# Indications for a critical end point in the phase diagram for hot and dense nuclear matter

Roy A. Lacey Stony <u>Brook University</u>

#### <u>Outline</u>

- > Introduction
  - ✓ Phase Diagram
- > Search strategy
  - ✓ Theoretical guidance
  - ✓ Femtoscopic probe
- ≻ Analysis
  - ✓ Finite-Size-Scaling
  - ✓ Dynamic Finite-Size-Scaling
- > Epilogue

1

### The QCD Phase Diagram

A central goal of the worldwide program in relativistic heavy ion collisions, is to chart the QCD phase diagram



#### Essential Question

#### What new insights do we have on:

#### The CEP "landmark"?

- ✓ Location ( $T^{cep}$ ,  $\mu_B^{cep}$ ) values?
- ✓ Static critical exponents  $\nu$ ,  $\gamma$ ?
  - Static universality class?
  - Order of the transition
- ✓ Dynamic critical exponent z?
  - Dynamic universality class?

All are required to fully characterize the CEP & drives the ongoing search

(New) measurements, analysis techniques and theory efforts which investigate a broad range of the (T,  $\mu_B$ )-plane are currently underway

### Theoretical Guidance

# Theory consensus on the static universality class for the CEP

3D-Ising Z(2)  $\checkmark \nu \sim 0.63$  $\checkmark \gamma \sim 1.2$ 

M. A. Stephanov Int. J. Mod. Phys. A 20, 4387 (2005)

## Dynamic Universality class for the CEP less clear

➤ One slow mode

✓ z ~ 3 - Model H

Son & Stephanov Phys.Rev. D70 (2004) 056001 Moore & Saremi , JHEP 0809, 015 (2008)

Three slow modes

$$\sqrt{z_T} \sim 3$$

$$\sqrt{z_V} \sim 2$$

√ Z<sub>s</sub> ~ -0.8 Y. Minami - Phys.Rev. D83 (2011) 094019

# The predicted location ( $T^{cep}$ , $\mu_B^{cep}$ ) of the CEP is even less clear!



# Experimental verification and characterization of the CEP is a crucial ingredient

#### We use femtoscopic measurements to perform our search

Roy A. Lacey, Stony Brook University; Quark Matter 2015, Sept. 28, 2015 3



In the vicinity of a phase transition or the CEP, the divergence of  $\kappa$  leads to anomalies in the expansion dynamics

**Strategy** 

Search for non-monotonic patterns for HBT radii combinations that are sensitive to the divergence of  $\kappa$ 

#### Interferometry Probe

Hung, Shuryak, PRL. 75,4003 (95) Chapman, Scotto, Heinz, PRL.74.4400 (95)

Makhlin, Sinyukov, ZPC.39.69 (88)



The measured HBT radii encode

space-time information for



The measurements validate the expected non-monotonic patterns! Reaction trajectories spend a fair amount of time near a "soft point" in the EOS that coincides with the CEP!

à

\*\* Note that  $R_{long},\,R_{out}$  and  $R_{side}$  [all] increase with  $\sqrt{s_{NN}}$  \*\*

<u>Finite-Size Scaling</u> (FSS) is used for further validation of the CEP, as well as to characterize its static and dynamic properties

Roy A. Lacey, Stony Brook University; Quark Matter 2015, Sept. 28, 2015 6



The curse of Finite-Size effects

à

*E. Fraga et. al.* **J. Phys.G 38:085101, 2011** 



Displacement of pseudo-first-order transition lines and CEP due to finite-size

# Finite-size shifts both the pseudo-critical point and the transition line

A flawless measurement, sensitive to FSE, **can** <u>not</u> give the precise location of the CEP



#### Size dependence of HBT excitation functions



The data validate the expected patterns for Finite-Size Effects

- ✓ <u>Max values decrease</u> with <u>decreasing</u> system size
- ✓ <u>Peak positions shift</u> with <u>decreasing</u> system size
- ✓ <u>Widths increase</u> with <u>decreasing</u> system size

