Measurement of ridge and v_2 in 13 and 2.76 TeV *pp* collisions with ATLAS

Mingliang Zhou for the ATLAS collaboration Sep 29th, 2015

http://arxiv.org/abs/1509.04776

Ridge observed in pp.

Theoretical interpretations

- Flow effects?
- Initial state physics?

2

measured.

4

6

p_{_} [GeV]

Single-particle v_n was

8

10

Ridge observed in pp.

Theoretical interpretations

- Flow effects?
- Initial state physics?

Data set

- ATLAS pp 2.76 and 13 TeV data
- Charge particle tracks reconstructed in Inner Detector:
 - $|\eta| \le 2.5$
 - $p_{\rm T} > 0.3 \, {\rm GeV}$
- $C(\Delta\eta,\Delta\phi) = \frac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)}$

• High-Multiplicity track triggers used to increase statistics.

$\mathcal{C}(\varDelta\eta, \varDelta\phi)$ in 13 TeV pp

Long-range correlation shape is concave-up on near-side: no ridge.

$\mathcal{C}(\varDelta\eta, \varDelta\phi)$ in 13 TeV pp

Long-range correlation shape is concave-up on near-side: no ridge.

Long-range structure becomes flat: ridge develops.

Ridge yield

• To quantify the strength of the ridge yield:

$$Y(\Delta\phi) = \left(\frac{\int B(\Delta\phi) \, \mathrm{d}\Delta\phi}{N^a \int \mathrm{d}\Delta\phi}\right) C(\Delta\phi)$$

 N^a total number of trigger number

Ridge yield

• To quantify the strength of the ridge yield:

$$Y(\Delta\phi) = \left(\frac{\int B(\Delta\phi) \, \mathrm{d}\Delta\phi}{N^a \int \mathrm{d}\Delta\phi}\right) C(\Delta\phi)$$

N^{*a*} total number of trigger number

- ZYAM method estimates ridge yield in near-side (presented in EPS 2015);
- ZYAM assumes pairs under pedestal b_{ZYAM} are uncorrelated;
- Due to the modulation of LRC in near-side, ridge yield may be underestimated.

Ridge yield

• To quantify the strength of the ridge yield:

$$Y(\Delta\phi) = \left(\frac{\int B(\Delta\phi) \, \mathrm{d}\Delta\phi}{N^a \int \mathrm{d}\Delta\phi}\right) C(\Delta\phi)$$

N^{*a*} total number of trigger number

- ZYAM method estimates ridge yield in near-side (presented in EPS 2015);
- ZYAM assumes pairs under pedestal b_{ZYAM} are uncorrelated;
- Due to the modulation of LRC in near-side, ridge yield may be underestimated.
- Due to dominance of dijet, ZYAM cannot estimate LRC in away-side.
- New method needed!

Template fitting: two approaches

• Peripheral subtraction $Y^{\text{LRC}} = Y^{\text{cent}} - F Y^{\text{peri}}$

Assumption: shape of away-side jet is independent of N_{ch}^{rec} .

- To determine *F*:
 - Scale jet yield in near-side;
 - Template fitting (used in this analysis).

Both ways give consistent results!

Template fitting: two approaches

• Peripheral subtraction $Y^{\text{LRC}} = Y^{\text{cent}} - F Y^{\text{peri}}$

Assumption: shape of away-side jet is independent of N_{ch}^{rec} .

- To determine *F*:
 - Scale jet yield in near-side;
 - Template fitting (used in this analysis).

Both ways give consistent results!

- Decompose yield in peripheral $Y^{\text{peri}} = N_0^{\text{peri}} + N_0^{\text{peri}} v_{n,n}^{\text{peri}} \cos(n \Delta \phi) + Y_{\text{jet}}^{\text{peri}}$
- First term represent uncorrelated pairs, second term is LRC in peripheral;
- The key is whether including the pedestal N_0^{peri} or not!

Template fitting: two approaches

• Peripheral subtraction $Y^{\text{LRC}} = Y^{\text{cent}} - F Y^{\text{peri}}$

Assumption: shape of away-side jet is independent of N_{ch}^{rec} .

- To determine *F*:
 - Scale jet yield in near-side;
 - Template fitting (used in this analysis).

