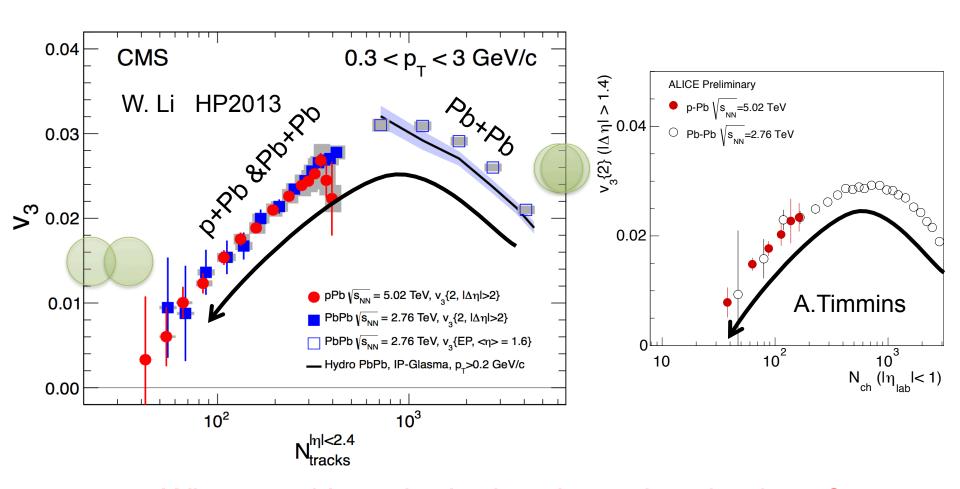


Multi-particle and all particle correlation signal remain remarkably large in high-multiplicity events!!

Collective behavior!

# Comparison p+Pb with Pb+Pb

Collectivity increase and decrease with system size.



Where and how the hydro-picture breaks down? What is the correct effective theory? CGC+transport?

### Comparison of p+Pb with Pb+Pb

 Why extrapolation of hydro prediction works so well? e.g. conformal scaling

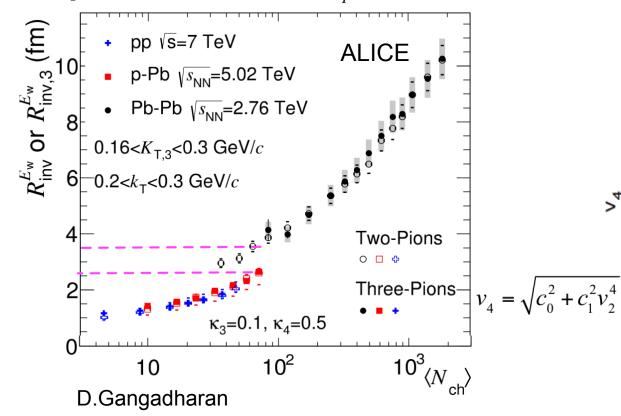
G. Basar & Teaney

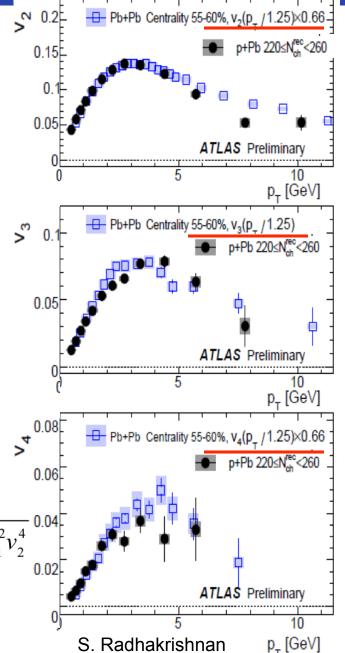
• From the confomal analysis

$$\frac{L_{AA}}{L_{pA}} = \frac{\langle p_T \rangle_{pA}}{\langle p_T \rangle_{AA}} = 1.3$$

• Find:

$$\frac{R_{AA}}{R_{pA}} = \frac{3.5}{2.6} = 1.35$$





### Comparison of p+Pb with Pb+Pb

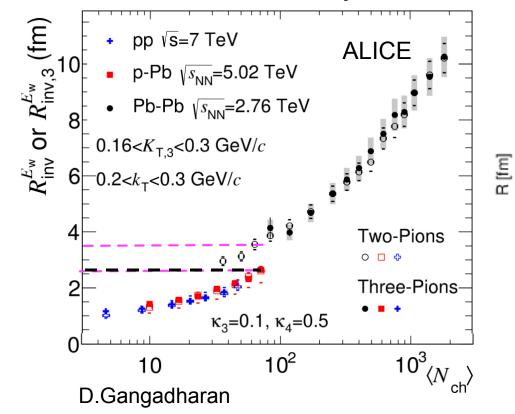
 Why extrapolation of hydro prediction works so well? e.g. conformal scaling

• From the confomal analysis

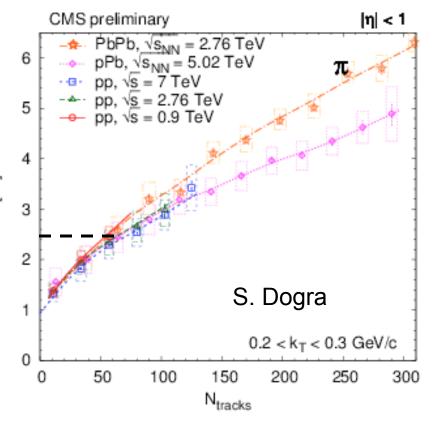
$$rac{L_{AA}}{L_{pA}} = rac{\langle p_T 
angle_{pA}}{\langle p_T 
angle_{AA}} = 1.3$$

• Find:

$$\frac{R_{AA}}{R_{pA}} = \frac{3.5}{2.6} = 1.35$$



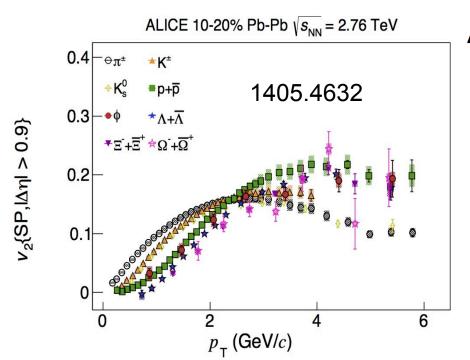
Detailed comparison between experiments are needed

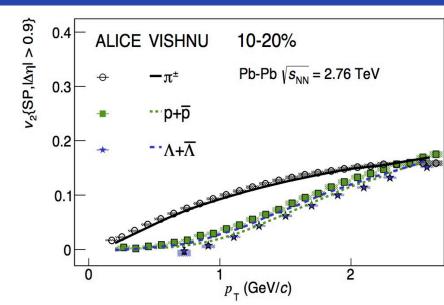


# A few observations/comments about flow in A+A collisions

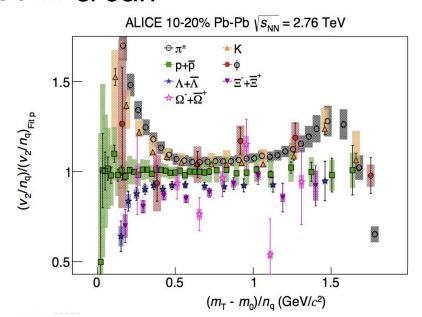
### PID v<sub>2</sub> at LHC

- Compare to RHIC results,
  - Stronger radial flow and importance of hadronic rescattering.
  - Poorer NCQ scaling.
- • flow like a baryon (central) and meson (mid-central)
  - Combination of mass and crosssection effects?

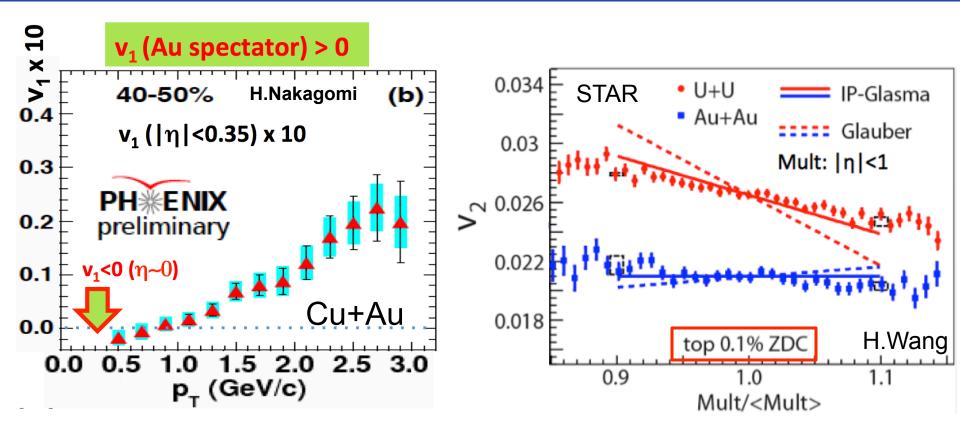




### A. Dobrin & Jan



### Cu+Au and U+U



- Cu+Au v<sub>1</sub> from average dipolar geometry
- U+U: see some sensitivity to the initial state geometry.

