

Forward-backward multiplicity correlations in PbPb, pPb and pp collisions from ATLAS

Jiangyong Jia for the ATLAS collaboration

http://cds.cern.ch/record/2029370, ATLAS-CONF-2015-020

http://cds.cern.ch/record/2055672, ATLAS-CONF-2015-051

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

9/27-10/3, 2015

Origin of pseudorapidity correlations

- dN/dη shape reflects asymmetry in num. of forward/backward sources
 - Sources can be wounded nucleons, or partons in nucleons (MPI)

- Goal: understand event-by-event fluctuation of $dN/d\eta$
 - 1. Probes early time dynamics, longitudinal flow, final state effects.
- 2. Inputs for 3+1D hydrodynamic models **W/O** boost invariance

Observables

0

 $-\eta_{gap}$

 N_{f}

η

N_b

Traditional observables:

Lots of people worked on this

Alternative observables: 2D correlation function

E. L. Berger, NPB 85 (1975) 61

$$C = \frac{\langle N(\eta_1) N(\eta_2) \rangle}{\langle N(\eta_1) \rangle \langle N(\eta_2) \rangle} = \langle R_S(\eta_1) R_S(\eta_2) \rangle$$

$$R_{S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta) \rangle}$$

Single particle distribution

 $b = \frac{\langle N_f N_b \rangle}{2}$

 $\sigma_{N_f}\sigma_{N_b}$

Correlation function disentangles dynamical fluctuation from statistical fluctuation

Observables

Traditional observables:

Lots of people worked on this

$$b = \frac{\left\langle N_f N_b \right\rangle - \left\langle N_f \right\rangle \left\langle N_b \right\rangle}{\sigma_{N_f} \sigma_{N_b}}$$

Alternative observables: 2D correlation function

$$R_{S}(\eta) = \frac{N(\eta)}{\langle N(\eta) \rangle}$$

Single particle distribution

Mixed events may not match perfectly [

Correlation function disentangles dynamical fluctuation from statistical fluctuation

Quantifying the shape fluctuations

• EbyE fluct. expanded in Legendre polynomials

$$R_{S}(\eta) = \frac{N(\eta)}{\langle N(\eta) \rangle} = 1 + \sum_{n} a_{n} T_{n}(\eta) \quad T_{n}(\eta) \equiv \sqrt{\frac{2n+1}{3}} Y P_{n}\left(\frac{\eta}{Y}\right)$$

$$P_0(x)=1, \quad P_1(x)=x, \quad P_2(x)=rac{1}{2}(3x^2-1)$$
 , \cdots

 $\eta \in [-Y,Y], \quad Y = 2.4$

- $a_1 \rightarrow$ fluctuation in the FB asymmetry of N(η),
- $a_2 \rightarrow$ fluctuation in the width of N(η)
- Legendre expansion of two-particle correlations

$$C_{N}(\eta_{1},\eta_{2}) = 1 + \sum_{n,m=1}^{\infty} \langle a_{n}a_{m} \rangle \frac{T_{n}(\eta_{1})T_{m}(\eta_{2}) + T_{n}(\eta_{2})T_{m}(\eta_{1})}{2}$$

= $1 + \langle a_{1}^{2} \rangle \eta_{1}\eta_{2} + \langle a_{2}^{2} \rangle \frac{5}{12Y^{2}} (3\eta_{1}^{2} - Y^{2})(3\eta_{2}^{2} - Y^{2}) + \dots$

Features of $C_N(\eta_1, \eta_2)$

- Corr. Func.=short-range corr. (SRC) + long-range corr. (LRC) Goal of this measurement: $C(\eta_1, \eta_2) = 1 + \delta_{SRC}(\eta_1, \eta_2) + LRC(\eta_1, \eta_2)$
- 1. Data-driven method to separate SRC from LRC
- 2. Compare SRC or LRC in three collision systems, pp,pPb,PbPb at similar N_{ch}

Pb+Pb, p+Pb and pp datasets

- $C_N(\eta_1,\eta_2)$ calculated using charged particles $p_T > 0.2$ GeV.
- High-multiplicity track (HMT) trigger used to increase statistics

- Analysis carried out in many bins over $10 \le N_{ch}^{rec} < 300$.
- Results presented as a function efficiency-corrected values $N_{ch} = bN_{ch}^{rec}$
 - b~1.19 for pp and ~1.29 for pPb and PbPb

How signals in three systems compare at same N_{ch}?

