Measurement of correlations between elliptic and higher order flow in Pb+Pb collisions

Soumya Mohapatra Columbia University

ATLAS Event-Plane correlation paper: arXiv 1403.0489
ATLAS flow correlation ConfNote: ATLAS-CONF-2014-022

Quark Matter 2014 19-24 May 2014

Motivation-I

Have previously measured <v₂>

 Much more variation in v₂ within one centrality than variation of mean v₂ across all centralities

 Should also study the variation of v_n at fixed centrality but varying eventgeometry: "event-shape-selected v_n measurements" (arXiv 1208.4563 Schucraft et al.)

Motivation-II

- Event-shape selected measurements can reveal new correlations
- Hidden initial geometry effects.

$$v_2 e^{i2\Phi_2} \propto \epsilon_2 e^{i2\Phi_2^*}, \quad v_3 e^{i3\Phi_3} \propto \epsilon_3 e^{i3\Phi_3^*}$$

Measure correlations = Understand geometry of initial state

Motivation-III

Understand non-linear flow effects:

- Have measured correlations between phases $\Phi_2 \& \Phi_4$.
- Can measure direct correlations between magnitudes of the v_n.
- Measure correlations = Understand hydro response

ATLAS Detector

5

FCal coverage : 3.2<|η|<4.9 (determine Centrality, Event-Shape selection)</p>

Tracking coverage : |η|<2.5 (Track reconstruction, v_n measurement)

Event-shape selection

- Slice observed v₂ in FCal (called q₂) to categorize events into q₂-Bins centrality by centrality
- Events with larger q₂ have a geometry that is more elliptic: q₂-bin is bin on ellipticity!

6

Two-particle corrs (2PC) for different q-classes

 See clear differences in structure of 2PC for different q-classes at fixed centrality

Using these 2PC the v_n are extracted for each centrality, q-Bin by q-Bin using the factorization relation: $v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a)v_n(p_T^b)$ nth Fourier components of 2PC=Product of the v_n of the two particles

v_n-q₂ Correlations

- Plots show variation in v₂ & v₃ with FCal-q₂ at fixed centrality, for several centrality bins
- However a better correlation is v_m-v₂ correlation (both measured in ID)
- Avoid auto-correlation effects: shouldn't bin on q₂ as well as use it in measuring correlations. Also q₂ is an observed quantity (not corrected for resolution)

v_m-v₂ correlations : inclusive

$v_2 - v_2$ correlations : q-bins

- Saw non-trivial dependence with centrality (boomerang),
 - but within one centrality dependence is linear!
- Indicates that viscous correction mostly controlled by system size, not shape!

$v_3 - v_2$ correlations : q-bins

- See anti-correlation between v₂ and v₃ at fixed centrality!
- Initial geometry effect?

v₃-v₂ correlations : Glauber & CGC comparison

12

models

$$(e_3 - e_2)$$
 correlation $\mu(v_3 - v_2)$ correlation

- See good agreement in most centralities but some deviation in (0-5)% central events
- Measurements can constrain initial geometry models
- Lines are linear fits $v_3 = kv_2 + v_3^0$

v₄-v₂ correlations : q-bins

13

- Centrality 0-65%, no q selection Clear non-linear correlations seen 0.03 ATLAS Preliminary in v_4 - v_2 case: upward bending of v_4 $\sqrt{s_{NN}}$ =2.76 TeV L_{int} = 7 µb⁻¹ at large v_2 . 0.02⊢Pb+Pb Can parameterize v_{A} into two components, one that is correlated Centrality intervals to v_2 and one that is independent with q_s selection: 0.01 **→** 0-5% 30-35% $v_4 e^{i4F_4} = c_0 e^{iF_4^*} + c_1 (v_2 e^{i2F_2})^2$ <u>----</u> 10-15% - 40-45% l∆ηl>2 - 20-25% **—** 50-55% $0.5 < p_{-} < 2 \text{ GeV}$ **→** 60-65% $\triangleright v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$ 0.15 0.050.1 vء
- The c_0 component is driven by ε_4 while the c_1 component is driven by ε_2 .

