

Soft probes of p+Pb and Pb+Pb collisions in the ATLAS experiment at the LHC

Sooraj Radhakrishnan for the ATLAS Collaboration

Soft probes in p+Pb and Pb+Pb collisions

- Collective flow in Pb+Pb:
 - Flow fluctuations, flow correlations, event-by-event measurements
 - More tools to constrain initial conditions and medium response (viscosity, equation of state, ..)
- 'Flow'/Ridge in p+Pb:

• •

- Long range correlations in p+Pb: Flow in small systems?.
- Measurement of Fourier harmonics associated with ridge to high p_T (~10 GeV)
- First and higher order harmonics
- Comparison of flow harmonics in p+Pb and Pb+Pb. Common origin?

Flow, correlations and fluctuations in Pb+Pb

Flow harmonics from multi-particle cumulants

• If flow fluctuations are Gaussian,

$$p(\vec{v}_n) = \frac{1}{2\pi\delta_{v_n}^2} e^{-\{\vec{v}_n - \vec{v}_n^{RP}\}^2/2\delta_{v_n}^2\}}$$
$$v_n\{4\} = v_n\{6\} = v_n\{8\} = v_n^{RP}$$

• Also non-flow contributions are suppressed in v_n from higher order cumulants

Flow harmonics from multi-particle cumulants

Ratio of higher order cumulants close to1

arXiv:1408.4342

• If flow fluctuations are Gaussian,

$$p(\vec{v}_n) = \frac{1}{2\pi\delta_{v_n}^2} e^{-\{\vec{v}_n - \vec{v}_n^{RP}\}^2/2\delta_{v_n}^2\}}$$
$$v_n\{4\} = v_n\{6\} = v_n\{8\} = v_n^{RP}$$

• Also non-flow contributions are suppressed in v_n from higher order cumulants

Event by event flow and flow fluctuations

• $v_n\{2k\}$ can also be calculated from $P(v_n)$ from EbE flow measurements

JHEP11(2013)183

Comparison of EbyE and cumulant results

• $v_n\{2k\}$ can also be calculated from $P(v_n)$ from EbE flow measurements

Good consistency between the two set of measurements.

Flow correlations – Event shape selection

• Can measure correlations between v_n by selecting on event-shape

• For each centrality select on v_2 in the FCal (3.2 < $|\eta|$ < 4.9)

Flow correlations – Event shape selection

• Can measure correlations between v_n by selecting on event-shape

- Measure v_n in ID ($|\eta| < 2.5$) for each class using 2PC.
- Study correlations between v_n
 -> insensitive to selection bias from statistical smearing

- For each centrality select on $\overrightarrow{}$
- $|\vec{Q}|$ in the FCal (3.2 < $|\eta| < 4.9$)
- Control on event-shape: v_2 in ID ($|\eta| < 2.5$) varies by ~ a factor of 3.

Linear and non-linear contributions, v_4

Linear and non-linear contributions, v_4

100

ATLAS-CONF-2014-022

200

300

400

 $\mathsf{N}_{\mathsf{part}}$

central classes, non-linear in peripheral

Ridge in p+Pb

More results and details in *arXiv:1409.1792*

Ridge in p+Pb collisions

Phys. Lett. B 724

PhysRevLett.110.182302

- Long-range correlations ('ridge') observed in high multiplicity p+Pb collisions.
- Ridge present on both near and away sides.
- Arising from final state interactions or initial state correlations?

2PC Analysis – recoil subtraction

 Jet peak & recoil in central collisions are estimated from the peripheral collisions and subtracted.

2PC Analysis – recoil subtraction

2PC Analysis – recoil subtraction

Away side – Near side

- 2nd 3rd and 4th order harmonics cancel in the difference.
 - Yield from recoil matches the yield difference for 1 < 1 $p_T^b < 3 \text{ GeV}$
 - Holds irrespective of p_T^a
- At other p_T^{b} , differences are seen
 - consistent with a long range v_1 .

$$Y_{int} = \int_{a}^{b} Y^{corr}(\Delta \phi) \, d\Delta \phi$$

Ridge at higher p_T

- Near-side ridge visible through the entire p_T range studied.
- Origin of high- p_T ridge?

Fourier harmonics

- Non-zero v_2 , v_3 at high p_T (~10 GeV).
- v_n decrease with increasing n.
- Rise with p_T at low p_T and then decraese.

Factorizes within a few percent for $p_T^b < 4$ GeV.

Fourier harmonics

- Non-zero v_2 , v_3 at high p_T (~10 GeV).
- v_n decrease with increasing n.
- Rise with p_T at low p_T and then decraese.

 Less variation in integrated v₂ for N_{ch}^{rec} >150, v₃ continues to increase.

100

$v_{1,1}$ - First order harmonic in p+Pb

- After recoil subtraction, $p_T^{a,b}$ dependence of v_{11} similar to that seen in Pb+Pb collisions
 - In Pb+Pb, attributed to long-range v_1 from density fluctuations which is -ve at low p_T and +ve at higher p_T .

Dipolar flow in p + Pb

Employ similar factorization as other harmonics, but account for sign change $v_{1,1}$ can be factorized as $v_1(p_T) \equiv \frac{v_{1,1}(p_T, p_T^{ref})}{v_1(p_T^{ref})}$ $v_1(p_T^{ref}) = \operatorname{sign}(p_T - p_T^0) \sqrt{|v_{1,1}(p_T^{ref}, p_T^{ref})|}$ $p_T^0 = 1.5 \text{ GeV}$

Good agreement for different p_T^{ref} , suggesting a single particle modulation.

Comparison of with peripheral Pb+Pb.

- Peripheral Pb+Pb collisions have comparable multiplicity as ultra central p+Pb collisions.
- Larger jet contribution in p+Pb than Pb+Pb in events with similar multiplicity.

Comparison of v_n in p+Pb and peripheral Pb+Pb.

- Significantly larger v_2 and v_4 in Pb+Pb, but comparable magnitudes for v_3
 - Large elliptic geometry from overlap in PbPb
 - v_4 gets contribution from v_2
- Compare $v_n (p_T)_{p+Pb}$ with $v_n (p_T/K)_{Pb+Pb}$, (*Teaney et.al*) • K=1.25, ratio of $\langle p_T \rangle$.
- p+Pb: $<N_{ch}> \pm \sigma = 259 \pm 13$ Pb+Pb: $<N_{ch}> \pm \sigma = 241 \pm 43$

v_n scaling between the p+Pb and Pb+Pb systems.

 v_2 values, after scaling the p_T axis, differ only by a scale factor between the two systems.

Suggests a similar origin for v₂ in the two systems?

Summary and Conclusions

- Flow and fluctuations in Pb+Pb
 - Consistent results from cumulant and EbE measurements.
 - Correlations of v_2 with higher order $v_n \rightarrow Event$ shape selection
 - Linear and non-linear components separated for v_4 and v_5
- Ridge in p+Pb
 - Non-zero near-side ridge and v_n at higher p_T (~10 GeV)
 - v_1 in p+Pb : changes sign around 1.5 GeV, reaches 0.1 for $p_T > 4$
 - Similar p_T dependence as v_n from peripheral Pb+Pb, after scaling the p_T axis for Pb+Pb by mean p_T :
 - Suggests a similar origin for v_2 in the two systems?