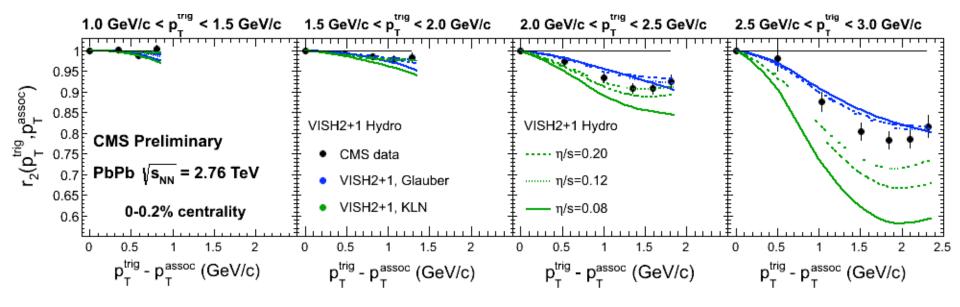
Each collision system introduces its own uncertainty in geometry!

### Intra-event flow fluctuation and factorization

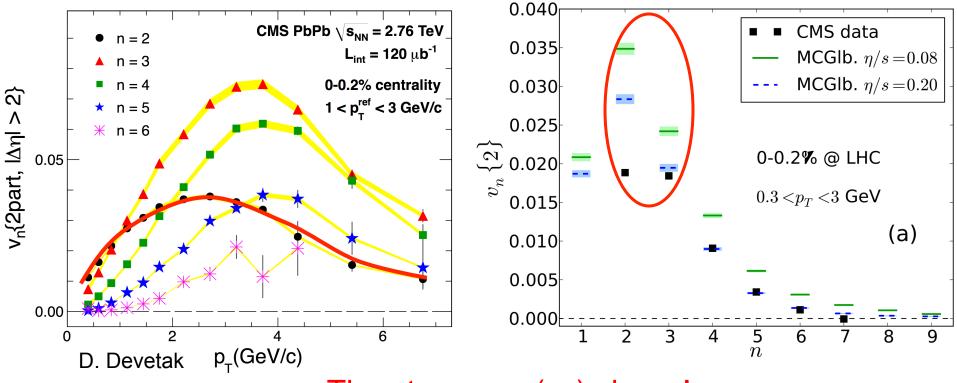
• Flow angle and amplitude fluctuates in  $p_T$  (and  $\eta$ ) Ollitrault QM2012

$$ilde{r}_n(p_{T1},p_{T2}) := rac{\langle v_n(p_{T1})v_n(p_{T2}) ext{cos}[n(\Psi_n(p_{T1})-\Psi_n(p_{T2}))] 
angle}{\langle v_n(p_{T1})v_n(p_{T2}) 
angle}$$

- Breaking is largest for v<sub>2</sub> in ultra-central Pb+Pb collisions
  - Much smaller for other harmonics and in other centralities (ALICE/ATLAS/CMS)
- Breaking of factorization p+Pb at a few % level D. Devetak also Y. Zhou



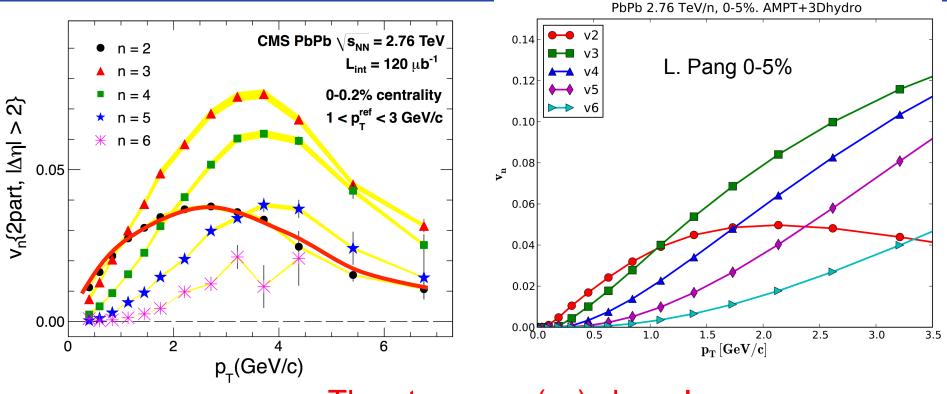
### Ultra-central collisions



The strange v<sub>2</sub>(p<sub>T</sub>) shape!

- Linear response dominates:  $v_n \propto \varepsilon_n$  for all n
- Models have difficulty explain  $v_2 \approx v_3$ 
  - Importance of nucleon-nucleon correlation and bulk viscosity? G.Denicol

### Ultra-central collisions

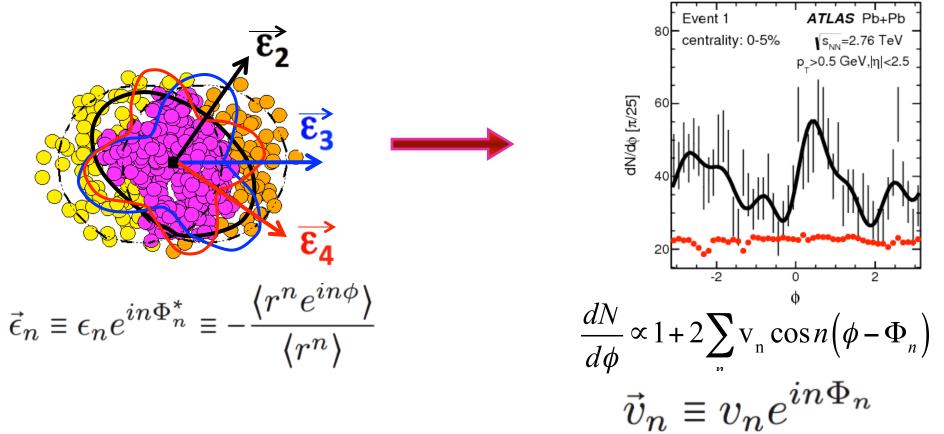


The strange  $v_2(p_T)$  shape!

- Linear response dominates:  $v_n \propto \varepsilon_n$  for all n
- Models have difficulty explain  $v_2 \approx v_3$ 
  - Importance of nucleon-nucleon correlation and bulk viscosity? G.Denicol

# **Event-by-Event fluctuations**

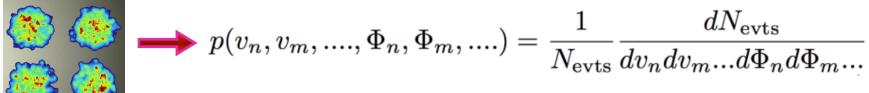
### Geometry and harmonic flow



- How  $(\varepsilon_n, \Phi_n^*)$  are transferred to  $(v_n, \Phi_n)$ ?
- What is the nature of final state (non-linear) dynamics?

