Forward-backward multiplicity correlations in $\mathrm{PbPb}, \mathrm{pPb}$ and pp collisions from ATLAS

Jiangyong Jia for the ATLAS collaboration
http://cds.cern.ch/record/2029370, ATLAS-CONF-2015-020
http://cds.cern.ch/record/2055672, ATLAS-CONF-2015-051

Origin of pseudorapidity correlations

- $\mathrm{dN} / \mathrm{d} \eta$ shape reflects asymmetry in num. of forward/backward sources
- Sources can be wounded nucleons, or partons in nucleons (MPI)

- Naturally exists in A+A collisions on EbyE bases!

- Goal: understand event-by-event fluctuation of $\mathrm{dN} / \mathrm{d} \eta$

1. Probes early time dynamics, longitudinal flow, final state effects.
2. Inputs for $3+1 \mathrm{D}$ hydrodynamic models \mathbf{W} / \mathbf{O} boost invariance

Observables

- Traditional observables:

Lots of people worked on this

$$
b=\frac{\left\langle N_{f} N_{b}\right\rangle-\left\langle N_{f}\right\rangle\left\langle N_{b}\right\rangle}{\sigma_{N_{f}} \sigma_{N_{b}}}
$$

- Alternative observables: 2D correlation function
E. L. Berger, NPB 85 (1975) 61

$$
C=\frac{\left\langle N\left(\eta_{1}\right) N\left(\eta_{2}\right)\right\rangle}{\left\langle N\left(\eta_{1}\right)\right\rangle\left\langle N\left(\eta_{2}\right)\right\rangle}=\left\langle R_{S}\left(\eta_{1}\right) R_{S}\left(\eta_{2}\right)\right\rangle \quad R_{S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta)\rangle}
$$

Single particle distribution

Correlation function disentangles dynamical fluctuation from statistical fluctuation

Observables

- Traditional observables:

Lots of people worked on this

$$
b=\frac{\left\langle N_{f} N_{b}\right\rangle-\left\langle N_{f}\right\rangle\left\langle N_{b}\right\rangle}{\sigma_{N_{f}} \sigma_{N_{b}}}
$$

- Alternative observables: 2D correlation function
E. L. Berger, NPB 85 (1975) 61

$$
C=\frac{\left\langle N\left(\eta_{1}\right) N\left(\eta_{2}\right)\right\rangle}{\left\langle N\left(\eta_{1}\right)\right\rangle\left\langle N\left(\eta_{2}\right)\right\rangle}=\left\langle R_{S}\left(\eta_{1}\right) R_{S}\left(\eta_{2}\right)\right\rangle \quad R_{S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta)\rangle}
$$

Mixed events may not match perfectly

Remove residual centrality dependence

$$
C_{N}\left(\eta_{1}, \eta_{2}\right)=\frac{C\left(\eta_{1}, \eta_{2}\right)}{C_{p}\left(\eta_{1}\right) C_{p}\left(\eta_{2}\right)}
$$

$$
C_{p}\left(\eta_{1}\right)=\frac{\int C\left(\eta_{1}, \eta_{2}\right) d \eta_{2}}{2 Y}, C_{p}\left(\eta_{2}\right)=\frac{\int C\left(\eta_{1}, \eta_{2}\right) d \eta_{1}}{2 Y}
$$

See 1506.03496 and talk by Peng Huo
Correlation function disentangles dynamical fluctuation from statistical fluctuation

Quantifying the shape fluctuations

- EbyE fluct. expanded in Legendre polynomials

$$
\begin{gathered}
R_{S}(\eta) \equiv \frac{N(\eta)}{\langle N(\eta)\rangle}=1+\sum_{n} a_{n} T_{n}(\eta) \quad T_{n}(\eta) \equiv \sqrt{\frac{2 n+1}{3}} Y P_{n}\left(\frac{\eta}{Y}\right) \\
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \cdots \\
\eta \in[-Y, Y], \quad Y=2.4
\end{gathered}
$$