- CF for +- and ++,-- pairs separately.
 - different SRC, similar LRC (based on ratio)

11

Estimate short-range correlations

- Take $C_N(\eta_-)$ in $|\eta_+| < 0.4$, fit a quadratic function in $|\eta_-| > \eta_0 = 1.5$, difference between data and fit in $|\eta_-| < 2$ is the $g(\eta_-)$ for SRC $\delta_{SRC}^{+-} = f(\eta_+)g^{+-}(\eta_-)$
 - Vary η_0 and the range of η_+ slices to check systematics.

 $\delta_{\rm SRC}^{\pm\pm} = f(\eta_+) g^{\pm\pm}(\eta_-)$

Estimate short-range correlations

- Take $C_N(\eta_-)$ in $|\eta_+| < 0.4$, fit a quadratic function in $|\eta_-| > \eta_0 = 1.5$, difference between data and fit in $|\eta_-| < 2$ is the $g(\eta_-)$ for SRC $\delta_{SRC}^{+-} = f(\eta_+)g^{+-}(\eta_-)$
 - Vary η_0 and the range of η_+ slices to check systematics.

The LRC, $C_N^{sub}(\eta_+,\eta_-)$, has similar magnitudes between ++,-- and +-

 $\delta_{\rm SRC}^{\pm\pm} = f(\eta_+) g^{\pm\pm}(\eta_-)$

Correlation functions in three systems

After SRC subtraction, similar LRC in all three systems Most FB asymmetry in pPb collisions is due to the SRC.

Legendre spectra in Pb+Pb

Before subtraction

• The strong charge dependence \rightarrow SRC contributes to all coefficients

Legendre spectra in Pb+Pb

Before subtraction

After subtraction

The strong charge dependence \rightarrow SRC contributes to all coefficients After SRC removal, results are independent of charge combinations!

Legendre spectra in three systems

Before subtraction

After subtraction

After SRC removal, results are independent of charge combinations!

Projections of correlation function

CF dominated by
$$a_1$$
, thus:

$$C_{\rm N}^{\rm sub}(\eta_1,\eta_2) \approx 1 + \langle a_1^2 \rangle \eta_1 \eta_2 = 1 + \frac{\langle a_1^2 \rangle}{4} (\eta_+^2 - \eta_-^2)$$

2. Quadratic fit of $C_{\rm N}^{\rm sub}(\eta_{-})$ in narrow slice of η_{+} , this gives a_1 as a function of η_{+} .

- 3. Quadratic fit of $C_{\rm N}^{\rm sub}(\eta_+)$ in narrow slice of η_- , this gives a_1 as a function of η_- .
- 4. Linear fit of the η dependence of $r_{\rm N}^{\rm sub}(\eta, \eta_{\rm ref})$ in narrow slice of $\eta_{\rm ref}$.

$$r_{\rm N}^{
m sub}(\eta, \eta_{
m ref}) = C_{
m N}^{
m sub}(-\eta, \eta_{
m ref})/C_{
m N}^{
m sub}(\eta, \eta_{
m ref}) = 1 - 2 \langle a_1^2 \rangle \eta \eta_{
m ref}$$

similar to the CMS correlator for flow decorrelation 1503.01692
Compare to a_1 obtained from Legendre expansion method
Fit in limited η_1 and η_2 space, the systematics largely independent