### Experimental observables

#### Many little bangs



Angular component captured by cosines

$$\frac{dN_{\text{evts}}}{d\Phi_1 d\Phi_2 ... d\Phi_l} \propto \sum_{c_n = -\infty}^{\infty} a_{c_1, c_2, ..., c_l} \cos(c_1 \Phi_1 + c_2 \Phi_2 ... + c_l \Phi_l)$$

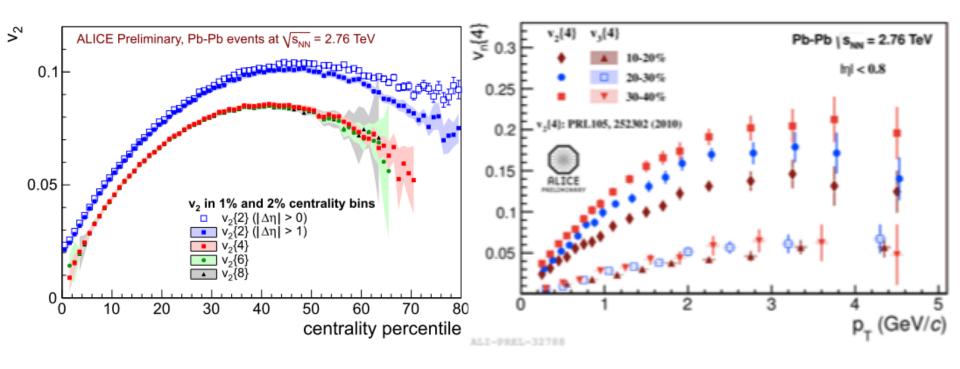
$$a_{c_1, c_2, ..., c_l} = \langle \cos(c_1 \Phi_1 + c_2 \Phi_2 + ... + c_l \Phi_l) \rangle$$

$$\langle \cos(c_1 \Phi_1 + 2c_2 \Phi_2 ... + lc_l \Phi_l) \rangle, c_1 + 2c_2 ... + lc_l = 0.$$

1104.4740, 1209.2323, 1203.5095 ,1312.3572

|                         | Probability distribution | Cumulants                                                                              |
|-------------------------|--------------------------|----------------------------------------------------------------------------------------|
| Flow amplitudes         | $p(v_n), p(v_n, v_m)$    | $v_n\{2k\}, \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$ |
| Event-plane correlation | $p(\Phi_n,\Phi_m,)$      | $\langle \vec{v}_n \vec{v}_m \rangle$ or                                               |
|                         |                          | $\langle \cos(c_1\Phi_1++lc_l\Phi_l) \rangle$                                          |

# v<sub>n</sub>{2k} in Pb+Pb collisions

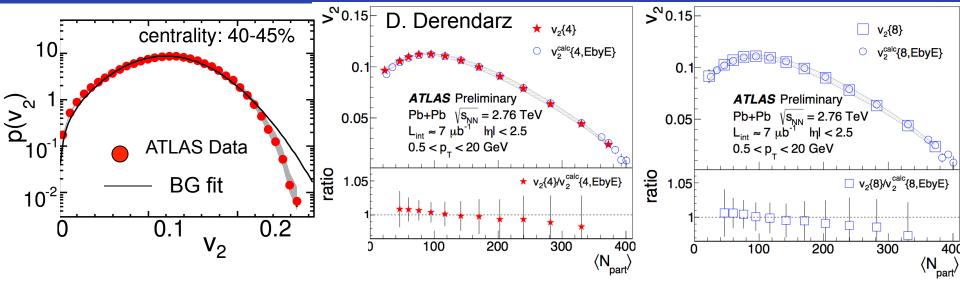


- Provide information about the underlying  $p(v_n)$  distribution
- $v_2\{4\} \sim v_2\{6\} \sim v_2\{8\}$  Gaussian fluctuation around mean  $v_2^{RP}$ :

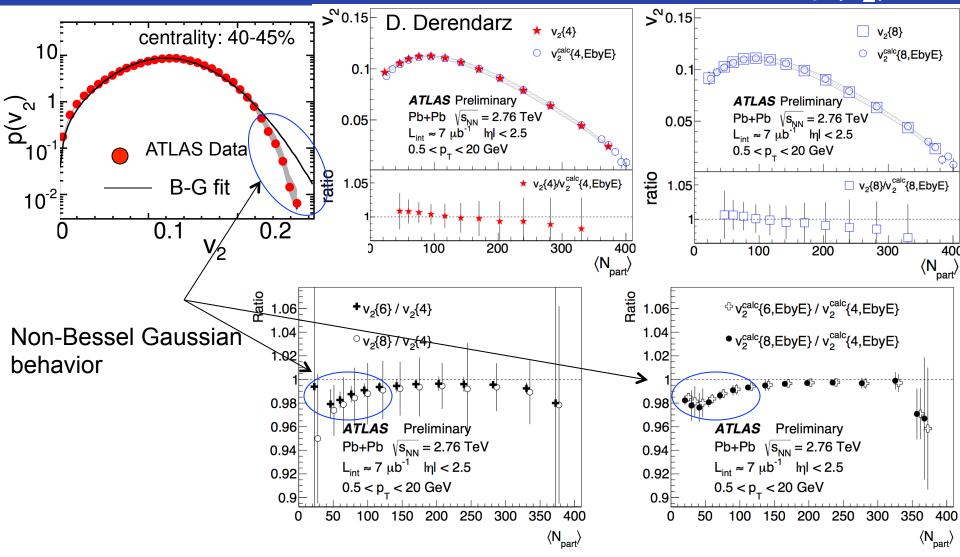
$$p(\vec{v}_n) = \frac{1}{2\pi\delta_{v_n}^2} e^{-(\vec{v}_n - \vec{v}_n^{\text{RP}})^2/(2\delta_{v_n}^2)}$$

Non-zero  $v_3\{4\}$  (ALICE) and also  $v_4\{4\}$  (ATLAS)

### Cumulants from traditional method and from p(v<sub>2</sub>)



### Cumulants from traditional method and from p(v<sub>2</sub>)



- Measuring  $p(v_2)$  is equivalent to cumulants, more intuitive and simpler systematics
- Non-Bessel Gaussian is reflected by a 2% change beyond 4<sup>th</sup> order cumulants

# How $(\varepsilon_n, \Phi_n^*)$ are transferred to $(v_n, \Phi_n)$ ?

Flow response is linear for  $v_2$  and  $v_3$ :  $v_n \propto \varepsilon_n$  and  $\Phi_n \approx \Phi_n^*$  i.e.

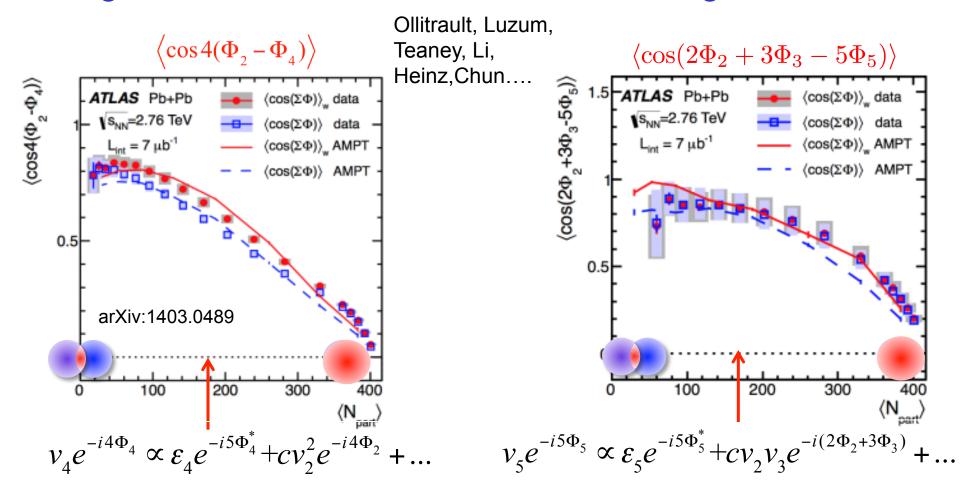
$$v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}, \ v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$$

# How $(\varepsilon_n, \Phi_n^*)$ are transferred to $(v_n, \Phi_n)$ ?

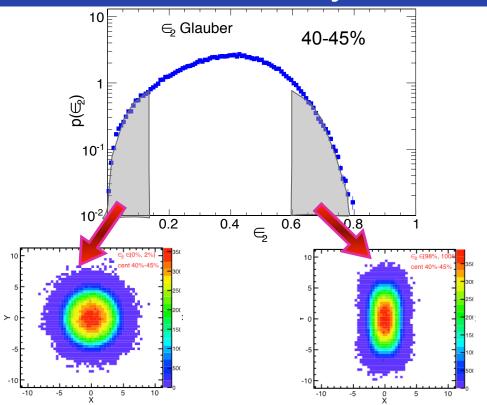
■ Flow response is linear for  $v_2$  and  $v_3$ :  $v_n \propto \varepsilon_n$  and  $\Phi_n \approx \Phi_n^*$  i.e.

$$v_2 e^{-i2\Phi_2} \propto \epsilon_2 e^{-i2\Phi_2^*}, \ v_3 e^{-i3\Phi_3} \propto \epsilon_3 e^{-i3\Phi_3^*}$$

■ Higher-order flow arises from EP correlations., e.g. :



