Measurement of event-plane correlations in Pb-Pb collisions at √s_{NN}=2.76 TeV with the ATLAS detector

Soumya Mohapatra Stony Brook University for the ATLAS Collaboration

ATLAS event-Plane Correlation Note: <u>http://cdsweb.cern.ch/record/1451882</u>

Quark Matter 2012 13-18 August 2012

Introduction and motivation

• Studying the correlations between the Φ_n gives insight into the initial geometry and expansion mechanism of the fireball.

Soumya Mohapatra

Stony Brook University

ATLAS Collaboration

Quantifying the two-plane correlations

• The correlations are entirely described by the differential distribution:

$$\frac{dN_{events}}{d(k(\Phi_n - \Phi_m))} \quad : \quad k = LCM(m, n)$$

- The multiplication by the *Lowest common multiple, k* removes the n/m-fold ambiguity in Φ_m/Φ_n .
- The distribution can be expanded as a Fourier series.
 - The Fourier coefficients $V_{n,m}^{J}$ quantify the strength of the correlation.

$$\frac{dN_{events}}{d(k(\Phi_n - \Phi_m))} = 1 + 2\sum_{j=1}^{\infty} V_{n,m}^j \cos(j \times k(\Phi_n - \Phi_m))$$
$$V_{n,m}^j = \left\langle \cos(j \times k(\Phi_n - \Phi_m)) \right\rangle$$

Accounting for detector resolution

Measured planes : Ψ_n True planes : Φ_n

Measure correlation between EP, followed by a simple resolution correction.

All correlations of planes $(2 \le n, m \le 6)$ where the resolution is good enough to make conclusive measurements are studied.

Soumya Mohapatra

Two-plane correlators

5

- Sensitivity limit is set by the values of Res{}
- List of two-plane correlators:

 $\begin{array}{l} \langle \cos 4(\Phi_2 - \Phi_4) \rangle \\ \langle \cos 8(\Phi_2 - \Phi_4) \rangle \\ \langle \cos 12(\Phi_2 - \Phi_4) \rangle \\ \langle \cos 6(\Phi_2 - \Phi_3) \rangle \\ \langle \cos 6(\Phi_2 - \Phi_3) \rangle \\ \langle \cos 6(\Phi_3 - \Phi_6) \rangle \\ \langle \cos 12(\Phi_3 - \Phi_4) \rangle \\ \langle \cos 10(\Phi_2 - \Phi_5) \rangle \end{array}$

Two-plane correlators

- Sensitivity limit is set by the values of Res{}
- List of two-plane correlators:

 $\begin{array}{l} \langle \cos 4(\Phi_2 - \Phi_4) \rangle \\ \langle \cos 8(\Phi_2 - \Phi_4) \rangle \\ \langle \cos 12(\Phi_2 - \Phi_4) \rangle \\ \langle \cos 6(\Phi_2 - \Phi_3) \rangle \\ \langle \cos 6(\Phi_2 - \Phi_3) \rangle \\ \langle \cos 6(\Phi_3 - \Phi_6) \rangle \\ \langle \cos 12(\Phi_3 - \Phi_4) \rangle \\ \langle \cos 10(\Phi_2 - \Phi_5) \rangle \end{array}$

Can generalize into multi-plane correlations

 $\operatorname{Res}\{(c_{1}\Psi_{1} + ... + lc_{l}\Psi_{l})\} = \operatorname{Res}\{c_{1}\Psi_{1}\}...\operatorname{Res}\{c_{l}l\Psi_{l}\}$

Three-plane correlators

$$\begin{array}{ll} \text{``2-3-5''} & \langle \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5) \rangle \\ \langle \cos(-8\Phi_2 + 3\Phi_3 + 5\Phi_5) \rangle \\ \text{``2-4-6''} & \langle \cos(2\Phi_2 + 4\Phi_4 - 6\Phi_6) \rangle \\ \langle \cos(2\Phi_2 + 4\Phi_4 - 6\Phi_6) \rangle \\ \langle \cos(-10\Phi_2 + 4\Phi_4 + 6\Phi_6) \rangle \\ \langle \cos(2\Phi_2 - 6\Phi_3 + 4\Phi_4) \rangle \\ \langle \cos(-10\Phi_2 + 6\Phi_3 + 4\Phi_4) \rangle \end{array}$$

Constructed as linear combination of two-plane correlators, for example:

$$2\Phi_2 + 4\Phi_4 - 6\Phi_6 = 4(\Phi_4 - \Phi_2) - 6(\Phi_6 - \Phi_2) -10\Phi_2 + 4\Phi_4 + 6\Phi_6 = 4(\Phi_4 - \Phi_2) + 6(\Phi_6 - \Phi_2)$$