Projections of CF in p+Pb

$$C_{N}^{\text{sub}}(\eta_{1},\eta_{2}) \approx 1 + \langle a_{1}^{2} \rangle \eta_{1}\eta_{2} = 1 + \frac{\langle a_{1}^{2} \rangle}{4} (\eta_{+}^{2} - \eta_{-}^{2}) \qquad r_{N}^{\text{sub}}(\eta,\eta_{\text{ref}}) = 1 - 2 \langle a_{1}^{2} \rangle |\eta_{\text{ref}}| \eta$$
Fit q. dependence
Fit q. dependence
$$\int_{0.99}^{1.005} \int_{0.99 < |\eta_{+}| < 1.1}^{\sqrt{N_{N}} = 2.76 \text{ TeV}, \text{Pb+Pb}, 7, \mu b^{1}} \int_{0.99 < |\eta_{+}| < 0.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{+}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{+}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{+}| < 0.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < 0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < |\eta_{-}| < 1.1}^{\sqrt{N_{N}} < 120 \text{ Pc}, > 0.2 \text{ GeV}} \int_{0.99 < 0.99 < 0.99 < 0.99 < 0.99 \ Pc} \int_{0.99 < 0.99 < 0.99 < 0.99 < 0.99 \ Pc} \int_{0.99 < 0.99 < 0.99 < 0.99 < 0.99 \ Pc} \int_{0.99 < 0.99 < 0.99 < 0.99 < 0.99 \ Pc} \int_{0.99 < 0.99 < 0.99 < 0.99$$

Projections of CF in p+Pb

N_{ch} dependence of LRC (in terms of a_1)

$$C_{\mathrm{N}}^{\mathrm{sub}}(\eta_1,\eta_2) \approx 1 + \langle a_1^2 \rangle \eta_1 \eta_2$$

 Calculated from Legendre expansion method for all-charge, opposite-charge and all-charge pairs

No dependence on charge combinations

N_{ch} dependence of SRC

• Quantify SRC using its average amplitude $\Delta_{\text{SRC}} = \frac{\int \delta_{\text{SRC}}(\eta_1, \eta_2) d\eta_1 d\eta_2}{4W^2}$

 $4Y^{2}$

N_{ch} dependence of SRC

• Quantify SRC using its average amplitude $\Delta_{SRC} = \frac{\int \delta_{SRC}(\eta_1, \eta_2) d\eta_1 d\eta_2}{4W^2}$

Strong dependence on charge and system size

 $4Y^{2}$

N_{ch} dep. of SRC and a_1 in three systems

• They follow power-law function Fit with $c/N_{\rm ch}^{\alpha}$

	Pb+Pb	<i>p</i> +Pb	pp
α for $\sqrt{\Delta_{\rm SRC}}$	0.502 ± 0.022	0.451 ± 0.020	0.342 ± 0.030
α for $\sqrt{\langle a_1^2 \rangle}$	0.467 ± 0.011	0.448 ± 0.019	0.489 ± 0.032

Expected scaling behavior?

• SRC can be related to the number of sources n contributing to N_{ch}

$$n = n_f + n_b \propto N_{\rm ch}$$

• LRC expected to be related to the asymmetry between n_f and n_b

$$A_n = \frac{n_f - n_b}{n_f + n_b}, \ \langle a_1^2 \rangle \propto \langle A_n^2 \rangle$$

 Assume independent cluster picture NPB85 (1975)61: each source emits the same number of pairs and the number of sources follows Poisson fluctuations, then

$$\sqrt{\Delta_{\rm SRC}} \sim \sqrt{\langle a_1^2 \rangle} \sim \frac{1}{n^{\alpha}} \sim \frac{1}{N_{\rm ch}^{\alpha}}, \alpha \sim 0.5$$

Sources could be:

wounded nucleons, or partons (via frag.), flux tubes, or final state resonance decays

N_{ch} dep. of SRC and a_1 in three systems

• They follow power-law function Fit with $c/N_{\rm ch}^{\alpha}$

	Pb+Pb	<i>p</i> +Pb	pp
α for $\sqrt{\Delta_{\rm SRC}}$	0.502 ± 0.022	0.451 ± 0.020	0.342 ± 0.030
α for $\sqrt{\langle a_1^2 \rangle}$	0.467 ± 0.011	0.448 ± 0.019	0.489 ± 0.032

 α smaller in pp \rightarrow num. of cluster is smaller or cluster size is larger at same N_{ch}?

