

Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with ATLAS

Sooraj Radhakrishnan (on behalf of the ATLAS collaboration) <u>arXiv:1504.01289</u>

Introduction and Motivation

- Event shape dependence of flow harmonics.
 - Helps understand change in medium response with event shape.
 - Disentangle system size and system shape dependence.
 - $v_2 v_n$ and $v_3 v_n$ correlations (study of non-linear response).

Introduction and Motivation

- Event shape dependence of flow harmonics.
 - Helps understand change in medium response with event shape.
 - Disentangle system size and system shape dependence.
 - $v_2 v_n$ and $v_3 v_n$ correlations (study of non-linear response).
- Correlations between Event Planes of different orders studied previously (ATLAS: PRC 90, 024905 (2014)).
- Not reproduced by initial state correlations.
- Additional constraints on medium response.
- Event shape selected analysis helps to understand these correlations better.

Event Shape Engineering

Both ellipticity and system size change with centrality!

Event Shape Engineering

- Both ellipticity and system size change with centrality!
- Within a given centrality v_n varies over a wide range.

Event Shape Engineering

- Both ellipticity and system size change with centrality!
- Event shape selection allows to control the shape of the events (ellipticity, triangularity etc), but without changing centrality.
- Can study correlations of many observables with the system shape, eg jet properties, flow correlations etc.

Analysis procedure

i) Bin events in centrality classes.

ii) For each centrality class, bin into event-shape classes based on magnitude of q_m vector.

iii) Calculate v_n and v_m - v_n correlations using tracks in ID (using 2PC from pairs with $\Delta \eta > 2$).

Event Shape Selection

 Events are binned into qvector classes based on the magnitude of q₂ or q₃ in FCal

Event Shape Selection

System size vs system shape: v₂ - v₂ correlations

 v_2 at low p_T

- v₂ at intermediate p_T plot against v₂ at low p_T. Each point is for a centrality interval.
- For same v₂ at low p_T, smaller v₂ at higher p_T, for peripheral events.
- Effect of larger viscosity in peripheral classes.

Does the correlation depend on event-shape?

System size vs system shape: v₂ - v₂ correlations

- Similar plot, but now in each centrality many points corresponding to the eventshape classes.
- Within a centrality ratio between low p_T and intermediate p_T v₂ remains same.
- Slope changes with centrality.

 Suggests viscous effects controlled by system size and independent of event ellipticity.

System size vs system shape: v₃ - v₃ correlations

- Similar plot, for v₃.
- Within a centrality ratio between low p_T and intermediate p_T v₃ remains same.
- Slope changes with centrality.

 Suggests viscous effects controlled by system size and independent of event triangularity.

v₂ - v₃ correlation

• Can study v_n as a function of v_m at fixed centralities.

- Colored markers are from different event shape classes.
- Anti-correlation between v₂ and v₃, particularly in mid-central and peripheral event classes.
- Initial state effects or from final state interactions?

v₂ v₃ correlation: Comparison with initial state correlations

• $\epsilon_2 - \epsilon_3$ correlation from initial state models show similar behavior.

•Some deviations though, particularly in most central classes.

Non linear response: v₂ v₄ correlation

- Non-linear increase of v_4 with v_2 .
- v_4 is expected to have nonlinear correlation with v_2 , $v_4 \propto v_2^2$
 - From initial geomtry, $\epsilon_4 \propto \epsilon_2^2$
 - Due to non-linear medium response.
 - From freeze-out due to anisotropic flow profile.
- Can also have a contribution from quadrangular geomtry uncorrelated with ϵ_2 , ϵ_4^{True}
- Do initial state models capture this correlation?

v2 - v4 correlation: Comparison with initial state correlations

- v₄ gets two contributions: $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^{True}} + c_1 v_2^2 e^{i4\Phi_2}$ c₀ captures response to ϵ_4^{True} and c₁v₂², the non-linear contribution.
- v₄ can be fit with a function, $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$
- Fits work quite well to the data
- Also shown are $\epsilon_2 \epsilon_4$ correlations from MC Glauber and MC-KLN: initial state models fail to describe data.

v₂ v₄ correlation: Linear and non-linear components

$$v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^{True}} + c_1 v_2^2 e^{i4\Phi_2}$$

$$v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}; \quad v_4^L = c_0, \quad v_4^{NL} = c_1 v_2^2$$

- Weak centrality dependence for the linear component, strong centrality dependence for non-linear component.
- Linear and non-linear terms are argued to have different sensitivities to viscosity (D.Teaney, L.Yan PhysRevC.86.044908)

v₂ v₄ correlation: Linear and non-linear components

$$v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^{True}} + c_1 v_2^2 e^{i4\Phi_2}$$
$$v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}; \quad v_4^L = c_0, \quad v_4^{NL} = c_1 v_2^2$$

 Linear and non-linear components may also be calculated from EP correlations.