# More info by selecting on event-shape

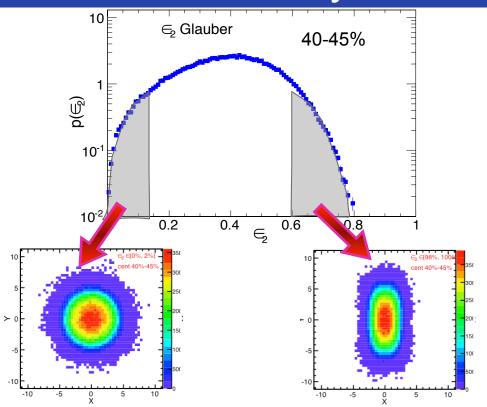


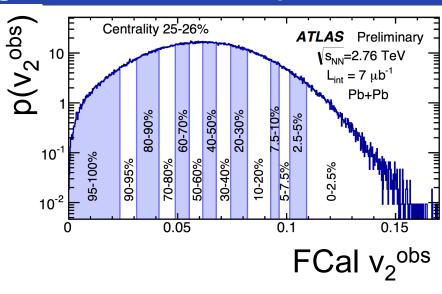
arXiv:1208.4563

arxiv:1311.7091

• Select events with certain  $v_2^{\text{obs}}$  in Forward Rapidity:

### More info by selecting on event-shape



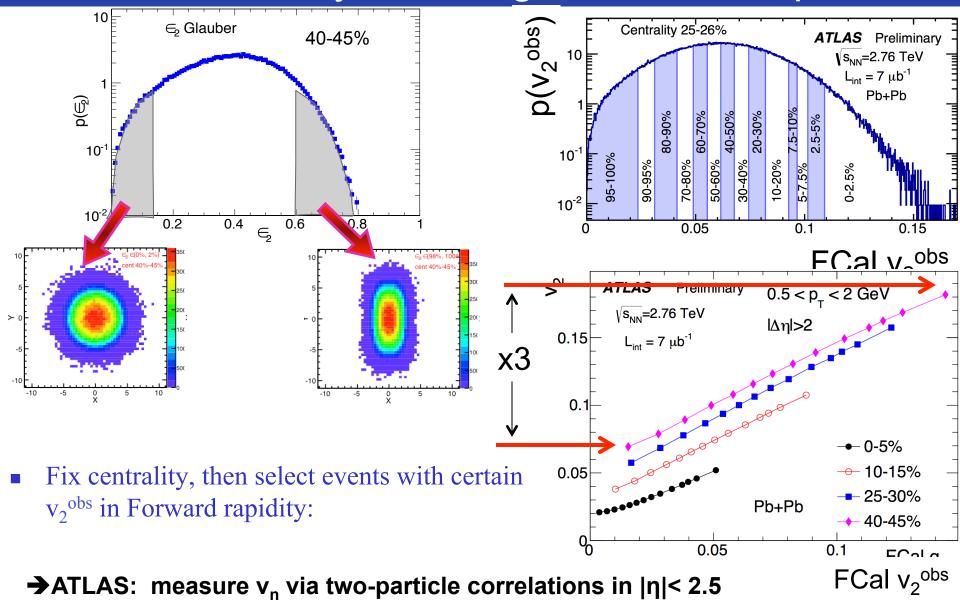


arXiv:1208.4563 arxiv:1311.7091

Fix centrality, then select events with certain  $v_2^{\text{obs}}$  in Forward rapidity:

→ATLAS: measure  $v_n$  via two-particle correlations in  $|\eta| < 2.5$  Fix system size and change ellipticity!!

# More info by selecting on event-shape

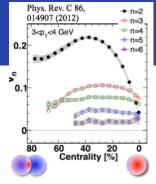


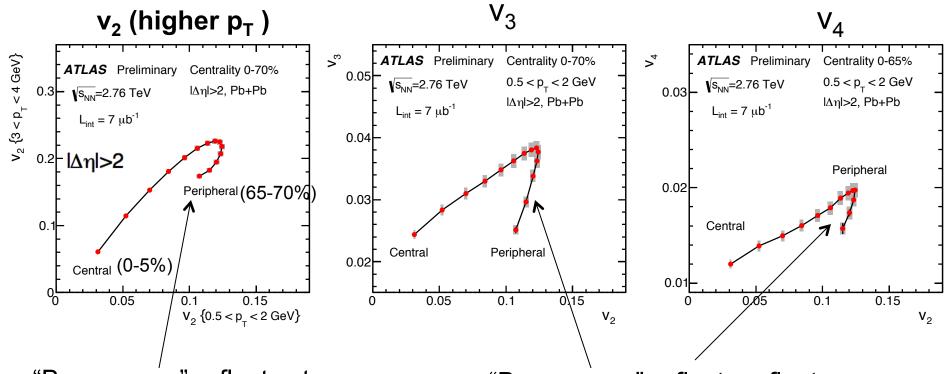
Vary ellipticity by a factor of 3!

S. Mohapatra

### v<sub>n</sub>-v<sub>2</sub> correlations: centrality dependence

• First correlation without event  $v_2$ -selection, 5% steps





"Boomerang" reflects stronger viscous damping at higher p<sub>T</sub> and peripheral

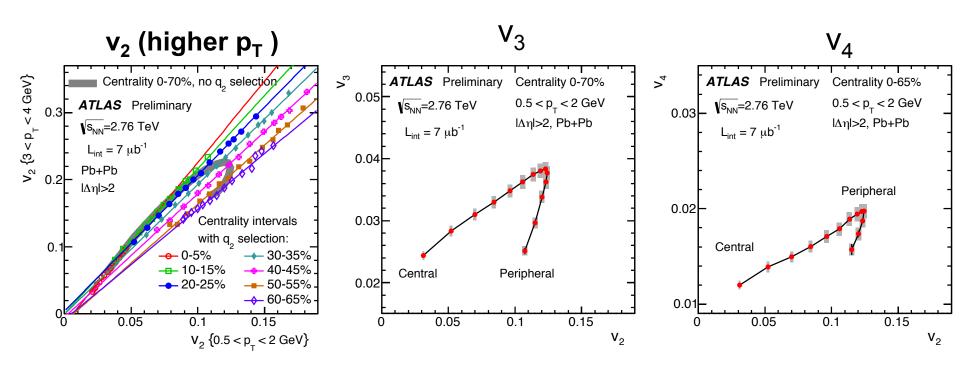
"Boomerang" reflects reflects different centrality dependence, which is also sensitive to the viscosity effect.

S. Mohapatra

# v<sub>n</sub>-v<sub>2</sub> correlations: within fixed centrality

• Fix system size and vary the ellipticity!

Probe  $p(v_n, v_2)$ 



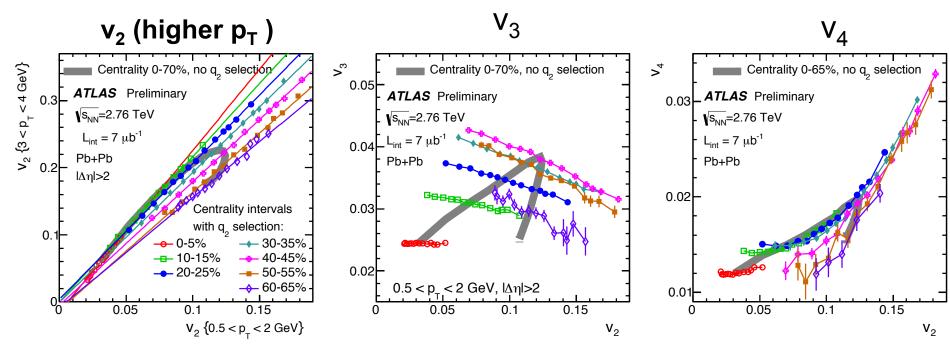
Linear correlation for forward v<sub>2</sub>-selected bin → viscous damping controlled by system size, not shape

### v<sub>n</sub>-v<sub>2</sub> correlations: within fixed centrality

• Fix system size and vary the ellipticity!