- $\mathrm{a}_{1} \rightarrow$ fluctuation in the FB asymmetry of $N(\eta)$,

- $\mathrm{a}_{2} \rightarrow$ fluctuation in the width of $\mathrm{N}(\eta)$
- Legendre expansion of two-particle correlations

$$
\begin{aligned}
C_{\mathrm{N}}\left(\eta_{1}, \eta_{2}\right) & =1+\sum_{n, m=1}^{\infty}\left\langle a_{n} a_{m}\right\rangle \frac{T_{n}\left(\eta_{1}\right) T_{m}\left(\eta_{2}\right)+T_{n}\left(\eta_{2}\right) T_{m}\left(\eta_{1}\right)}{2} \\
& =1+\left\langle a_{1}^{2}\right\rangle \eta_{1} \eta_{2}+\left\langle a_{2}^{2}\right\rangle \frac{5}{12 Y^{2}}\left(3 \eta_{1}^{2}-Y^{2}\right)\left(3 \eta_{2}^{2}-Y^{2}\right)+\ldots
\end{aligned}
$$

Features of $\mathrm{C}_{\mathrm{N}}\left(\eta_{1}, \eta_{2}\right)$

Short-range correlation $\delta_{\mathrm{SRC}}\left(\eta_{1}, \eta_{2}\right)$

- Corr. Func.=short-range corr. (SRC) + long-range corr. (LRC)

Goal of this measurement:

$$
C\left(\eta_{1}, \eta_{2}\right)=1+\delta_{\mathrm{SRC}}\left(\eta_{1}, \eta_{2}\right)+\operatorname{LRC}\left(\eta_{1}, \eta_{2}\right)
$$

1. Data-driven method to separate SRC from LRC
2. Compare SRC or LRC in three collision systems, $\mathrm{pp}, \mathrm{pPb}, \mathrm{PbPb}$ at similar N_{ch}

$\mathrm{Pb}+\mathrm{Pb}, \mathrm{p}+\mathrm{Pb}$ and pp datasets

- $\mathrm{C}_{\mathrm{N}}\left(\eta_{1}, \eta_{2}\right)$ calculated using charged particles $\mathrm{p}_{\mathrm{T}}>0.2 \mathrm{GeV}$.
- High-multiplicity track (HMT) trigger used to increase statistics

$$
\begin{array}{ll}
\mathrm{Pb}+\mathrm{Pb} & 2.76 \mathrm{TeV}, 2010, \mathrm{MB} \\
\mathrm{p}+\mathrm{Pb} & 5.02 \mathrm{TeV}, 2013, \mathrm{MB}+\mathrm{HMT} \\
\mathrm{p}+\mathrm{p} & 13 \mathrm{TeV}, \quad 2015, \mathrm{MB}+\mathrm{HMT}
\end{array}
$$

- Analysis carried out in many bins over $10 \leq N_{\mathrm{ch}}^{\mathrm{rec}}<300$
- Results presented as a function efficiency-corrected values $N_{\mathrm{ch}}=b N_{\mathrm{ch}}^{\text {rec }}$
- $\mathrm{b} \sim 1.19$ for pp and ~ 1.29 for pPb and PbPb How signals in three systems compare at same N_{ch} ?

Properties of short-range correlations

- CF for +- and ++,-- pairs separately.
- different SRC, similar LRC (based on ratio)

Properties of short-range correlations

- CF for +- and ++,-- pairs separately.
- different SRC, similar LRC (based on ratio)

LRC drops out of the ratio

$$
\begin{array}{rr}
R\left(\eta_{+}, \eta_{-}\right) & =\frac{C^{+-}\left(\eta_{+}, \eta_{-}\right)}{C^{ \pm \pm}\left(\eta_{+}, \eta_{-}\right)} \\
& \approx 1+\delta_{+}=\eta_{1}+\eta_{2} \\
\eta_{-}=\eta_{1}-\eta_{2} \\
& \left.\approx \eta_{+}, \eta_{-}\right)-\delta_{\mathrm{SRC}}^{ \pm \pm}\left(\eta_{+}, \eta_{-}\right)
\end{array}
$$

Properties of short-range correlations

- CF for +- and ++ ,-- pairs separately.
- different SRC, similar LRC (based on ratio)

$$
200 \leq \mathrm{N}_{\mathrm{ch}}^{\mathrm{rec}}<220, \mathrm{p}_{\mathrm{T}}>0.2 \mathrm{GeV}
$$

