XXIV QUARK MATTER DARMSTADT 2014

Measurement of the long-range pseudorapidity correlations and azimuthal harmonics in √s=5.02 TeV proton-lead collisions with the ATLAS detector Sooraj Radhakrishnan for the ATLAS Collaboration ATLAS-COM-CONF-2014-026

Introduction: Ridge in p + Pb collisions

- Intriguing long range correlation ("ridge") seen in two particle angular correlations in high multiplicity p+Pb collisions.
- Peripheral subtraction revealed "double ridge".
- Arising from correlations in the initial state or through final state interactions??
- Dedicated p+Pb run at LHC in 2013 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, Integrated Luminosity ~28 nb^{-1}
- What is new:
 - Measurements extended to higher p_T than existing results employing a recoil subtraction procedure.
 - First 5 Fourier harmonics associated with the long-range correlations, for two different 'event-activity' definitions.
 - Comparison of v_n values between p+Pb and peripheral Pb+Pb collisions with comparable multiplicity

ATLAS detector and dataset

- Analysis uses charged particle tracks in the Inner Detector (ID) for constructing correlation functions.
- 'Event activity' characterization uses tracks reconstructed in the ID or the total energy in the forward calorimeter (FCal) on Pb-going side.
- Benefits from dedicated triggers implemented using the ATLAS L1 and HLT systems to enhance the number of high multiplicity events selected.

'Event activity' selection

- Events are binned into several 'event activity' bins.
- Event activity → Characterized using:
 - N_{ch}^{rec} : Number of charged particles with $p_T > 0.4$ GeV in the ID
- *E_T^{Pb}*: Total transverse energy on the FCal on Pb-going side ..
 Events with low values of *N_{ch}^{rec}* or *E_T^{Pb}* are called 'peripheral' and those with high values are called 'central'

2PC Analysis – recoil subtraction

 Jet peak & recoil in central collisions are estimated from the peripheral collisions and subtracted.

2PC Analysis – recoil subtraction

2PC Analysis – recoil subtraction

Ridge at higher p_T

Near-side ridge visible through the entire p_T range studied.

Yield on awayside also larger than recoil component.

Ridge at higher p_T

10

p₊^a [GeV]

Per-trigge

Away side – Near side

- 2nd 3rd and 4th order harmonics cancel in the difference.
 - Yield from recoil matches the yield difference for 1 < 1 $p_T^b < 3 \text{ GeV}$
 - Holds irrespective of p_T^a
- At other p_T^{b} , differences are seen
 - attributed to long range v_1 .
- Similar observation as function of E_T^{Pb}

$$Y_{int} = \int_{a}^{b} Y^{corr}(\Delta \phi) \, d\Delta \phi$$

v_n vs p_T before and after subtraction

- Bias in un subtracted values from recoil component.
 - Increases even harmonics
 - Decreases odd harmonics
- Subtracted values remain positive, throughout the p_T range.

v_n vs p_T for different n

- v_n decrease with increasing n.
- Rise with p_T at low p_T and then decraese.
- Non-zero v₅ in high multiplicity event classes.

v_n factorization

- Good factorization seen for v_2 and v_3 , particularly at low p_T , suggesting a global anisotropy.
 - Factorization holds within 4% for $v_2 < 4$ GeV and for $v_3 < 3_{13}$ GeV.

v_n: Event activity dependence

- v_2 show less variation for $N_{ch}^{rec} > 150$, while v_3 continue to increase
- Recoil contribution does not affect the v_n for large N_{ch}^{rec}, but significant deviations see for smaller N_{ch}^{rec}

v_n: Event activity dependence

Similar behavior seen for E_T^{Pb} dependence

• v_2 show less variation for $N_{ch}^{rec} > 150$, while v_3 continue to increase

Recoil contribution does not affect the v_n for large N_{ch}^{rec}, but significant deviations see for smaller N_{ch}^{rec}

Mapping N_{ch}^{rec} -dependence to E_T^{Pb} dependence¹⁶

- The v_n values for N_{ch}^{rec} is plotted at corresponding $\langle E_T^{Pb} \rangle$ value, using the N_{ch}^{rec} vs E_T^{Pb} correlation data.
- Good consistency suggest that two event-activity definition captures the same azimuthal anisotropy of the long-range correlation.