Probe  $p(v_n, v_2)$ 

• Overlay  $\varepsilon_3$ - $\varepsilon_2$  and  $\varepsilon_4$ - $\varepsilon_2$  correlations, rescaled



Linear correlation for forward v<sub>2</sub>-selected bin → viscous damping controlled by system size, not shape

Clear anti-correlation,

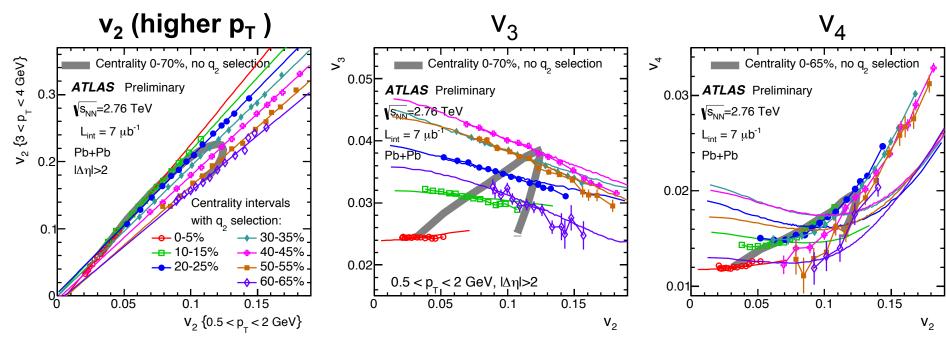
quadratic rise from nonlinear coupling to  $v_2^2$ 

### v<sub>n</sub>-v<sub>2</sub> correlations: within fixed centrality

• Fix system size and vary the ellipticitiy!

Probe  $p(v_n, v_2)$ 

• Overlay  $\varepsilon_3$ - $\varepsilon_2$  and  $\varepsilon_4$ - $\varepsilon_2$  correlations, rescaled



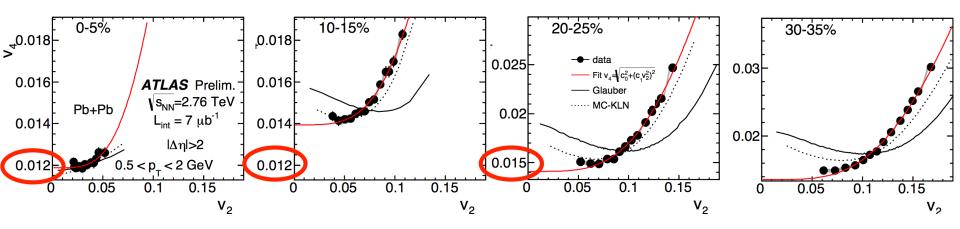
Linear correlation for forward v<sub>2</sub>-selected bin → viscous damping controlled by system size, not shape

Clear anti-correlation, mostly initial geometry effect!!

quadratic rise from nonlinear coupling to  $v_2^2$ initial geometry do not work!!

Initial geometry describe v<sub>3</sub>-v<sub>2</sub> but fails v<sub>4</sub>-v<sub>2</sub> correlation S. Mohapatra

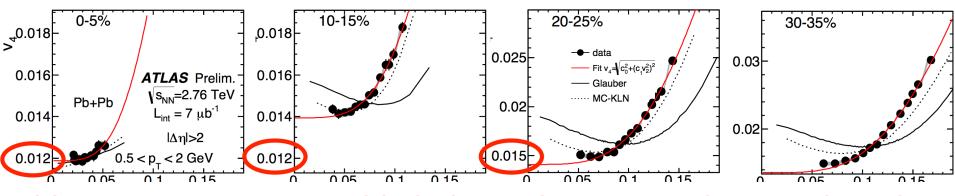
■  $V_4$ - $V_2$  correlation for fixed centrality bin  $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2}\right)^2 \Rightarrow \text{ Fit by } v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ 



Fit  $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$  to separate linear (ε<sub>4</sub>) and non-linear (ν<sub>2</sub><sup>2</sup>) component

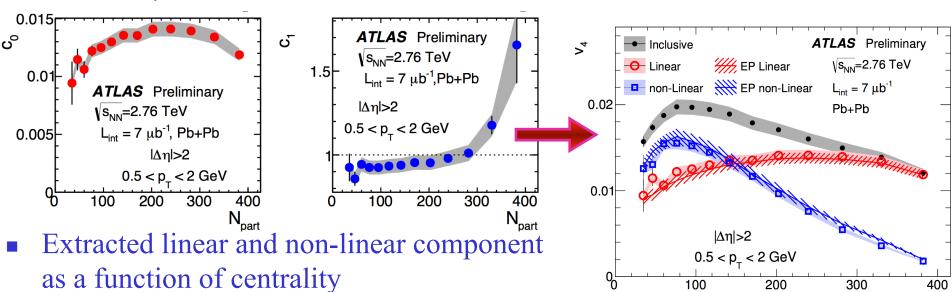
# linear (ε<sub>4</sub>) and non-linear (ν<sub>2</sub><sup>2</sup>) component of ν<sub>4</sub>

■  $V_4$ - $V_2$  correlation for fixed centrality bin  $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^*} + c_1 \left(v_2 e^{i2\Phi_2}\right)^2 \Rightarrow \text{ Fit by } v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ 



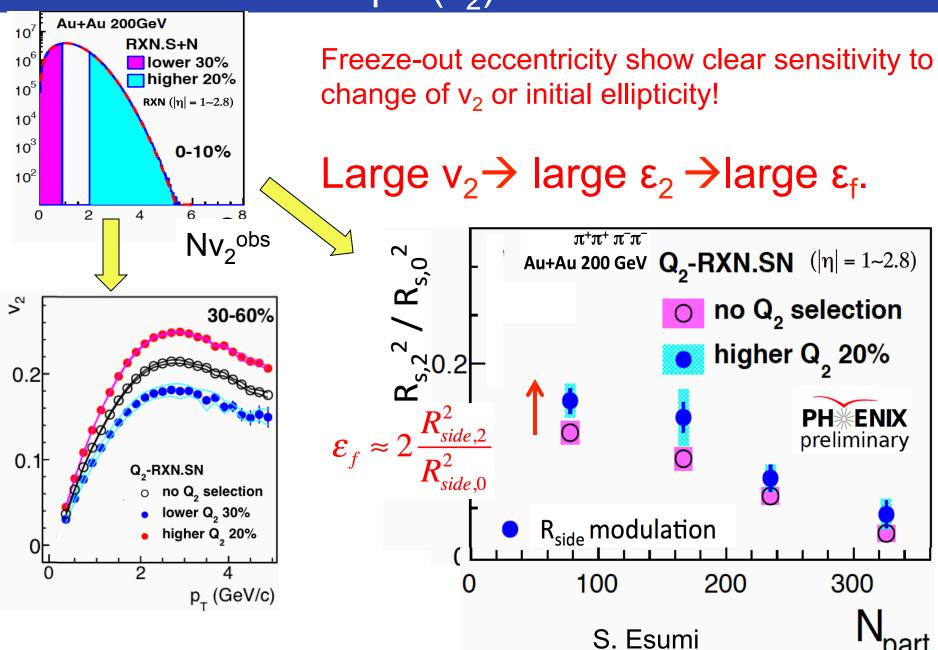
### Linear-component provide independent constraints on viscosity

Fit  $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$  to separate linear (ε<sub>4</sub>) and non-linear (ν<sub>2</sub><sup>2</sup>) component



See details at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-022/

### Event-shape (v<sub>2</sub>) selected HBT



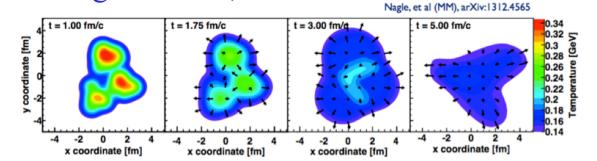
# Future prospects: my humble opinion

# (I): Precision event-shape selection

■ Different collision system e.g. He³+Au, June 16<sup>th</sup>!

P. ROMATSCHKE

Intrinsic trangularity

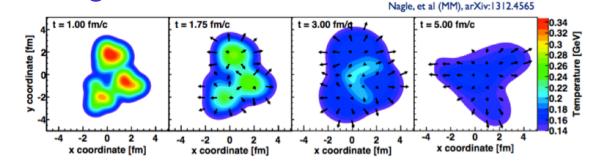


# (I): Precision event-shape selection

■ Different collision system e.g. He³+Au, June 16<sup>th</sup>!