Summary

- Two-particle correlation $C_N(\eta_1,\eta_2)$ measured in PbPb, pPb and pp collisions for $p_T>0.2$ GeV and $|\eta|<2.4$ at similar event multiplicity N_{ch} .
 - Sum of a short-range component (SRC) + a long-range component (LRC).
- Data-driven method to separate SRC and LRC based on the fact that SRC differs between +- and ±± pairs, but not for LRC
 - LRC is symmetric in all systems, but in pPb SRC is asymmetric for η and $-\eta$.
 - LRC consistent with $1 + \langle a_1^2 \rangle \eta_1 \eta_2$, $\langle a_1^2 \rangle$ is extracted via Legendre expansion as well as from the projections of the LRC in limited η_1, η_2 phase space
- N_{ch} -scaling of LRC (via a_1) and SRC are studied
 - LRC (via a_1) controlled by N_{ch} , not by collision systems or charge combination
 - SRC depends strongly on collision system and charge combination
 - N_{ch} dependence of LRC and SRC follows power-law with an index close to 0.5
 → relation to the number of sources for particle production?

Important inputs for 3+1D hydrodynamic models W/O boost invariance Insights on particle production, longitudinal transport, final-state effects See works by Bzdak, Bozek, Broniowski1509.02967,1509.04124; , Akihiko, Schenke 1509.04103

ALICE dN/dŋ distribution

Projections of CF in Pb+Pb

Projections of CF in p+p

a_1 from four methods

- (i) Quadratic fit to η direction, $C_N^{\text{sub}}(\eta_-)|_{|\eta_+|<0.1}$
- (ii) Quadratic fit to η + direction, $C_{\rm N}^{\rm sub}(\eta_+)|_{0.9 < |\eta_-| < 1.1}$
- (iii) Linear fit to r correlator,
- (iv) Legendre expansion

 $C_{\rm N}^{\rm sub}(\eta_{-})|_{|\eta_{+}|<0.1}$ **1**, $C_{\rm N}^{\rm sub}(\eta_{+})|_{0.9<|\eta_{-}|<1.1}$ $r_{\rm N}^{\rm sub}(\eta)|_{2.2<|\eta_{\rm ref}|<2.4}$

4 methods consistent with each other in all three collision systems

Properties of SRC in p+Pb

- Most of the FB asymmetry is in the magnitude of the SRC.
- η_- -width of SRC is constant as a function of η_+ .

Estimation of the SRC in pPb

 $R(\eta_+,\eta_-) \approx 1 + f(\eta_+) \left[g^{+-}(\eta_-) - g^{\pm\pm}(\eta_-) \right] , \ \delta_{\rm SRC}^{+-} = f(\eta_+) g^{+-}(\eta_-), \ \delta_{\rm SRC}^{\pm\pm} = f(\eta_+) g^{\pm\pm}(\eta_-)$

- Asymmetry between proton-going and lead-going direc is due to SRC
- LRC is very symmetric

• The LRC, $C_N^{sub}(\eta_+,\eta_-)$, has similar magnitude between charge combinations.

Legendre spectra before and after subtraction

36

$$C_{\rm N}(\eta_1, \eta_2) \text{ or } C_{\rm N}^{\rm sub}(\eta_1, \eta_2) = 1 + \sum_{\rm n,m=1}^{\infty} \langle a_{\rm n} a_{\rm m} \rangle \, \frac{T_{\rm n}(\eta_1) T_{\rm m}(\eta_2) + T_{\rm n}(\eta_2) T_{\rm m}(\eta_1)}{2}$$

a_n values significantly reduced after SRC subtraction
 Dominated by a₁.

Constructing correlation function

- Signal and Background distributions
 - Tracks from events with similar N_{ch} and z_{vtx} $C = \frac{\langle N(\eta_1)N(\eta_2) \rangle}{\langle N(\eta_1) \rangle \langle N(\eta_2) \rangle} = \frac{S(\eta_1, \eta_2)}{B(\eta_1, \eta_2)}$

Due to symmetry in PbPb or pp, only one quadrant is independent.