LRC drops out of the ratio

$$
\begin{aligned}
& R\left(\eta_{+}, \eta_{-}\right)=\frac{C^{+-}\left(\eta_{+}, \eta_{-}\right)}{C^{ \pm \pm}\left(\eta_{+}, \eta_{-}\right)} \\
& \approx 1+\eta_{+}=\eta_{1}+\eta_{2} \\
& \eta_{-}=\eta_{1}-\eta_{2} \\
&\left.\approx 1-\eta_{+}, \eta_{-}\right)-\delta_{\mathrm{SRC}}^{ \pm \pm}\left(\eta_{+}, \eta_{-}\right)
\end{aligned}
$$

- Amplitude quantified via

$$
f\left(\eta_{+}\right)=\frac{\frac{\int_{-4}^{0.4} R\left(\eta_{+}, \eta_{-}\right) / 0.8 d \eta_{-}-1}{\int_{-0.4}^{0.4} R\left(0, \eta_{-}\right) / 0.8 d \eta_{-}-1}}{\text { Shape along } \eta_{+}}
$$

- $\eta_{\text {- peak width is constant in } \eta_{+}, ~}^{\text {}}$

Shape of $\delta_{\text {SRC }}^{+-}-\delta_{\text {SRC }}^{ \pm t}$
factorize in η_{+}and η_{-}

Properties of short-range correlations

- CF for +- and ++ ,-- pairs separately.
- different SRC, similar LRC (based on ratio)

$$
200 \leq \mathrm{N}_{\mathrm{ch}}^{\mathrm{rec}}<220, \mathrm{p}_{\mathrm{T}}>0.2 \mathrm{GeV} .
$$

Hence, $\delta_{\mathrm{SRC}}\left(\eta_{+}, \eta_{-}\right)$assumed to factorize in η_{+}, η_{-}. $\delta_{\text {SRC }}^{+-}=f\left(\eta_{+}\right) g^{+-}\left(\eta_{-}\right)$
$\delta_{\mathrm{SRC}}^{ \pm \pm}=f\left(\eta_{+}\right) g^{ \pm \pm}\left(\eta_{-}\right)$
$R\left(\eta_{+}, \eta_{-}\right) \approx 1+f\left(\eta_{+}\right)\left[g^{+-}\left(\eta_{-}\right)-g^{ \pm \pm}\left(\eta_{-}\right)\right]$
Key is to determine $\mathrm{g}\left(\eta_{-}\right)$!

LRC drops out of the ratio

$$
\begin{aligned}
& R\left(\eta_{+}, \eta_{-}\right)=\frac{C^{+-}\left(\eta_{+}, \eta_{-}\right)}{C^{ \pm \pm}\left(\eta_{+}, \eta_{-}\right)} \quad \begin{array}{l}
\eta_{+}=\eta_{1}+\eta_{2} \\
\eta_{-}=\eta_{1}-\eta_{2}
\end{array} \\
& \approx 1+\delta_{\mathrm{SRC}}^{+-}\left(\eta_{+}, \eta_{-}\right)-\delta_{\mathrm{SRC}}^{ \pm \pm}\left(\eta_{+}, \eta_{-}\right)
\end{aligned}
$$

Estimate short-range correlations

- Take $C_{N}\left(\eta_{-}\right)$in $\left|\eta_{+}\right|<0.4$, fit a quadratic function in $\left|\eta_{-}\right|>\eta_{0}=1.5$, difference between data and fit in $\left|\eta_{-}\right|<2$ is the $g\left(\eta_{-}\right)$for SRC
- Vary η_{0} and the range of η_{+}slices to check systematics.

$$
\begin{aligned}
& \delta_{\mathrm{SRC}}^{+-}=f\left(\eta_{+}\right) g^{+-}\left(\eta_{-}\right) \\
& \delta_{\mathrm{SRC}}^{ \pm}=f\left(\eta_{+}\right) g^{ \pm \pm}\left(\eta_{-}\right)
\end{aligned}
$$

Estimate short-range correlations

- Take $C_{N}\left(\eta_{-}\right)$in $\left|\eta_{+}\right|<0.4$, fit a quadratic function in $\left|\eta_{-}\right|>\eta_{0}=1.5$, difference between data and fit in $\left|\eta_{-}\right|<2$ is the $g\left(\eta_{-}\right)$for SRC

$$
\begin{aligned}
& \delta_{\mathrm{SRC}}^{+-}=f\left(\eta_{+}\right) g^{+-}\left(\eta_{-}\right) \\
& \delta_{\mathrm{SRC}}^{ \pm}=f\left(\eta_{+}\right) g^{ \pm \pm}\left(\eta_{-}\right)
\end{aligned}
$$

- Vary η_{0} and the range of η_{+}slices to check systematics.