#### Size dependence of HBT excitation functions



with length scale  $L = \overline{R}$ 

Roy A. Lacey, Stony Brook University; Quark Matter 2015, Sept. 28, 2015 11

#### Length Scale for Finite Size Scaling





#### $\overline{R}$ is a characteristic length scale of the initial-state transverse size,

12

 $\sigma_x \& \sigma_y \rightarrow RMS$  widths of density distribution





#### **Closurer test for FSS**

 > 2<sup>nd</sup> order phase transition
 > 3D Ising Model (static) universality class for CEP

 $\nu \sim 0.66$   $\gamma \sim 1.2$ 

 $T^{cep} \sim 165 \text{ MeV}, \mu_B^{cep} \sim 95 \text{ MeV}$ 

 $\chi(T,L) = L^{\gamma \wedge} P_{\chi}(tL^{1/\nu})$ 

M. Suzuki, Prog. Theor. Phys. 58, 1142, 1977

> Use  $T^{cep}$ ,  $\mu_B^{cep}$ ,  $\nu$  and  $\gamma$ to obtain Scaling Function  $P_{\chi}$

$$R^{-\gamma/\nu} \times (R_{\text{out}}^2 - R_{\text{side}}^2) \text{ vs. } R^{1/\nu} \times t_T,$$
  

$$\bar{R}^{-\gamma/\nu} \times (R_{\text{out}}^2 - R_{\text{side}}^2) \text{ vs. } \bar{R}^{1/\nu} \times t_{\mu_B},$$
  

$$t_{-} = (T - T_{\text{cep}})/T_{\text{cep}}$$

$$t_{\mu_B} = (\mu_B - \mu_B^{\text{cep}})/\mu_B^{\text{cep}}$$

Γ anf μ<sub>B</sub> are from √s<sub>NN</sub>



\*\*A further validation of the location of the CEP and the (static) critical exponents\*\* A FAQ

### What about Finite-Time Effects (FTE)?



#### The value of the dynamic critical exponent/s is crucial for HIC

Dynamic Finite-Size Scaling (DFSS) is used to estimate the dynamic critical exponent z

#### Dynamic Finite – Size Scaling



### Epilogue



New Data from RHIC (BES-II) together with theoretical modeling, will provide crucial validation tests for the coexistence regions, as well as to firm-up characterization of the CEP!



Much additional work required to get to "the end of the line"

Roy A. Lacey, Stony Brook University; Quark Matter 2015, Sept. 28, 2015

### End



Roy A. Lacey, Stony Brook University; Quark Matter 2015, Sept. 28, 2015

#### Phys.Rev.Lett.100:232301,2008) Source breakup dynamics in Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV via three-dimensional two-pion source imaging

S. Afanasiev,<sup>17</sup> C. Aidala,<sup>7</sup> N.N. Ajitanand,<sup>43</sup> Y. Akiba,<sup>37, 38</sup> J. Alexander,<sup>43</sup> A. Al-Jamel,<sup>33</sup> K. Aoki,<sup>23, 37</sup>
L. Aphecetche,<sup>45</sup> R. Armendariz,<sup>33</sup> S.H. Aronson,<sup>3</sup> R. Averbeck,<sup>44</sup> T.C. Awes,<sup>34</sup> B. Azmoun,<sup>3</sup> V. Babintsev,<sup>14</sup>
A. Baldisseri,<sup>8</sup> K.N. Barish,<sup>4</sup> P.D. Barnes,<sup>26</sup> B. Bassalleck,<sup>32</sup> S. Bathe,<sup>4</sup> S. Batsouli,<sup>7</sup> V. Baublis,<sup>36</sup> F. Bauer,<sup>4</sup>
A. Bazilevsky,<sup>3</sup> S. Belikov,<sup>3,16,\*</sup> R. Bennett,<sup>44</sup> Y. Berdnikov,<sup>40</sup> M.T. Bjorndal,<sup>7</sup> J.G. Boissevain,<sup>26</sup> H. Borel,<sup>8</sup>
V. Berdnikov,<sup>40</sup> M.T. Bjorndal,<sup>7</sup> J.G. Boissevain,<sup>26</sup> H. Borel,<sup>8</sup>