- $\eta_{-}=\eta_{1}-\eta_{2}>0, \eta_{+}=\eta_{1}+\eta_{2}>0$ $C_{N}(\eta_{1},\eta_{2}) = C_{N}(\eta_{2},\eta_{1}) C_{N}(\eta_{1},\eta_{2}) = C_{N}(-\eta_{1},-\eta_{2})$
- In pPb collision, only one half is independent
 - $\eta_{1} = \eta_{1} \eta_{2} > 0$ $C_N(\eta_1, \eta_2) = C_N(\eta_2, \eta_1)$
 - But distribution can be symmetrized in any case to compare PbPb and pp

Summary of systematics

Evaluate based on ratios of correlation function

$$d(\eta_1, \eta_2) = \frac{C(\eta_1, \eta_2)_{\text{check}}}{C(\eta_1, \eta_2)_{\text{default}}} \quad \delta_{sys}C = \sqrt{\sum_k (d_k - 1)^2} \quad \delta_{sys}a_n = \sqrt{\sum_k ((a_n)_k - 1)^2}$$

• Separately for $C_N(\eta_1, \eta_2)$ & $C_N^{\text{sub}}(\eta_1, \eta_2)$

Uncertainty propagate to the a₁ calculated from four methods

	quadratic	to the $C_{\mathbb{N}}^{s}$	$ _{\eta_+ <0.1}^{ub}(\eta) _{ \eta_+ <0.1}$	quadratic	to the C	$_{ m N}^{ m sub}(\eta_{+}) _{0.9 < \eta_{-} < 1.1}$
Collision system	Pb+Pb	<i>p</i> +Pb	pp	Pb+Pb	<i>p</i> +Pb	pp
Event-mixing [%]	0.5–2.2	0.3–1.8	0.2–2.8	0.2–1.7	0.2–1.6	0.2–2.7
Run-by-run stability [%]	0.2–1.3	0.2 - 1.7	0.2 - 2.8	0.2–1.5	0.2 - 1.1	0.2–1.6
<i>z</i> _{vtx} variation [%]	0.3–1.9	0.1 - 2.2	0.1–1.6	0.1–1.8	0.2–0.7	0.1–0.9
Track selec.& efficiency[%]	0.4–2.1	0.3-0.9	0.8 - 2.2	0.8–3.7	1.0	0.9–1.2
MC consistency [%]	0.2–3.6	0.4–3.9	0.2 - 10.0	0.2–4.3	0.2–2.4	0.2-4.7
Charge dependence [%]	0.9–4.2	1.0 - 10.2	2.8-4.6	0.4–3.8	0.6-3.1	1.2-6.2
SRC subtraction [%]	0.9–2.5	1.2-6.3	1.3-4.8	1.4–2.5	1.2-3.7	1.2-4.6
Total [%]	2.1–5.2	2.7-10.3	10-12	2.4–5.5	2.5-6.8	3.5-11.2
	linear fit	t to the $r_{\rm N}^{\rm sub}$	$\eta) _{2.2 < \eta_{\rm ref} < 2.4}$	Global	Legendre ex	pansion of $C_{\rm N}^{\rm sub}$
Collision system	linear fit Pb+Pb	t to the $r_{\rm N}^{\rm sub}(r)$ $p+{\rm Pb}$	$ \eta\rangle _{2.2< \eta_{ m ref} <2.4}$ pp	Global Pb+Pb	Legendre ex <i>p</i> +Pb	pansion of $C_{\rm N}^{\rm sub}$
Collision system Event-mixing [%]	linear fit Pb+Pb 0.3–2.3	t to the $r_{\rm N}^{\rm sub}(x)$ $p+{\rm Pb}$ 0.3-1.4	$\eta _{2.2 < \eta_{ref} < 2.4} pp \\ 0.1 - 1.5$	Global Pb+Pb 0.2–1.8	Legendre ex p+Pb 0.1-1.7	$\frac{pp}{0.1-0.9}$