The LRC, $\mathrm{C}_{\mathrm{N}}{ }^{\text {sub }}\left(\eta_{+}, \eta_{-}\right)$, has similar magnitudes between,++-- and +-

Results

Correlation functions in three systems

After SRC subtraction, similar LRC in all three systems
Most FB asymmetry in pPb collisions is due to the SRC .

Legendre spectra in $\mathrm{Pb}+\mathrm{Pb}$

- The strong charge dependence \rightarrow SRC contributes to all coefficients

- The strong charge dependence \rightarrow SRC contributes to all coefficients After SRC removal, results are independent of charge combinations!

$$
\begin{gathered}
C_{\mathrm{N}}\left(\eta_{1}, \eta_{2}\right) \text { or } \mathrm{C}_{\mathrm{N}}^{\text {sub }}\left(\eta_{1}, \eta_{2}\right)=1+\sum_{\mathrm{n}, \mathrm{~m}=1}^{\infty}\left\langle\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{m}}\right\rangle \frac{\mathrm{T}_{\mathrm{n}}\left(\eta_{1}\right) \mathrm{T}_{\mathrm{m}}\left(\eta_{2}\right)+\mathrm{T}_{\mathrm{n}}\left(\eta_{2}\right) \mathrm{T}_{\mathrm{m}}\left(\eta_{1}\right)}{2} \\
\mathrm{~Pb}+\mathrm{Pb}
\end{gathered}
$$

- The strong charge dependence \rightarrow SRC contributes to all coefficients

After SRC removal, results are independent of charge combinations!

Projections of correlation function

2. Quadratic fit of $C_{\mathrm{N}}^{\mathrm{sub}}\left(\eta_{-}\right)$in narrow slice of η_{+}, this gives a_{1} as a function of η_{+}.
3. Quadratic fit of $C_{\mathrm{N}}^{\mathrm{sub}}\left(\eta_{+}\right)$in narrow slice of η_{-}, this gives a_{1} as a function of η_{-}.
4. Linear fit of the η dependence of $r_{\mathrm{N}}^{\text {sub }}\left(\eta, \eta_{\text {ref }}\right)$ in narrow slice of $\eta_{\text {ref }}$.

$$
r_{\mathrm{N}}^{\mathrm{sub}}\left(\eta, \eta_{\mathrm{ref}}\right)=C_{\mathrm{N}}^{\mathrm{sub}}\left(-\eta, \eta_{\mathrm{ref}}\right) / C_{\mathrm{N}}^{\mathrm{sub}}\left(\eta, \eta_{\mathrm{ref}}\right)=1-2\left\langle a_{1}^{2}\right\rangle \eta \eta_{\mathrm{ref}}
$$

similar to the CMS correlator for flow decorrelation 1503.01692
Compare to a_{1} obtained from Legendre expansion method
Fit in limited η_{1} and η_{2} space, the systematics largely independent!

Projections of CF in $\mathrm{p}+\mathrm{Pb}$

$$
C_{\mathrm{N}}^{\mathrm{sub}}\left(\eta_{1}, \eta_{2}\right) \approx 1+\left\langle a_{1}^{2}\right\rangle \eta_{1} \eta_{2}=1+\frac{\left\langle a_{1}^{2}\right\rangle}{4}\left(\eta_{+}^{2}-\eta_{-}^{2}\right) \quad r_{\mathrm{N}}^{\mathrm{sub}}\left(\eta, \eta_{\mathrm{ref}}\right)=1-2\left\langle a_{1}^{2}\right\rangle\left|\eta_{\mathrm{ref}}\right| \eta
$$

Fit η. dependence

Fit η_{+}dependence

Fit η dependence

Projections of CF in p+Pb

$$
C_{\mathrm{N}}^{\mathrm{sub}}\left(\eta_{1}, \eta_{2}\right) \approx 1+\left\langle a_{1}^{2}\right\rangle \eta_{1} \eta_{2}=1+\frac{\left\langle a_{1}^{2}\right\rangle}{4}\left(\eta_{+}^{2}-\eta_{-}^{2}\right) \quad r_{\mathrm{N}}^{\mathrm{sub}}\left(\eta, \eta_{\mathrm{ref}}\right)=1-2\left\langle a_{1}^{2}\right\rangle\left|\eta_{\mathrm{ref}}\right| \eta
$$

Fit η. dependence

Fit η_{+}dependence

ATLAS Preliminary

LRC is \sim symmetric between proton- and lead-going side!