Both ways give consistent results!

- Decompose yield in peripheral $Y^{\text{peri}} = N_0^{\text{peri}} + N_0^{\text{peri}} v_{n,n}^{\text{peri}} \cos(n \Delta \phi) + Y_{\text{jet}}^{\text{peri}}$
- First term represent uncorrelated pairs, second term is LRC in peripheral;
- The key is whether including the pedestal N_0^{peri} or not!
- Expand Y^{LRC} and Y^{cent} . Denote $F N_0^{\text{peri}} / N_0^{\text{cent}} \equiv \alpha$;
- Exclude pedestal

$$v_{n,n}^{\text{LRC}} = v_{n,n}^{\text{cent}} - \alpha v_{n,n}^{\text{peri}}$$

• Include pedestal

$$v_{n,n}^{\text{LRC}} = \frac{v_{n,n}^{\text{cent}} - \alpha \ v_{n,n}^{\text{peri}}}{1 - \alpha}$$

Only differentiate by a scale factor $1 - \alpha$!

Comparison of two template fit methods

• Two methods represents two limits, however, they give similar LRC signal for $N_{ch}^{rec} \ge 20$. The true value of $v_{2,2}$ lies between two bounds.

• In this analysis, default results are from including pedestal, for $N_{ch}^{rec} \ge 20$.

Template fitting results

 $Y^{\text{templ}}(\Delta \phi) = Y^{\text{ridge}}(\Delta \phi) + FY^{\text{periph}}(\Delta \phi)$

• Template fitting works quite well: compare red curve *Y*^{templ} and black bullets *Y*.

Template fitting results

 $Y^{\text{templ}}(\Delta \phi) = Y^{\text{ridge}}(\Delta \phi) + FY^{\text{periph}}(\Delta \phi)$

• Template fitting works quite well: compare red curve *Y*^{templ} and black bullets *Y*.

Single-particle anisotropies v_2

• In Pb+Pb and *p*+Pb collisions, the long-range structures in two-particle correlation arise from single particle anisotropies

Singles:
$$\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos n(\phi - \Phi_n)$$

Pairs: $\frac{dN}{d\Delta\phi} \propto 1 + \sum_{n} 2v_n^a v_n^b \cos n(\Delta\phi)$

• If this is also true in *pp*, then the measured $v_{2,2}$ should factorize as:

$$v_{2,2}(p_{\rm T}^{a}, p_{\rm T}^{b}) = v_{2}(p_{\rm T}^{a})v_{2}(p_{\rm T}^{b})$$
$$v_{2}(p_{\rm T}^{a}) = v_{2,2}(p_{\rm T}^{a}, p_{\rm T}^{b})/\sqrt{v_{2,2}(p_{\rm T}^{b}, p_{\rm T}^{b})}$$

• Expectation: $v_{2,2}(p_T^a, p_T^b)$ depends on both p_T^a and p_T^b , but the ratio $v_2(p_T^a)$ should be independent of reference p_T^b .

Factorization of $v_{2,2}$

• Expectation: $v_{2,2}(p_T^a, p_T^b)$ depends on both p_T^a and p_T^b , but the ratio $v_2(p_T^a)$ should be independent of reference p_T^b .

Factorization of $v_{2,2}$

 $v_{2,2}$ can be factorized into single-particle v_2 .

• Expectation: $v_{2,2}(p_T^a, p_T^b)$ depends on both p_T^a and p_T^b , but the ratio $v_2(p_T^a)$ should be independent of reference p_T^b .

$p_{ m T}$ dependence of v_2

- v_2 increases with p_T at lower p_T ;
- Reaches a maximum between 2 and 3 GeV;
- Decreases at higher $p_{\rm T}$.

Energy dependence of v_2

Energy dependence of integrated yield

Integrated yield has a very weak energy dependence.

Different collision systems

Summary

- Ridge observed in high-multiplicity *pp* collisions at 13 and 2.76 TeV;
- Template fitting is applied to extract LRC modulated by $v_{2,2}$;
- $v_{2,2}$ can be factorized into single particle v_2 ;
- v_2 has a very weak N_{ch}^{rec} dependence;
- v_2 has a very weak energy dependence;
- v_2 has a similar trend as p+Pb.