$$v_4^{NL} = v_4 \langle \cos 4(\Phi_4 - \Phi_2) \rangle$$

 $v_4^L = \sqrt{v_4^2 - (v_4^{NL})^2}$

• Consistent results between the two methods!

v₂ ₋v₅ correlations

19

• v₅ gets a contribution also from v₂v₃: $v_5e^{i5\Phi_5} = c_0e^{i\Phi_5^{True}} + c_1v_2v_3e^{i(3\Phi_3+2\Phi_2)}$

- $\epsilon_2 \epsilon_5$ correlations from initial state models do not describe the data.
- The fit, $v_5 = \sqrt{c_0^2 + (c_1 v_2 v_3)^2}$ can be used to extract linear and non-linear components.
- Also good agreement with EP results.

Non-linear response in p+Pb?

- Significant v_n harmonics observed in p+Pb.
- v_n shown for similar multiplicity event classes.
- Difference in v₂ magnitude reflects difference in initial ellipticity.
- v₃ magnitudes similar since driven by fluctuations in both systems.
- v_4 larger in Pb+Pb than p+Pb.

Non-linear response in p+Pb?

- v_n in p+Pb and Pb+Pb found to have similar p_T dependence.
- v₂ is different by a constant scale factor
 change in average geometry.
- v₃ driven by fluctuations, no scale factor needed.
- + v_4 driven by fluctuations, but also by v_2
 - → differ by a scale factor (J.Jia IS2014).

Non-linear response in p+Pb?

v₄ driven by fluctuations, but also by v₂
 differ by a scale factor (J.Jia IS2014).

$$\begin{split} v_4^2 \{ \text{pPb} \} &= v_4^{L^2} \{ \text{pPb} \} + v_4^{NL^2} \{ \text{pPb} \} \\ &= v_4^{L^2} \{ \text{PbPb} \} + a^2 c^2 v_2^4 \{ \text{PbPb} \} \\ &= (1 - b^2) v_4^2 \{ \text{PbPb} \} + a^2 b^2 v_4^2 \{ \text{PbPb} \} \\ &= (1 - b^2 + a^4 b^2) v_4^2 \{ \text{PbPb} \} \approx 0.66^2 v_4^2 \{ \text{PbPb} \} \end{split}$$

p_T [GeV]

Summary and Conclusions

Presented results of correlations of flow harmonics with event shape.

- Correlation between v_n at different p_T
 - Correlation between v_2 (v_3) at different p_T has strong centrality dependence.
 - But independent of event shape.
 - Suggests viscous effects controlled by system size, not system shape.
- Anti correlation between v_2 and v_3 .
 - Mostly described by $\epsilon_2 \epsilon_3$ correlations from initial state models.
- Non-linear correlation between v_2 and higher order harmonics.
 - Initial state models fail to describe the observed correlations.
 - Fits with a two component function with linear and non-linear response terms.
 - Linear component has weak centrality dependence, non-linear component has strong centrality dependence.
 - Consistent with results from EP correlations.
- v₄ values from p+Pb also suggest contribution from non-linear response to geometry.
 - Supports the geomtric and collective origin of ridge in p+Pb collisions.

scaling

- $v_n/\sqrt{\epsilon_n^2}$ as a function of N_{part}.
- For n=4 and n=5, both linear and total v_n are shown.
- For linear component, larger variation can be seen with centrality.
- Indicates larger viscous damping for higher order harmonics.

Event shape selection

 v_n as function of p_T for different shape selected event classes slected on q₂ (left) and q₃ right.

v₂ ₋v₄ correlation

- v₄ gets two contributions: $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^{True}} + c_1 v_2^2 e^{i4\Phi_2}$
- The fit, $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ can be used to extract linear and non-linear components.
- Linear and non-linear components are argued to have different sensitivities to viscosity of the medium (D.Teaney, L.Yan PhysRevC.86.044908)

v₂ v₅ correlation: Linear and non-linear components

 Linear and non-linear components may also be calculated from EP correlations.

$$v_5^{NL} = v_5 \langle \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5) \rangle$$
$$v_5^L = \sqrt{v_5^2 - (v_5^{NL})^2}$$

- Weak centrality dependence for the linear component, strong centrality dependence non-linear component.
- Consistent with EP correlation results.

q₃ selected results: v₃ v₅ correlation

- Similar analysis can be done using q₃ selected events.
- For e.g. can use to extract linear and non-linear components in v₅.
- Gives consistent results!
- More results in (*arXiv:1504.01289*)

$$v_5 e^{i5\Phi_5} = c_0 e^{i\Phi_5^{True}} + c_1 v_2 v_3 e^{i(3\Phi_3 + 2\Phi_2)}$$

$$v_5 = \sqrt{c_0^2 + (c_1 v_2 v_3)^2}; \quad v_5^L = c_0, \quad v_5^{NL} = c_1 v_2 v_3$$