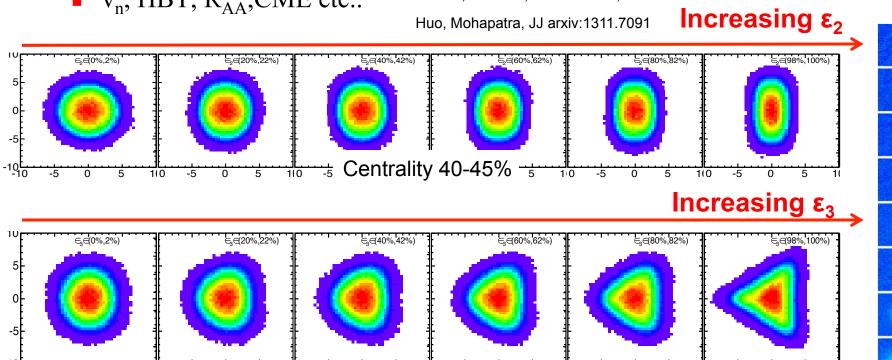
P. ROMATSCHKE

Intrinsic trangularity



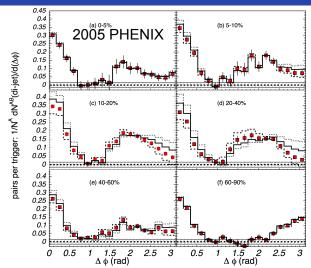
- Event-shape selections on  $v_2$  and/or  $v_3$  Fix size, change  $\varepsilon_2$  and  $\varepsilon_3$
- v<sub>n</sub>, HBT, R<sub>AA</sub>,CME etc..

Schukraft, Timmins, and Voloshin, arXiv:1208.4563



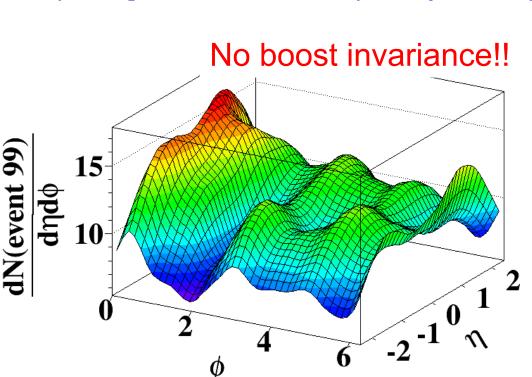
# (II): understand jet-medium interaction

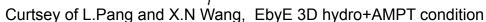
- How (mini)-jet are thermalized in medium?
  - Difficult due to dominance of collective flow
    - Until 2010, triangular flow was interpreted as "Mach-cone"
- Event-shape selection technique can help!
  - Require events to have small v<sub>n</sub>, less flow subtraction.



### (II): understand jet-medium interaction

- How (mini)-jet are thermalized in medium
  - Difficult due to dominance of collective flow
    - Circa 2005, triangular flow was interpreted as "Mach-cone"
- Event-shape selection technique can help!
  - Require events to have small  $v_n$ , less flow subtraction.
- $\eta \times \varphi$  space are dominated by fake-jets or "hydro-jets"





### (II): understand jet-medium interaction

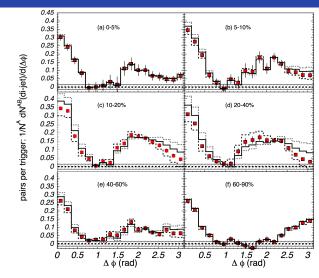
- How (mini)-jet are thermalized in medium
  - Difficult due to dominance of collective flow
    - Circa 2005, triangular flow was interpreted as "Mach-cone"
- Event-shape selection technique can help!
  - Require events to have small  $v_n$ , less flow subtraction.
- $\eta \times \varphi$  space are dominated by fake-jets or "hydro-jets"
  - They can be found by jet-reco algorithm (vetoing good jets)

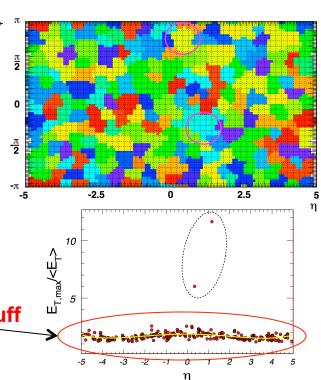
Then analysis spectrum or study substructure?

k<sub>T</sub> algorithm

k<sub>T</sub> algorithm

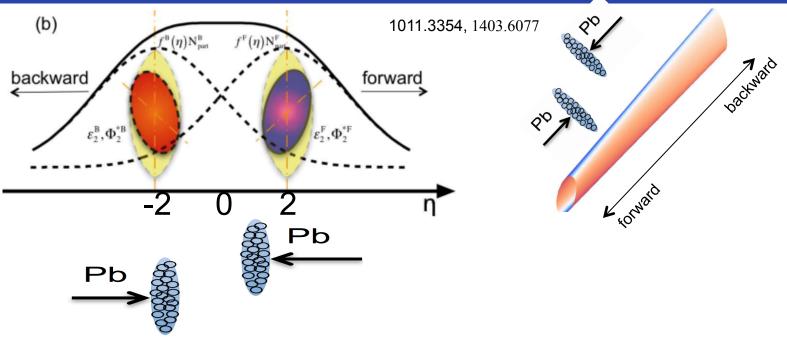
limit to the structure of the





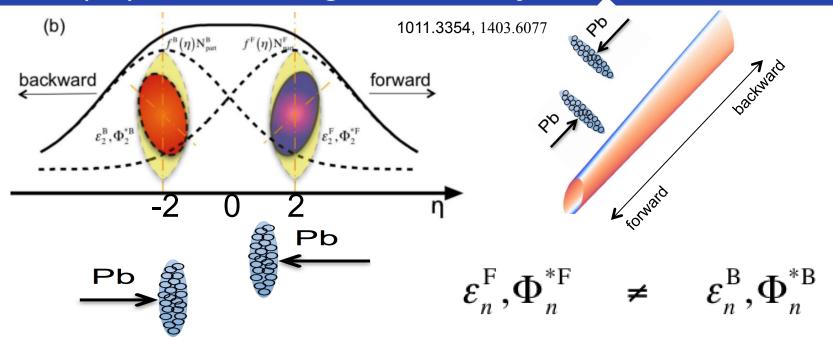
Curtsey of L.Pang and X.N Wang, EbyE 3D hydro+AMPT condition

# (III): flow longitudinal dynamics



- Shape of participants in two nuclei not the same due to fluctuation  $\varepsilon_n^F, \Phi_n^{*F} \neq \varepsilon_n^B, \Phi_n^{*B}$
- Particles are produced by independent fragmentation of wounded nucleons, emission function f(η) not symmetric in η→ Wounded nucleon model

### (III): flow longitudinal dynamics



• Eccentricity vector interpolates between  $\vec{\epsilon}_n^{\mathrm{F}}$  and  $\vec{\epsilon}_n^{\mathrm{B}}$ 

$$\vec{\epsilon}_n^{\text{tot}}(\eta) \approx \alpha(\eta)\vec{\epsilon}_n^{\text{F}} + (1 - \alpha(\eta))\vec{\epsilon}_n^{\text{B}} \equiv \epsilon_n^{\text{tot}}(\eta)e^{in\Phi_n^{*\text{tot}}(\eta)}$$

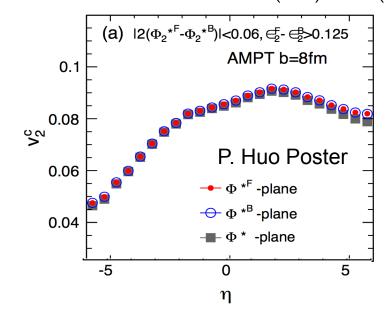
 $\alpha(\eta)$  determined by  $f(\eta)$ 

• Hence 
$$\vec{v}_n(\eta) \approx c_n(\eta) \left[\alpha(\eta)\vec{\epsilon}_n^{\mathrm{F}} + (1-\alpha(\eta))\vec{\epsilon}_n^{\mathrm{B}}\right]$$
 for n=2,3

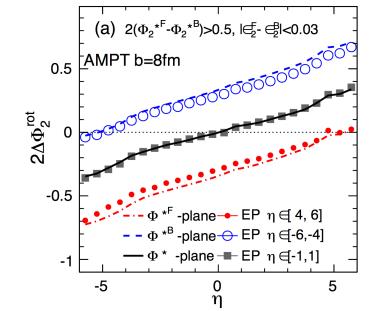
Picture verified in AMPT simulations, magnitude estimated 1403.6077

Asymmetry:  $\varepsilon_n^{\rm F} \neq \varepsilon_n^{\rm B}$ Twist:  $\Phi_n^{*{\rm F}} \neq \Phi_n^{*{\rm B}}$ 