Collision system Event-mixing [%] Run-by-run stability [%]	linear fit Pb+Pb 0.3–2.3 0.1–1.2	t to the $r_{\rm N}^{\rm sub}(p+{\rm Pb})$ 0.3–1.4 0.1–1.7	$\frac{\eta}{2.2 < \eta_{ref} < 2.4}}{pp} \\ 0.1 - 1.5 \\ 0.2 - 2.8}$	Global Pb+Pb 0.2–1.8 0.2–0.7	Legendre ex p+Pb 0.1–1.7 0.1–1.3	$\begin{array}{c} \text{spansion of } C_{\text{N}}^{\text{sub}} \\ \hline pp \\ 0.1-0.9 \\ 0.1-2.1 \end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z _{vtx} variation [%]	linear fit Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2	t to the $r_{\rm N}^{\rm sub}(x)$ $p+{\rm Pb}$ 0.3-1.4 0.1-1.7 0.2-2.1	$\frac{\eta}{2.2 < \eta_{ref} < 2.4}}{\frac{pp}{0.1 - 1.5}}$ 0.2 - 2.8 0.2 - 2.6	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3	Legendre ex <u>p+Pb</u> 0.1–1.7 0.1–1.3 0.2–2.5	$\begin{array}{c} \begin{array}{c} \text{spansion of } C_{\rm N}^{\rm sub} \\ \hline pp \\ 0.1-0.9 \\ 0.1-2.1 \\ 0.2-1.7 \end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z _{vtx} variation [%] Track selec.& efficiency[%]	linear fit Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3	t to the $r_{\rm N}^{\rm sub}(r_{\rm N}^{\rm sub})$ $p+{\rm Pb}$ 0.3–1.4 0.1–1.7 0.2–2.1 0.6–0.9	$\frac{\eta}{2.2 < \eta_{ref} < 2.4}}{\frac{pp}{0.1 - 1.5}} \\ 0.2 - 2.8 \\ 0.2 - 2.6 \\ 0.7 - 1.7 \\ 0.2$	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9	Legendre ex p+Pb 0.1–1.7 0.1–1.3 0.2–2.5 0.4–0.7	$\begin{array}{c} pansion of \ C_{\rm N}^{\rm sub} \\ \hline pp \\ 0.1-0.9 \\ 0.1-2.1 \\ 0.2-1.7 \\ 0.8-2.4 \end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z _{vtx} variation [%] Track selec.& efficiency[%] MC consistency [%]	linear fit Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3 0.2–2.6	t	$\begin{array}{c} \hline p \\ \hline p \\ \hline 0.1 - 1.5 \\ 0.2 - 2.8 \\ 0.2 - 2.6 \\ 0.7 - 1.7 \\ 0.8 - 7.6 \end{array}$	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9 0.2–2.5	Legendre ex p+Pb 0.1–1.7 0.1–1.3 0.2–2.5 0.4–0.7 0.4–3.2	$\begin{array}{c} pansion of \ C_{\rm N}^{\rm sub} \\ \hline pp \\ 0.1-0.9 \\ 0.1-2.1 \\ 0.2-1.7 \\ 0.8-2.4 \\ 0.1-6.7 \end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z_{vtx} variation [%] Track selec.& efficiency[%] MC consistency [%] Charge dependence [%]	linear fit Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3 0.2–2.6 0.4–4.9	to the $r_{\rm N}^{\rm sub}(x)$ $p+{\rm Pb}$ 0.3-1.4 0.1-1.7 0.2-2.1 0.6-0.9 0.2-3.7 0.1-8.8	$\begin{array}{c} \hline p \\ \hline p \\ \hline 0.1 - 1.5 \\ 0.2 - 2.8 \\ 0.2 - 2.6 \\ 0.7 - 1.7 \\ 0.8 - 7.6 \\ 1.6 - 5.3 \end{array}$	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9 0.2–2.5 2.3–5.3	Legendre ex p+Pb 0.1-1.7 0.1-1.3 0.2-2.5 0.4-0.7 0.4-3.2 1.0-12.7	$\begin{array}{c} pp \\ pp \\ 0.1-0.9 \\ 0.1-2.1 \\ 0.2-1.7 \\ 0.8-2.4 \\ 0.1-6.7 \\ 3.4-8.1 \end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z_{vtx} variation [%] Track selec.