Fit η dependence

η

N_{ch} dependence of LRC (in terms of a_{1})

$$
C_{\mathrm{N}}^{\mathrm{sub}}\left(\eta_{1}, \eta_{2}\right) \approx 1+\left\langle a_{1}^{2}\right\rangle \eta_{1} \eta_{2}
$$

- Calculated from Legendre expansion method for all-charge, opposite-charge and all-charge pairs

No dependence on charge combinations

N_{ch} dependence of SRC

- Quantify SRC using its average amplitude $\Delta_{\mathrm{SRC}}=\frac{\int \delta_{\mathrm{SRC}}\left(\eta_{1}, \eta_{2}\right) d \eta_{1} d \eta_{2}}{4 Y^{2}}$

N_{ch} dependence of SRC

- Quantify SRC using its average amplitude $\Delta_{\mathrm{SRC}}=\frac{\int \delta_{\mathrm{SRC}}\left(\eta_{1}, \eta_{2}\right) d \eta_{1} d \eta_{2}}{4 Y^{2}}$

Strong dependence on charge and system size
$N_{c h}$ dep. of SRC and a_{1} in three systems

SRC

- They follow power-law function Fit with $c / N_{\text {ch }}^{\alpha}$

	$\mathrm{Pb}+\mathrm{Pb}$	$p+\mathrm{Pb}$	$p p$
α for $\sqrt{\Delta_{\mathrm{SRC}}}$	0.502 ± 0.022	0.451 ± 0.020	0.342 ± 0.030
α for $\sqrt{\left\langle a_{1}^{2}\right\rangle}$	0.467 ± 0.011	0.448 ± 0.019	0.489 ± 0.032

Expected scaling behavior?

- SRC can be related to the number of sources n contributing to N_{ch}

$$
n=n_{f}+n_{b} \propto N_{\mathrm{ch}}
$$

- LRC expected to be related to the asymmetry between n_{f} and n_{b}

$$
A_{n}=\frac{n_{f}-n_{b}}{n_{f}+n_{b}},\left\langle a_{1}^{2}\right\rangle \propto\left\langle A_{n}^{2}\right\rangle
$$

- Assume independent cluster picture npbss(1975)6: each source emits the same number of pairs and the number of sources follows Poisson fluctuations, then

$$
\sqrt{\Delta_{\mathrm{SRC}}} \sim \sqrt{\left\langle a_{1}^{2}\right\rangle} \sim \frac{1}{n^{\alpha}} \sim \frac{1}{N_{\mathrm{ch}}^{\alpha}}, \alpha \sim 0.5
$$

Sources could be:
wounded nucleons, or partons (via frag.), flux tubes, or final state resonance decays
$N_{\text {ch }}$ dep. of SRC and a_{1} in three systems
SRC

- They follow power-law function Fit with $c / N_{\text {ch }}^{\alpha}$

	$\mathrm{Pb}+\mathrm{Pb}$	$p+\mathrm{Pb}$	$p p$
α for $\sqrt{\Delta_{\mathrm{SRC}}}$	0.502 ± 0.022	0.451 ± 0.020	0.342 ± 0.030
α for $\sqrt{\left\langle a_{1}^{2}\right\rangle}$	0.467 ± 0.011	0.448 ± 0.019	0.489 ± 0.032

α smaller in $p p \rightarrow$ num. of cluster is smaller or cluster size is larger at same $N_{c h}$?