#### Phys.Lett. B685 (2010) 41-46

#### Three-dimensional two-pion source image from Pb+Pb collisions at $\sqrt{s_{NN}}$ =17.3 GeV: new constraints for source breakup dynamics

C. Alt<sup>9</sup>, T. Anticic<sup>23</sup>, B. Baatar<sup>8</sup>, D. Barna<sup>4</sup>, J. Bartke<sup>6</sup>, L. Betev<sup>10</sup>, H. Białkowska<sup>20</sup>, C. Blume<sup>9</sup>, B. Boimska<sup>20</sup>, M. Botje<sup>1</sup>, J. Bracinik<sup>3</sup>, P. Bunćić<sup>10</sup>, V. Cerny<sup>3</sup>, P. Christakoglou<sup>1</sup>, P. Chung<sup>19</sup>, O. Chvala<sup>14</sup>, J.G. Cramer<sup>16</sup>, P. Csató<sup>4</sup>, P. Dinkelaker<sup>9</sup>, V. Eckardt<sup>13</sup>, D. Flierl<sup>9</sup>, Z. Fodor<sup>4</sup>, P. Foka<sup>7</sup>, V. Friese<sup>7</sup>, J. Gál<sup>4</sup>, M. Gaździcki<sup>9,11</sup>, V. Genchev<sup>18</sup>, E. Gładysz<sup>6</sup>, K. Grebieszkow<sup>22</sup>, S. Hegyi<sup>4</sup>, C. Höhne<sup>7</sup>, K. Kadija<sup>23</sup>, A. Karev<sup>13</sup>, S. Kniege<sup>9</sup>, V.I. Kolesnikov<sup>8</sup>, R. Korus<sup>11</sup>, M. Kowalski<sup>6</sup>, M. Kreps<sup>3</sup>, A. Laszlo<sup>4</sup>, R. Lacey<sup>19</sup>, M. van Leeuwen<sup>1</sup>, P. Lévai<sup>4</sup>, L. Litov<sup>17</sup>, B. Lungwitz<sup>9</sup>, M. Makariev<sup>17</sup>, A.I. Malakhov<sup>8</sup>, M. Mateev<sup>17</sup>, G.L. Melkumov<sup>8</sup>,

$$\tau = \tau_0 + a\rho$$

Space-time correlation parameter

Non Monotonic behavior of the viscous coefficient

✓ Initial experimental indication for  $\eta$ /s variation in the (T,  $\mu_B$ )-plane

✓ CEP?





#### Finite size scaling and the Crossover Transition

Finite size scaling played an essential role for identification of the crossover transition!

Y. Aoki, et. Al.,Nature , 443, 675(2006).



<u>Reminder</u>

Crossover: size independent.

1<sup>st</sup>-order: finite-size scaling function, and scaling exponent is determined by spatial dimension (integer). 2<sup>nd</sup>-order: finite-size scaling function  $\chi(T,L) = L^{\gamma/\nu} P_{\gamma}(tL^{1/\nu})$ 

#### Interferometry as a susceptibility probe



In the vicinity of a phase transition or the CEP, the sound speed is expected to soften considerably.

$$c_s^2 = \frac{1}{\rho \kappa_s}$$

Divergence of the compressibility ( $\kappa$ )  $\rightarrow$  non-monotonic excitation function for (R<sup>2</sup><sub>out</sub> - R<sup>2</sup><sub>side</sub>) due to an enhanced emission duration

#### Interferometry signal



Adare et. al. (PHENIX) arXiv:1410.2559



Roy A. Lacey, Stony Brook University; Quark Matter 2015, Sept. 28, 2015 25



Roy A. Lacey, Stony Brook University; Quark Matter 2015, Sept. 28, 2015 26

Scaling properties of HBT

Viscous Hydrodynamics – B. Schenke



Acoustic Scaling of HBT Radii



 $t \propto \overline{R}$  exquisitely demonstrated via HBT measurement for several systems