& efficiency[%] MC consistency [%] Charge dependence [%] SRC subtraction [%]	linear fit Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3 0.2–2.6 0.4–4.9 1.4–3.2	$\begin{array}{c} \hline t \text{ to the } r_{\mathrm{N}}^{\mathrm{sub}}(i) \\ \hline p + \mathrm{Pb} \\ \hline 0.3 - 1.4 \\ 0.1 - 1.7 \\ 0.2 - 2.1 \\ 0.6 - 0.9 \\ 0.2 - 3.7 \\ 0.1 - 8.8 \\ 2.2 - 3.4 \end{array}$	$\begin{array}{c} \hline \eta \\ \hline \eta \\ \hline 2.2 < \eta_{ref} < 2.4 \\ \hline pp \\ \hline 0.1 - 1.5 \\ 0.2 - 2.8 \\ 0.2 - 2.6 \\ 0.7 - 1.7 \\ 0.8 - 7.6 \\ 1.6 - 5.3 \\ 1.7 - 5.0 \\ \end{array}$	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9 0.2–2.5 2.3–5.3 1.7–4.3	Legendre ex p+Pb 0.1–1.7 0.1–1.3 0.2–2.5 0.4–0.7 0.4–3.2 1.0–12.7 2.0–8.9	$\begin{array}{c} pp \\ \hline pp \\ 0.1-0.9 \\ 0.1-2.1 \\ 0.2-1.7 \\ 0.8-2.4 \\ 0.1-6.7 \\ 3.4-8.1 \\ 2.7-9.6 \end{array}$
Collision system Event-mixing [%] Run-by-run stability [%] z _{vtx} variation [%] Track selec.& efficiency[%] MC consistency [%] Charge dependence [%] SRC subtraction [%]	linear fit Pb+Pb 0.3–2.3 0.1–1.2 0.2–1.2 0.4–1.3 0.2–2.6 0.4–4.9 1.4–3.2	$\begin{array}{c} \hline t \text{ to the } r_{\mathrm{N}}^{\mathrm{sub}}(i) \\ \hline p + \mathrm{Pb} \\ \hline 0.3 - 1.4 \\ 0.1 - 1.7 \\ 0.2 - 2.1 \\ 0.6 - 0.9 \\ 0.2 - 3.7 \\ 0.1 - 8.8 \\ 2.2 - 3.4 \end{array}$	$\begin{array}{c} \hline p \\ \hline p \\ \hline 0.1 - 1.5 \\ 0.2 - 2.8 \\ 0.2 - 2.6 \\ 0.7 - 1.7 \\ 0.8 - 7.6 \\ 1.6 - 5.3 \\ 1.7 - 5.0 \end{array}$	Global Pb+Pb 0.2–1.8 0.2–0.7 0.1–1.3 0.3–0.9 0.2–2.5 2.3–5.3 1.7–4.3	Legendre ex p+Pb 0.1-1.7 0.1-1.3 0.2-2.5 0.4-0.7 0.4-3.2 1.0-12.7 2.0-8.9	$\begin{array}{c} pp \\ \hline pp \\ 0.1-0.9 \\ 0.1-2.1 \\ 0.2-1.7 \\ 0.8-2.4 \\ 0.1-6.7 \\ 3.4-8.1 \\ 2.7-9.6 \end{array}$

a_1 from the four methods

Correlation function

Collision system	Pb+Pb	<i>p</i> +Pb	pp
Event-mixing [%]	0.4–0.7	0.4–2.2	0.2–1.4
Run-by-run stability [%]	0.3–0.5	0.3–1.5	0.2–1.5
z _{vtx} variation [%]	0.3–0.6	0.3–1.5	0.2–1.6
Track selection & efficiency [%]	0.6–1.2	0.2–1.3	0.3–0.7
MC consistency [%]	0.2–1.6	0.5-2.5	0.7–3.3
Charge dependence [%]	1.0–1.8	0.8–3.8	1.5–2.5
SRC subtraction [%]	1.1–2.1	1.0–5.9	1.2–5.0
Total [%]	1.7–3.2	2.1–7.6	2.5-6.9