Summary

- Two-particle correlation $\mathrm{C}_{\mathrm{N}}\left(\eta_{1}, \eta_{2}\right)$ measured in $\mathrm{PbPb}, \mathrm{pPb}$ and pp collisions for $\mathrm{p}_{\mathrm{T}}>0.2 \mathrm{GeV}$ and $|\eta|<2.4$ at similar event multiplicity N_{ch}.
- Sum of a short-range component (SRC) + a long-range component (LRC).
- Data-driven method to separate SRC and LRC based on the fact that SRC differs between + - and $\pm \pm$ pairs, but not for LRC
- LRC is symmetric in all systems, but in pPb SRC is asymmetric for η and $-\eta$.
- LRC consistent with $1+\left\langle\mathrm{a}^{2}{ }_{1}\right\rangle \eta_{1} \eta_{2},\left\langle\mathrm{a}^{2}\right\rangle$ is extracted via Legendre expansion as well as from the projections of the LRC in limited η_{1}, η_{2} phase space
- N_{ch}-scaling of LRC (via a_{1}) and SRC are studied
- LRC (via a_{1}) controlled by N_{ch}, not by collision systems or charge combination
- SRC depends strongly on collision system and charge combination
- N_{ch} dependence of LRC and SRC follows power-law with an index close to 0.5 \rightarrow relation to the number of sources for particle production?

Important inputs for 3+1D hydrodynamic models \mathbf{W} / \mathbf{O} boost invariance Insights on particle production, longitudinal transport, final-state effects

See works by Bzdak, Bozek, Broniowski1509.02967,1509.04124; , Akihiko, Schenke 1509.04103

END

ALICE dN/dn distribution

Projections of CF in $\mathrm{Pb}+\mathrm{Pb}$

$$
C_{\mathrm{N}}^{\mathrm{sub}}\left(\eta_{1}, \eta_{2}\right) \approx 1+\left\langle a_{1}^{2}\right\rangle \eta_{1} \eta_{2}=1+\frac{\left\langle a_{1}^{2}\right\rangle}{4}\left(\eta_{+}^{2}-\eta_{-}^{2}\right) \quad r_{\mathrm{N}}^{\mathrm{sub}}\left(\eta, \eta_{\mathrm{ref}}\right)=1-2\left\langle a_{1}^{2}\right\rangle\left|\eta_{\mathrm{ref}}\right| \eta
$$

Fit η - dependence
Fit η_{+}dependence
Fit η dependence

- Consistent a_{1} at different slices \rightarrow LRC dominated by a_{1}. Consistent between four methods

Projections of CF in p+p

$$
C_{\mathrm{N}}^{\mathrm{sub}}\left(\eta_{1}, \eta_{2}\right) \approx 1+\left\langle a_{1}^{2}\right\rangle \eta_{1} \eta_{2}=1+\frac{\left\langle a_{1}^{2}\right\rangle}{4}\left(\eta_{+}^{2}-\eta_{-}^{2}\right) \quad r_{\mathrm{N}}^{\mathrm{sub}}\left(\eta, \eta_{\mathrm{ref}}\right)=1-2\left\langle a_{1}^{2}\right\rangle\left|\eta_{\mathrm{ref}}\right| \eta
$$

Fit η - dependence

Fit η_{+}dependence
Fit η dependence

- Consistent a_{1} at different slices \rightarrow LRC dominated by a_{1}. Consistent between four methods

a_{1} from four methods

- (i) Quadratic fit to η - direction, $\left.C_{\mathrm{N}}^{\text {sub }}\left(\eta_{-}\right)\right|_{\left|\eta_{+}\right|<0.1}$
- (ii) Quadratic fit to η^{+}direction, $\left.C_{\mathrm{N}}^{\text {sub }}\left(\eta_{+}\right)\right|_{0.9<\left|\eta_{-}\right|<1.1}$
- (iii) Linear fit to r correlator, $\left.\quad r_{\mathrm{N}}^{\text {sub }}(\eta)\right|_{2.2<\left|\eta_{\text {ref }}\right|<2.4}$
- (iv) Legendre expansion

4 methods consistent with each other in all three collision systems

Properties of SRC in p+Pb

- Most of the FB asymmetry is in the magnitude of the SRC.
- η_{-}-width of $S R C$ is constant as a function of η_{+}.