More about the data set

- 13 TeV data were collected in low-luminosity runs for which the collision rate per crossing, μ , varied between ~0.002 and ~0.04;
- The major high-multiplicity track trigger
 - At least one counter on each side of the MBTS;
 - At least 900 hits in the SCT;
 - At least 60 HLT-reconstructed tracks having $p_{\rm T} > 0.4$ GeV.

Systematics for $v_{2,2}$ at $\sqrt{s} = 13$ TeV

	Syst Uncertainty	Value for $v_{2,2}$	Comment
1	Choice of peripheral bin	$ \begin{array}{r} 10\%: N_{\rm ch}^{\rm rec} < 30 \\ 5-2\%: 30 < N_{\rm ch}^{\rm rec} < 60 \\ 2\%: N_{\rm ch}^{\rm rec} > 60 \end{array} $	$N_{\rm ch}^{\rm rec}$ dependent
2	Tracking Efficiency	0.5%	
3	Pileup	0.25%	
4	MC Closure	2% for $p_{\rm T}$ >0.5GeV	Larger of the
		6% for $p_{\rm T}$ < 0.5 GeV	three numbers
		1.5×10^{-4} (absolute)	for each $p_{\rm T}^{\rm a}$
5	Pair Acceptance	4×10^{-5}	Absolute error (not %)

- Choice of Peripheral Bin: vary the peripheral reference bins N_{ch}^{rec} ;
- Tracking Efficiency: repeat the analysis when varying the efficiency to its upper and lower extremes;
- Pileup: fraction of events with pileup vertex close to the primary vertex;
- MC Consistency: $v_{2,2}$ introduced by away-side jet in PYTHIA (no genuine long-range correlation);
- Pair Acceptance: $v_{2,2}$ calculated from the mixed events.

Systematics for $v_{2,2}$ at $\sqrt{s} = 2.76$ TeV

	Syst Uncertainty	Value for $v_{2,2}$
1	Tracking Efficiency	0.8%
2	MC Closure	2%
3	Pair Acceptance	1%
4	Choice of peripheral bin	6%
5	Pileup	5%

- Choice of Peripheral Bin: vary the peripheral reference bins N_{ch}^{rec} ;
- Tracking Efficiency: repeat the analysis when varying the efficiency to its upper and lower extremes;
- Pileup: fraction of events with pileup vertex close to the primary vertex;
- MC Consistency: $v_{2,2}$ introduced by away-side jet in PYTHIA (no genuine long-range correlation);
- Pair Acceptance: $v_{2,2}$ calculated from the mixed events.

1D Correlation functions $C(\Delta \phi)$ at 13 TeV

1D Correlation functions $C(\Delta \phi)$ at 2.76 TeV

31

Per-trigger-particle yield $Y(\Delta \phi)$ at 13 TeV

32

Per-trigger-particle yield $Y(\Delta \phi)$ at 2.76 TeV

33

Template fit at 13 TeV

 $Y^{\text{templ}}(\Delta \phi) = Y^{\text{ridge}}(\Delta \phi) + FY^{\text{periph}}(\Delta \phi)$

Template fit at 2.76 TeV

 $Y^{\text{templ}}(\Delta \phi) = Y^{\text{ridge}}(\Delta \phi) + FY^{\text{periph}}(\Delta \phi)$

Parameters from template fits

- Results using template fit method from this *pp* analysis.
 - Results using template fit method from previous *p*+Pb analysis.
- Results using ZYAM method.

- Due to the modulation of v_n , estimation of b_{ZYAM} is biased: ZYAM method underestimates integrated yield;
- Assuming no flow in the peripheral will give a lower bound of Y_{int} ;
- Assuming same magnitude of flow in the peripheral will give a upper bound of Y_{int} .

Details about the template fitting procedure

• If there is $v_{2,2}$ in peripheral:

$$Y^{\text{peri}}(\Delta\phi) = N_0^{\text{peri}}\left(1 + 2\nu_{2,2}^{\text{peri}}\cos(2\Delta\phi)\right) + Y_{\text{jet}}^{\text{peri}}(\Delta\phi)$$

Energy dependence of $v_{2,2}$

This is the last slide