### Require $\varepsilon_2^F > \varepsilon_2^B$ see $v_2(+\eta) > v_2(-\eta)$

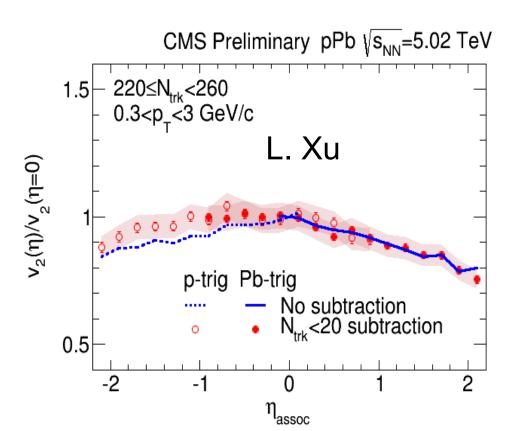


# Require $\Phi_n^{*F} > \Phi_n^{*B}$ see $\Phi_2(+\eta) > \Phi_2(-\eta)$



# Initial state twist and asymmetry survives collective expansion

Play a bigger role for Cu+Au, U+U and p+A system



# Backup

### Elliptic flow of identified particles

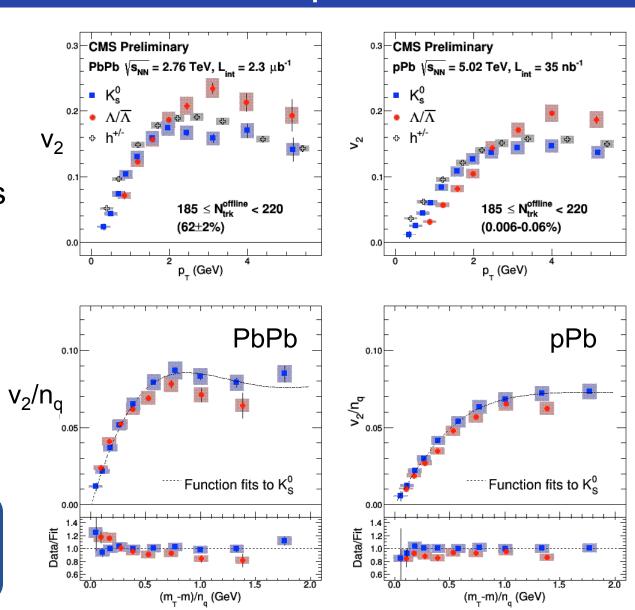
Identified K<sub>S</sub> and ∧ & charged hadrons

v<sub>2</sub> (and v<sub>3</sub>) from 2-particle correlations

show mass ordering In pPb and PbPb (stronger in pPb)

and ≈ quark scaling (better in pPb)

Talk by Sharma Poster by Chen PAS-HIN-14-002



### Linear and non-linearity example

Hadrons freezeout from exponential distribution of the flow field

$$E\frac{d^3N}{d^3\vec{p}} \approx \frac{g}{(2\pi)^3} \int_{\Sigma} \exp(-\frac{p \cdot u(x)}{T}) p \cdot d^3\sigma(x)$$

■ Flow field u(x) has a harmonic modulation driven by geometry

$$u(\phi) = u_0(1 + 2\sum \beta_n \cos(\phi - \Phi_n))$$

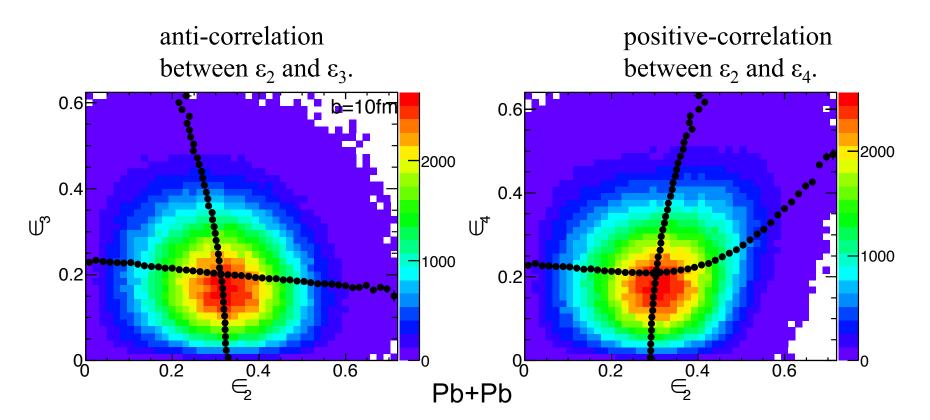
Quadratic term in saddle-point expansion leads to mode-mixing

$$\begin{array}{l} e^{-p_{\mathrm{T}}u(\phi)} \approx 1 - p_{\mathrm{T}}u(\phi) + \frac{1/2p_{\mathrm{T}}^2u^2(\phi)}{1/2p_{\mathrm{T}}^2u^2(\phi)}.. & \text{Borghini, Ollitrault 2005} \\ v_2(p_{\mathrm{T}}) \approx I(p_{\mathrm{T}})\beta_2, v_3(p_{\mathrm{T}}) \approx I(p_{\mathrm{T}})\beta_3 & \text{I}_{(p_{\mathrm{T}})} = \frac{\bar{u}_{\mathrm{max}}}{T}(p_{\mathrm{t}} - m_{\mathrm{t}}\bar{v}_{\mathrm{max}}) \\ v_4(p_{\mathrm{T}}) \approx I(p_{\mathrm{T}})\beta_4 + \frac{I(p_{\mathrm{T}})^2}{2}\beta_2^2 & \longrightarrow \mathsf{V_2}^2 \\ v_5(p_{\mathrm{T}}) \approx I(p_{\mathrm{T}})\beta_5 + I(p_{\mathrm{T}})^2\beta_2\beta_3 & \longrightarrow \mathsf{V_2}\mathsf{V_3} \\ v_6(p_{\mathrm{T}}) \approx I(p_{\mathrm{T}})\beta_6 + \frac{I(p_{\mathrm{T}})^3}{6}\beta_2^3 + \frac{I(p_{\mathrm{T}})^2}{2}\beta_3^2 + I(p_{\mathrm{T}})^2\beta_2\beta_4 & \text{V_2}^2, & \mathsf{V_2}\mathsf{V_4} \end{array}$$

# $p(v_m, v_n)$ or $v_m-v_n$ correlations

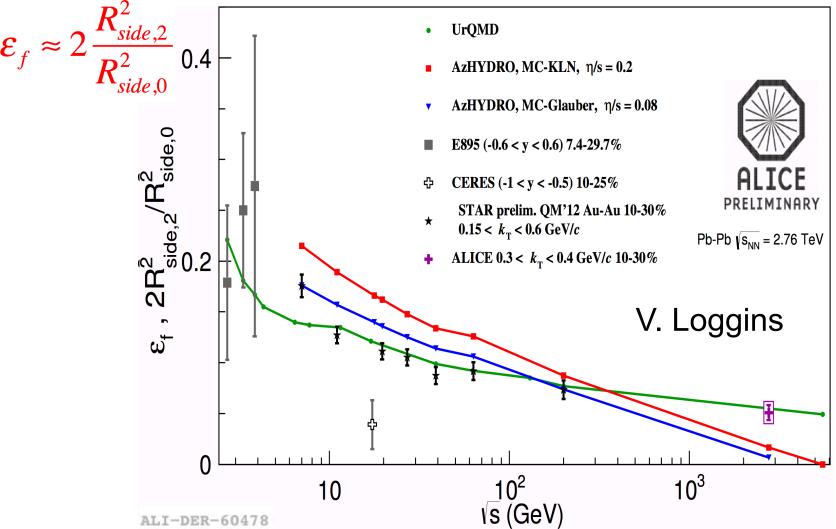
■ Evolution of v<sub>n</sub> correlated with v<sub>m</sub> via

- See also talk by S. Floerchinger
- Non-linearities from hydro evolution and freeze-out
- But also initial correlation



- Naturally studied via event-shape selection technique
  - E.g. select events with different  $v_2$  and study  $v_n$ . in FIXED centrality

# √s dependence of final spatial eccentricity



- Gradual decrease of  $\varepsilon_f$  as function of  $\sqrt{s}$ .
  - Hydro predicts stronger decrease,
  - UrQMD works but it probably under-predicts the flow.