ATLAS Preliminary

$$
\begin{aligned}
200 & \leq N_{\mathrm{ch}}^{\text {ec }}<220 \\
\sqrt{s_{\mathrm{NN}}} & =5.02 \mathrm{TeV}, \mathrm{p}+\mathrm{Pb}, 28 \mathrm{nb}^{-1} \\
& \mathrm{p}_{\mathrm{T}}
\end{aligned}>0.2 \mathrm{GeV} .
$$

Estimation of the SRC in pPb

$R\left(\eta_{+}, \eta_{-}\right) \approx 1+f\left(\eta_{+}\right)\left[g^{+-}\left(\eta_{-}\right)-g^{ \pm \pm}\left(\eta_{-}\right)\right], \delta_{\text {SRC }}^{ \pm+}=f\left(\eta_{+}\right) g^{+-}\left(\eta_{-}\right), \delta_{\text {SRC }}^{ \pm \pm}=f\left(\eta_{+}\right) g^{ \pm \pm}\left(\eta_{-}\right)$

- Asymmetry between proton-going and lead-going direc is due to SRC
- LRC is very symmetric

- The LRC, $\mathrm{C}_{\mathrm{N}}{ }^{\text {sub }}\left(\eta_{+}, \eta_{-}\right)$, has similar magnitude between charge combinations.

Legendre spectra before and after subtraction

$$
C_{\mathrm{N}}\left(\eta_{1}, \eta_{2}\right) \text { or } \mathrm{C}_{\mathrm{N}}^{\mathrm{sub}}\left(\eta_{1}, \eta_{2}\right)=1+\sum_{\mathrm{n}, \mathrm{~m}=1}^{\infty}\left\langle\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{m}}\right\rangle \frac{\mathrm{T}_{\mathrm{n}}\left(\eta_{1}\right) \mathrm{T}_{\mathrm{m}}\left(\eta_{2}\right)+\mathrm{T}_{\mathrm{n}}\left(\eta_{2}\right) \mathrm{T}_{\mathrm{m}}\left(\eta_{1}\right)}{2}
$$

- a_{n} values significantly reduced after SRC subtraction
- Dominated by a_{1}.

Constructing correlation function

- Signal and Background distributions
- Tracks from events with similar N_{ch} and $\mathrm{z}_{\mathrm{vtx}}$

$$
C=\frac{\left\langle N\left(\eta_{1}\right) N\left(\eta_{2}\right)\right\rangle}{\left\langle N\left(\eta_{1}\right)\right\rangle\left\langle N\left(\eta_{2}\right)\right\rangle}=\frac{S\left(\eta_{1}, \eta_{2}\right)}{B\left(\eta_{1}, \eta_{2}\right)}
$$

- Due to symmetry in PbPb or pp , only one quadrant is independent.
- $\eta_{-}=\eta_{1}-\eta_{2}>0, \eta_{+}=\eta_{1}+\eta_{2}>0 \quad c_{N}\left(\eta_{1}, \eta_{2}\right)=c_{N}\left(\eta_{2}, \eta_{1}\right) C_{N}\left(\eta_{1}, \eta_{2}\right)=c_{N}\left(-\eta_{1},-\eta_{2}\right)$
- In pPb collision, only one half is independent
- $\eta_{-}=\eta_{1}-\eta_{2}>0$

$$
C_{N}\left(\eta_{1}, \eta_{2}\right)=C_{N}\left(\eta_{2}, \eta_{1}\right)
$$

- But distribution can be symmetrized in any case to compare PbPb and pp

Summary of systematics

- Evaluate based on ratios of correlation function

$$
d\left(\eta_{1}, \eta_{2}\right)=\frac{C\left(\eta_{1}, \eta_{2}\right)_{\text {check }}}{C\left(\eta_{1}, \eta_{2}\right)_{\text {default }}} \quad \delta_{s y s} C=\sqrt{\sum_{k}\left(d_{k}-1\right)^{2}} \quad \delta_{s y s} a_{n}=\sqrt{\sum_{k}\left(\left(a_{n}\right)_{k}-1\right)^{2}}
$$

- Separately for $C_{\mathrm{N}}\left(\eta_{1}, \eta_{2}\right) \& C_{\mathrm{N}}^{\text {sub }}\left(\eta_{1}, \eta_{2}\right)$
- Uncertainty propagate to the a_{1} calculated from four methods

a_{1} from the four methods

Correlation function

Collision system	$\mathrm{Pb}+\mathrm{Pb}$	$p+\mathrm{Pb}$	$p p$
Event-mixing [\%]	$0.4-0.7$	$0.4-2.2$	$0.2-1.4$
Run-by-run stability [\%]	$0.3-0.5$	$0.3-1.5$	$0.2-1.5$
z_{vt} variation [\%]	$0.3-0.6$	$0.3-1.5$	$0.2-1.6$
Track selection \& efficiency [\%]	$0.6-1.2$	$0.2-1.3$	$0.3-0.7$
MC consistency [\%]	$0.2-1.6$	$0.5-2.5$	$0.7-3.3$
Charge dependence [\%]	$1.0-1.8$	$0.8-3.8$	$1.5-2.5$
SRC subtraction [\%]	$1.1-2.1$	$1.0-5.9$	$1.2-5.0$
Total [\%]	$1.7-3.2$	$2.1-7.6$	$2.5-6.9$