14 v_4 - v_2 correlations : linear & non-linear components

MC-KLN

- Also compare correlations to (rescaled) ε_4 - ε_2 correlations calculated in Glauber & CGC models
 - Fits work quite well, but initial geometry models do not
 - Indicate that non-linear dynamical mixing produces these 14 correlations

$v_4 - v_2$ correlations : linear & non-linear components ¹⁵

Each N_{part} point corresponds to 5% centrality bin

v₄-v₂ correlations : comparison to EP correlations

16

The non-linear & linear components from EP correlations are obtained as:

$$v_4^{\text{NL}} = v_4 \left\langle \cos 4(\Phi_2 - \Phi_4) \right\rangle, \quad v_4^{\text{L}} = \sqrt{v_4^2 - (v_4^{\text{NL}})^2}$$

- The results from the two procedures compare quite well
- In most central cases almost all v₄ is uncorrelated with v₂
- Correlated component gradually increases and overtakes linear component as N_{part}~120

$v_5 - v_2$ correlations : q-bins

- Fit v₅-v₂ correlation with above functional form to extract linear & nonlinear components
- Comparison to Glauber & CGC models also shown, don't do a good job in describing data

v₅-v₂ correlations : comparison to EP correlations

18

- Compare linear & non-linear components from this analysis to EP correlation results
- The non-linear & linear components from EP correlations are obtained as:

$$v_5^{\text{NL}} = v_5 \left\langle \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5) \right\rangle, \quad v_5^{\text{L}} = \sqrt{v_5^2 - (v_5^{\text{NL}})^2}$$

ε_n scaling of linear components

The v_n/rms-ε_n ratios are shown as a

function of centrality

- For v₄ & v₅, the ratio is shown for the linear component as well as the total v_n.
- The linear component show greater variation
- indicates larger viscous dampening for higher harmonics, with decreasing centrality.

Conclusions

20

- Measurements:
 - Correlations between v₂ and v_m, m=2-5.
- v₂(p_T^a)-v₂(p_T^b) correlations indicate viscous effects controlled by system size
 - Not system shape!!!
- See small anti-correlation between magnitudes of v₂ & v₃
 - Initial geometry effect, reasonably weak described by CGC & Glauber models
- See strong correlation between v₄-v₂ and v₅-v₂.
 - Indicate non-linear response to initial geometry (not described by initial geometry models)
 - Extracted linear & non-linear contributions by two component fits
 - Correlated with v₂ incase of v₄-v₂ correlation
 - Correlated with both v₃ and v₂ incase of v₅-v₂ correlation
 - Results show good agreement with previously published EP correlation results
- Dependence of the linear components on the rms-ε_n were also studied
 - Stronger damping seen for higher order harmonics as expected from hydrodynamics
- v_n-v_m correlations are new flow observables
 - Have much potential in improving our understanding of HI collisions.

Backup

v_n extraction using 2PC

- a) 2PC in Δη-Δφ
- b) Δφ projection for |Δη|>2
- The |Δη|>2 cut removes near-side peak

- Can expand 2PC as Fourier series $\frac{dN^{\text{pairs}}}{d\Delta\phi} = N_0^{\text{pairs}} \left(1 + \Sigma_{n=1}^{\infty} v_{n,n}(p_T^a, p_T^b) \cos(n\Delta\phi)\right)$
- The Fourier coefficients $v_{n,n}(p_T^a, p_T^b)$ of the 2PC factorize as: $v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a)v_n(p_T^b)$
- We can thus evaluate the $v_n(p_T^b)$ as: $v_n(p_T^b) = \frac{v_{n,n}(p_T^a, p_T^b)}{v_n(p_T^a)} = \frac{v_{n,n}(p_T^a, p_T^b)}{\sqrt{v_{n,n}(p_T^a, p_T^a)}}$
- Method was used extensively in previous v_n measurement for same dataset
 - Only change is that now the study is done q-Bin by q-Bin₂₂