First order harmonic in p+Pb

Before recoil subtraction show mostly a linear dependence on p_T^a .

- After recoil subtraction, a characteristic $p_T^{a,b}$ dependence
 - Similar to that seen in central Pb+Pb collisions
 - Attributed to long-range v_1 from density fluctuations which is -ve at low p_T and +ve at higher p_T .

Dipolar flow in p + Pb

• Employ similar factorization as other harmonics, but account for sign change $p_{1,1}(p_T, p^{\text{ref}})$

 $v_{1,1} \text{ can be factorized as } v_1(p_T) \equiv \frac{v_{1,1}(p_T, p_T^{\text{ref}})}{v_1(p_T^{\text{ref}})}$

$$v_1(p_T^{\text{ref}}) = \text{sign}(p_T - p_T^0) \sqrt{|v_{1,1}(p_T^{\text{ref}}, p_T^{\text{ref}})|} \qquad p_T^0 = 1.5 \text{ GeV}$$

Good agreement, suggesting a single particle modulation.

Comparison of v_n in p+Pb and peripheral Pb+Pb.

- Significantly larger v_2 and v_4 in Pb+Pb, but comparable magnitudes for v_3 !
 - Large elliptic geometry from overlap in PbPb
 - v_4 and v_2 are coupled $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ (see talk by Soumya)
 - Compare $v_n (p_T)_{p+Pb}$ with $v_n (p_T/K)_{Pb+Pb}$, (*Teaney et.al arXiv:1312.6770 [nucl-th*].)
 - K=1.25, ratio of $< p_T >$.

p+Pb: $<N_{ch}> \pm \sigma = 259 \pm 13$ Pb+Pb: $<N_{ch}> \pm \sigma = 241 \pm 43$

 v_n scaling between the p+Pb and Pb+Pb systems.

- v_2 values, after scaling the p_T axis, differ only by a scale factor between the two systems.
- Suggests a similar origin for v₂ in the two systems and similar medium response to initial geometry?

Summary and Conclusions

- The long-range correlation in high multiplicity events persists to $p_T \sim 12$ GeV.
- v_n vs p_T and event-activity.
 - First 5 Fourier harmonics measured
 - The magnitude of v_n decrease with increasing n.
 - v_n found to increase with N_{ch}^{rec} and E_T^{Pb} , but v_2 shows a saturation at higher event activity values.
 - The first order harmonic, v_1 , is found to cross zero ~ 1.5-2.0 GeV and increases to ~0.1 for $p_T > 4$ GeV.
- Comparison with peripheral Pb+Pb
 - $v_n(p_T)$, n = 1,2,3, are compared between p+Pb and Pb+Pb collisions with similar multiplicity.
 - Similar shape in p_T observed, once a scaling is applied to account for the difference in mean p_T between the two systems.

Summary of systematic uncertainties

Summary of relative percentage uncertainties on PTY.

Residual pair acceptance [%]	1 - 2		
ZYAM procedure [%]	0.2 - 1.5		
Tracking efficiency & material [%]	4.2		
Residual pileup [%]	0 - 2		

Summary of relative percentage uncertainties on v_n .

	n = 1	n = 2	n = 3	n = 4	n = 5
Residual pair acceptance [%]	1 - 5	< 0.5	1-4	7-12	7-20
ZYAM procedure [%]	0.6	0.3	0.3	0.5	0.6
Tracking efficiency& material [%]	1	0.4	0.8	1.2	2.4
Monte-Carlo closure [%]	4	1	2	4	8
Residual pileup [%]	0 - 2	0-2	0 - 2	0 - 2	0 - 2
Uncertainty on scale factor α [%]	8-30	0.2–10	0.2–12	0.2–14	1 - 14
Choice of peripheral events					
for $N_{\rm ch}^{\rm rec} > 160$ or $E_{\rm T}^{\rm Pb} > 100 {\rm GeV} [\%]$	4	1	1	2	4

High multiplicity triggers

- Enhancement from individual HMT selection (top)
- Reweighted by MB+HMT distribution (bottom)
- Reweighting takes into account the prescale and trigger efficiency