	quadratic fit to the $\left.C_{\mathrm{N}}^{\text {sub }}\left(\eta_{-}\right)\right\|_{\eta_{+}+<0.1}$			quadratic fit to the $\left.C_{\mathrm{N}}^{\text {sub }}\left(\eta_{+}\right)\right\|_{0.9<\mid \eta_{-} \ll 1.1}$					
Collision system	$\mathrm{Pb}+\mathrm{Pb}$	$p+\mathrm{Pb}$	$p p$	$\mathrm{~Pb}+\mathrm{Pb}$	$p+\mathrm{Pb}$	$p p$			
Event-mixing [\%]	$0.5-2.2$	$0.3-1.8$	$0.2-2.8$	$0.2-1.7$	$0.2-1.6$	$0.2-2.7$			
Run-by-run stability [\%]	$0.2-1.3$	$0.2-1.7$	$0.2-2.8$	$0.2-1.5$	$0.2-1.1$	$0.2-1.6$			
$z_{\text {vtx }}$ variation [\%]	$0.3-1.9$	$0.1-2.2$	$0.1-1.6$	$0.1-1.8$	$0.2-0.7$	$0.1-0.9$			
Track selec.\& efficiency[\%]	$0.4-2.1$	$0.3-0.9$	$0.8-2.2$	$0.8-3.7$	1.0	$0.9-1.2$			
MC consistency [\%]	$0.2-3.6$	$0.4-3.9$	$0.2-10.0$	$0.2-4.3$	$0.2-2.4$	$0.2-4.7$			
Charge dependence [\%]	$0.9-4.2$	$1.0-10.2$	$2.8-4.6$	$0.4-3.8$	$0.6-3.1$	$1.2-6.2$			
SRC subtraction [\%]	$0.9-2.5$	$1.2-6.3$	$1.3-4.8$	$1.4-2.5$	$1.2-3.7$	$1.2-4.6$			
Total [\%]	$2.1-5.2$	$2.7-10.3$	$10-12$	$2.4-5.5$	$2.5-6.8$	$3.5-11.2$			
	linear fit to the $\left.r_{\mathrm{N}}^{\text {sub }}(\eta)\right\|_{2.2<\mid \eta_{\text {ref }}<2.4}$								Global Legendre expansion of $C_{\mathrm{N}}^{\text {sub }}$
Collision system	$\mathrm{Pb}+\mathrm{Pb}$	$p+\mathrm{Pb}$	$p p$	$\mathrm{~Pb}+\mathrm{Pb}$	$p+\mathrm{Pb}$	$p p$			
Event-mixing [\%]	$0.3-2.3$	$0.3-1.4$	$0.1-1.5$	$0.2-1.8$	$0.1-1.7$	$0.1-0.9$			
Run-by-run stability [\%]	$0.1-1.2$	$0.1-1.7$	$0.2-2.8$	$0.2-0.7$	$0.1-1.3$	$0.1-2.1$			
$z_{\text {vtx }}$ variation [\%]	$0.2-1.2$	$0.2-2.1$	$0.2-2.6$	$0.1-1.3$	$0.2-2.5$	$0.2-1.7$			
Track selec.\& efficiency[\%]	$0.4-1.3$	$0.6-0.9$	$0.7-1.7$	$0.3-0.9$	$0.4-0.7$	$0.8-2.4$			
MC consistency [\%]	$0.2-2.6$	$0.2-3.7$	$0.8-7.6$	$0.2-2.5$	$0.4-3.2$	$0.1-6.7$			
Charge dependence [\%]	$0.4-4.9$	$0.1-8.8$	$1.6-5.3$	$2.3-5.3$	$1.0-12.7$	$3.4-8.1$			
SRC subtraction [\%]	$1.4-3.2$	$2.2-3.4$	$1.7-5.0$	$1.7-4.3$	$2.0-8.9$	$2.7-9.6$			
Total [\%]									