Physics Plots: 2D corrs q dependence

Systematic Errors

	Source	<i>v</i> ₂	<i>v</i> 3	<i>v</i> 4	v 5	q_2 dependent
1	Track Selection [%]	0.3	0.3	1.0	2.0	yes
2	Tracking efficiency [%]	0.1-1.0	0.2-1.5	0.2-2.0	0.3-2.5	yes
3	Running Periods [%]	0.3-1.0	0.7-2.1	0.7-2.1	2.3	no
4	Trigger & event Selection [%]	0.5-1.0	0.5-1.5	0.5-1.5	0.5-1.5	yes
5	MC consistency [%]	1.0	1.5	2.0	3.5	yes
	Total [%]	1.2-2.0	1.8-3.4	2.4-4.0	4.6-5.5	yes

Items 1,3,4,5 were evaluated in previous paper on v_n measurement <u>Phys. Rev. C 86, 014907</u> (2012) (internal note at https://cds.cern.ch/record/1349038)

Item 2 was evaluated in previous paper on Event-by-event flow JHEP11(2013)183

Physics Plots: qBins pT dependence

Physics Plots: v2-v2 corrs fit params

Physics Plots: v4 liner & non-linear

Physics Plots: v5 inclusive qbins

Introduction

- Initial spatial fluctuations of nucleons lead to higher moments of deformations in the fireball, each with its own orientation.
- The spatial anisotropy is transferred to momentum space by collective flow.

- The harmonics v_n carry information about the medium: initial geometry, / /s.
- Measuring harmonics = Understanding initial geometry & medium properties

Motivation-I

Have previously measured <v_n>

- Much more variation in v_n within one centrality than variation of mean v_n across all centralities
- Should also study the variation of v_n at fixed centrality but varying eventgeometry: "event-shape-selected v_n measurements"

Presentation strategy

- Present the results as direct correlations:
 - Correlations between v_2 and v_m in the same p_T range.
- Will first show the inclusive centrality dependence and then overlay with q dependence

obtained entirely from the published data

event-plane correlations : methodology ³²

- η -gap is required to remove autocorrelations.
- Correlations measured via both event-plane (EP) & scalar-product (SP) methods

Correlation between Φ_2 and Φ_4

- Results expressed as function of N_{part}.
- Very different from correlations in initial state (Glauber)
- What happens if we include final-state-interactions?

Correlation between Φ_2 and Φ_4

- Results expressed as function of N_{part}.
- Very different from correlations in initial state (Glauber)
- What happens if we include final-state-interactions?
- Correlations well reproduced in AMPT model
 - AMPT results from arXiv:1307.0980 (Bhalerao et. al.)
- Conclusion: large fraction of v₄ originates from ε₂ during hydrodynamic expansion !!!

• Φ_2 and Φ_3 both strongly correlated with Φ_6

- They show opposite centrality dependence though:
 - Φ_2 - Φ_6 correlation may due to average geometry..
 - But Φ_3 - Φ_6 correlation?
 - v₆ dominated by non-linear contribution: v₂³, v₃²?

Correlation of Φ_2 or Φ_3 with Φ_6

- Final state interactions reproduce the correlations
- Conclusion: large contribution to v₆ from (ε₂)³ & (ε₃)² during hydrodynamic expansion !!!

Three-plane correlations

See rich centrality dependent correlation patterns

Not described by Initial geometry models (Glauber)

Three-plane correlations : AMPT comparison³⁸

- Correlations recovered in AMPT model !! (Final state interactions)
- Non-linear effects are very important in understanding HI collisions
- 2-3-5 Correlation ~0.8 in peripheral events
 - Larger fraction of v_5 comes from $\epsilon_2^*\epsilon_3$ and not from ϵ_5 .