$N_{ch}^{rec} - E_T^{Pb}$ correlation for MB and MB+HMT

Event-activity classes based on $N_{\rm ch}^{\rm rec}$				Event-activity classes based on $E_{\rm T}^{\rm Pb}$					
$N_{\rm ch}^{\rm rec}$ range	fraction	$\langle E_{\rm T}^{\scriptscriptstyle \rm Pb} \rangle$	$\langle N_{\rm ch}^{\rm rec} \rangle$	$\langle N_{\rm ch} \rangle$	$E_{\mathrm{T}}^{\scriptscriptstyle\mathrm{Pb}}$ range	fraction	$\langle E_{\rm T}^{\scriptscriptstyle \rm Pb} \rangle$	$\langle N_{\rm ch}^{\rm rec} \rangle$	$\langle N_{\rm ch} \rangle$
		[GeV]			[GeV]		$[\mathrm{GeV}]$		
[0, 40)	0.58	12.5	19.0	24.4 ± 1.1	< 25	0.59	10.2	21.7	28.0 ± 1.3
[40, 80)	0.32	35.3	56.4	74.4 ± 3.3	[25, 50)	0.27	35.1	54.7	72.2 ± 3.3
[80, 110)	0.081	56.8	91.7	122 ± 6	[50, 75)	0.096	61.5	81.4	108 ± 5
[110, 140)	0.023	74.2	121	161 ± 7	[75, 100)	0.025	84.5	106	141 ± 6
[140, 180)	0.0053	93.0	153	203 ± 9	[100, 130)	0.0051	110	130	173 ± 8
[180, 220)	4.6×10^{-4}	116	192	255 ± 12	[130, 165)	$5.6 imes10^{-4}$	141	156	208 ± 9
[220, 260)	2.6×10^{-5}	136	231	307 ± 14	[165, 200)	2.7×10^{-5}	174	186	248 ± 11
[260, 370)	1.2×10^{-6}	158	271	361 ± 16	[200, 300)	$1.0 imes 10^{-6}$	208	214	284 ± 13

 Some of the event activity classes used in the analysis and the fraction of MB events in each class

Analysis Overview – II : Recoil subtraction

- Use yield in peripheral event class to estimate contribution from away-side jet, momentum conservation etc (recoil component) (ATLAS 2012, ALICE 2012, ALICE 2013)
- A scale factor, α , is applied to take into account the increase of the near-side jet yield (CMS 2013) $\alpha = Y^{N-Peak} / Y_{peri}^{N-Peak}$

Analysis Overview - III

- Recoil subtracted distribution:,
- Fourier harmonics : $Y^{sub}(\Delta \phi) \sim 1 + \sum_{n} 2v_{n,n} \cos(n\Delta \phi)$

Fourier harmonics are also evaluated from the unsubtracted distribution, $Y(\Delta \phi)$, in a similar manner and are denoted by $v_{n,n}^{dir}$ and v_n^{dir} .

Near side – Away side (II)

• Away side yield in $E_T^{Pb} < 10$ GeV is ~ 2x that in $N_{ch}^{rec} < 20$

 v_1 in different N_{ch}^{rec} classes

• Similar p_T dependence in other event-activity classes as well.

Dipolar flow in Pb+Pb

- $v_{1,1}(p_T^a, p_T^b)$ in peripheral and central event classes from Pb+Pb collisions.
- In central event class the non flow contributions are suppressed.

Dipolar flow in Pb+Pb (II)

- $v_1(p_T)$ in Pb+Pb obtainted from a simultaneous fit to $v_{1,1}(p_T^a, p_T^b) = v_1(p_T^a)v_1(p_T^b) - Kp_T^a p_T^b$
- Negative at low p_T and positive at higher p_T
- Changes sign between 1 and 1.5 GeV

Compare to ridge in peripheral Pb+Pb collisions

• Larger jet contribution in similar muliplicity selected p+Pb collisions.

Away side – Near side (II)

Ridge at high p_T (II)

• Near side ridge is visible through the entire p_T^a range studied.

• Yield on the away side is also larger than the recoil component.

Integrated yield vs p_T (II)

 $Y_{int} = \int_{a}^{b} Y^{corr}(\Delta \phi) \, d\Delta \phi$

- Integrated yields above ZYAM background on the near side and away side.
- Near side yield increases with p_T, reaches maximum around 3 4 GeV and then decreases.
- Away side yield has large contribution from recoil component.

Ridge at high p_T , E_T^{Pb} class

 v_n vs p_T , E_T^{Pb} classes