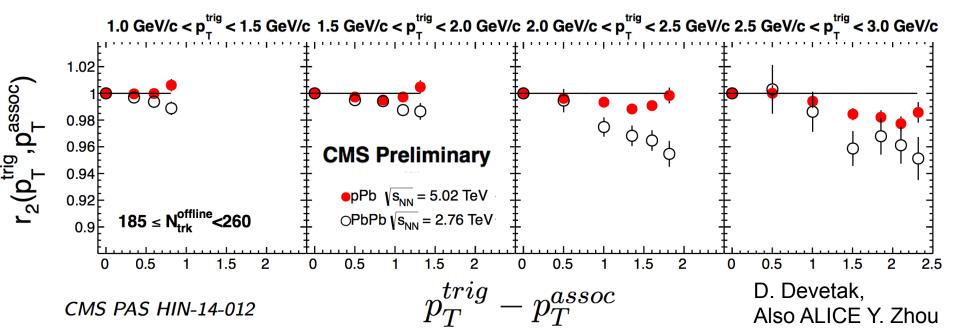
### Intra-event flow fluctuation and factorization

• Flow angle and amplitude fluctuates in  $p_T$  (and  $\eta$ )

Ollitrault QM2012

$$ilde{r}_n(p_{T1},p_{T2}) := rac{\langle v_n(p_{T1})v_n(p_{T2}) ext{cos}[n(\Psi_n(p_{T1})-\Psi_n(p_{T2}))] 
angle}{\langle v_n(p_{T1})v_n(p_{T2}) 
angle}$$

- Breaking is largest for v<sub>2</sub> in ultra-central Pb+Pb collisions
- Much smaller for other harmonics and in other centralities
- Very small (2-3%) breaking for high-multiplicity pPb collisions
  - Be aware of non-flow bias from di-jets, recoil subtraction is necessary in



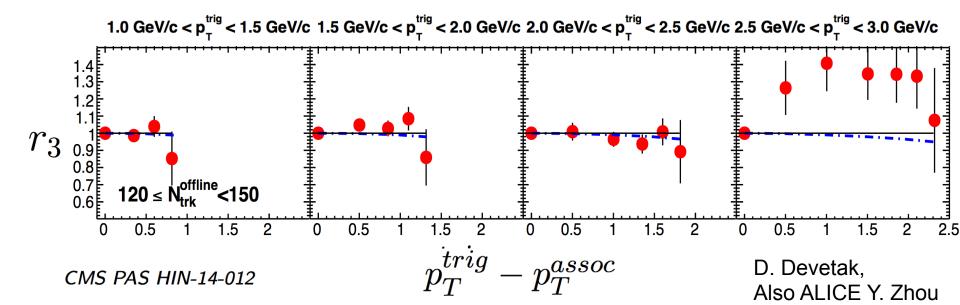
### Intra-event flow fluctuation and factorization

• Flow angle and amplitude fluctuates in  $p_T$  (and  $\eta$ ) Ollit

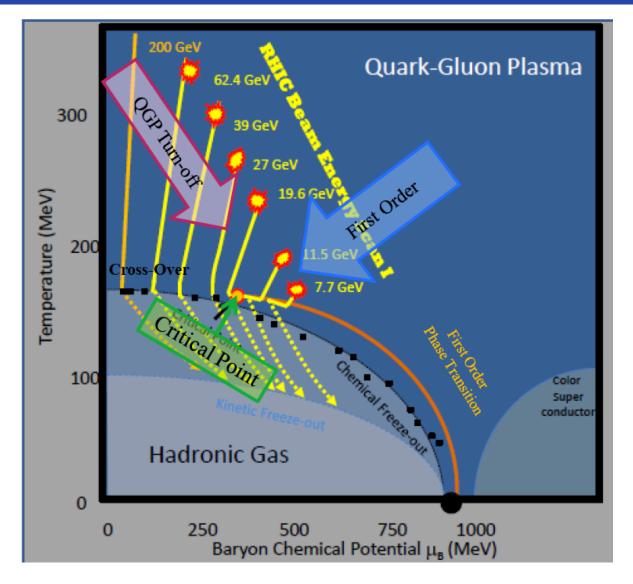
Ollitrault QM2012

$$ilde{r}_n(p_{T1},p_{T2}) := rac{\langle v_n(p_{T1})v_n(p_{T2}) ext{cos}[n(\Psi_n(p_{T1})-\Psi_n(p_{T2}))] 
angle}{\langle v_n(p_{T1})v_n(p_{T2}) 
angle}$$

- Breaking is largest for v<sub>2</sub> in ultra-central Pb+Pb collisions
- Much smaller for other harmonics and in other centralities
- Very small (2-3%) breaking for high-multiplicity pPb collisions
  - Be aware of non-flow bias from di-jets, recoil subtraction is necessary in order to compare with theory
     Kozlov et.al.:arXiv:1405.3976

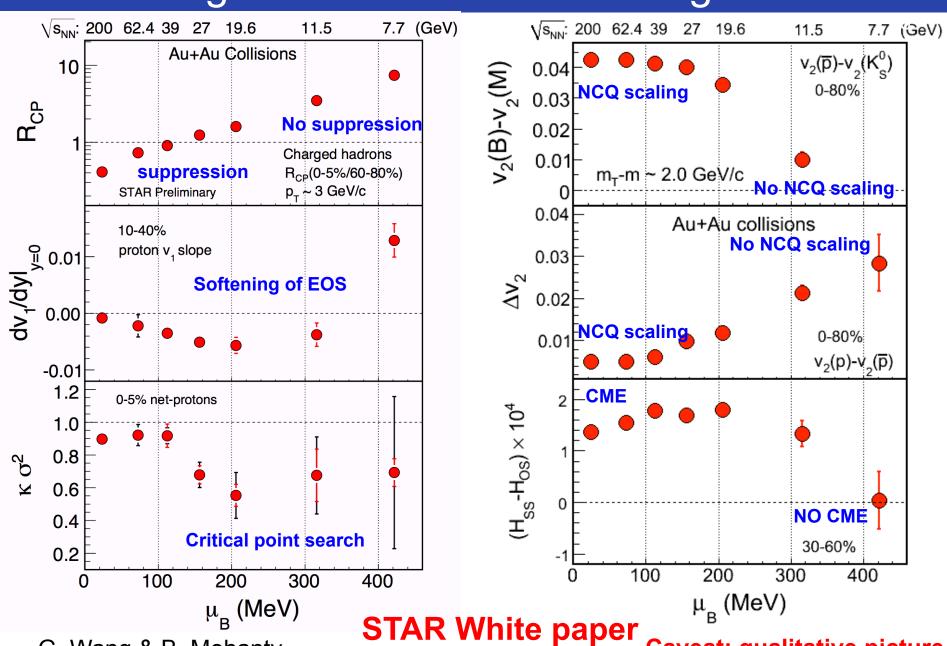


# Beam Energy scan: search for CEP



■ Looking for non-monotonic change with  $\sqrt{s}$ 

# Looking for non-monotonic change with √s

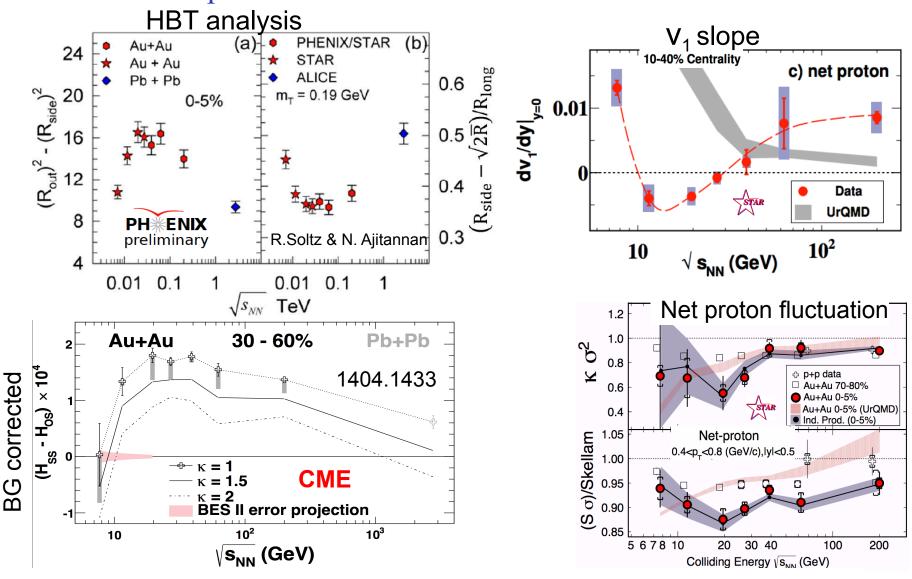


G. Wang & B. Mohanty

**Caveat: qualitative picture** 

# Looking for non-monotonic change with √s

• Shallow dips observed at  $\sim 10\text{-}20$  GeV for several observables



More refined measurements with BES II and theory input!!