Reflects correlation of two Φ_n relative to the third

Expectations from Glauber model

Plane directions in configuration space

$$\varepsilon_n = \sqrt{\frac{\left\langle r^n \cos(n\phi) \right\rangle^2 + \left\langle r^n \sin(n\phi) \right\rangle^2}{r^n}}$$
$$\Phi_n = \frac{\operatorname{atan}\left(\left\langle r^n \sin(n\phi) \right\rangle, \left\langle r^n \cos(n\phi) \right\rangle\right) + \pi}{n}$$

Expected to be strongly modified by medium evolution in the final state (Qiu and Heinz, arXiv:1208.1200)

Measuring the two-plane correlations

- Correlations are measured using EM+Forward calorimeters (-4.9<η<-4.9)
- If Ψ_n is measured in negative half (-4.9< η <-0.5), then Ψ_m is measured in positive half of calorimeters (and vice versa).
 - Thus same particles are not used in measuring both Ψ_n and Ψ_m .
 - Removes auto-correlation
- There is a $\Delta\eta$ gap of 1 units between the two halves to remove any non-flow correlations

Correlation between Φ_2 and Φ_3

Small observed signal, good resolution \rightarrow small corrected signal (<0.02)

Comparison with ALICE

slight increase towards peripheral collisions.

Correlation between Φ_2 and Φ_4

- Coefficients decrease slowly with j, imply a narrow correlation.
- Note: lowest-order coefficient is the projection of v_4 onto Φ_2 plane

$$\langle \cos 4(\Phi_2 - \Phi_4) \rangle = \frac{v_4 \{\Phi_2\}}{v_4 \{\Phi_4\}}$$
 e.g. arXiv:1205.5761
ALICE Collaboration

 Φ_3 vs Φ_4 and Φ_2 vs Φ

Measuring the three-plane correlations¹⁶

- Ψ_n , Ψ_m and Ψ_k are measured in different parts of the calorimeter.
 - Thus same particles are not used in measuring any of the Ψ 's.
 - Thus there is no auto-correlation
- There is a $\Delta \eta$ gap between any two of the detectors
- Event mixing is used to remove detector effects

ATLAS Collaboration

Three-plane : "2-3-5" correlation

$$(2\Phi_2 + 3\Phi_3 - 5\Phi_5) = 3(\Phi_3 - \Phi_2) - 5(\Phi_5 - \Phi_2)$$
$$(-8\Phi_2 + 3\Phi_3 + 5\Phi_5) = 3(\Phi_3 - \Phi_2) + 5(\Phi_5 - \Phi_2)$$

- Φ_5 and Φ_3 are individually weakly correlated with Φ_2
- But $(2\Phi_2 + 3\Phi_3 5\Phi_5)$ correlation in non-zero

Three-plane : "2-3-5" correlation

Three-plane : "2-4-6" correlation

Three-plane : "2-3-4" correlation

Comparison with Teaney and Yan

Their method includes linear+non-linear response to initial geometry

Event plane correlations: Summary

- We measured correlations between two and three event planes
 - Significant correlations are observed for $\langle \cos(4(\Phi_2 \Phi_4)) \rangle, \langle \cos(8(\Phi_2 \Phi_4)) \rangle, \langle \cos(12(\Phi_2 \Phi_4)) \rangle, \langle \cos(6(\Phi_2 \Phi_6)) \rangle, \langle \cos(6(\Phi_3 \Phi_6)) \rangle$

 $\left\langle \cos\left(2\Phi_2+3\Phi_3-5\Phi_5\right)\right\rangle, \left\langle \cos\left(2\Phi_2+4\Phi_4-6\Phi_6\right)\right\rangle \right\rangle$ and $\left\langle \cos\left(-10\Phi_2+4\Phi_4+6\Phi_6\right)\right\rangle$

- Correlation is very small but nonzero for $\langle \cos(6(\Phi_2 \Phi_3)) \rangle$
- Correlation is negative for $\langle \cos(2\Phi_2 6\Phi_3 + 4\Phi_4) \rangle$
- Some correlations qualitatively similar to Glauber model, others are not
 - Correlations can be generated dynamically via hydrodynamic evolution.

Qiu and Heinz, arXiv:1208.1200 Teaney and Yan, arXiv:1206.1905

- This measurement provides new constraints for models.
 - Do Glauber initial conditions describe these correlations well or some other models (CGC/KLN)?
 - Given a set of initial conditions, what kind of medium response would produce these correlations (linear/non-linear or ideal/viscous hydro)?

BACKUP SLIDES

BACKUP SLIDES

Stony Brook University

ATLAS Collaboration

Event-plane correlations

Event mixing technique is used to remove detector effects Ψ_n :

$$\frac{dN_{events}}{d(k(\Psi_n - \Psi_m))} \propto \frac{S(k(\Psi_n - \Psi_m))}{B(k(\Psi_n - \Psi_m))} \longrightarrow \Psi_n \text{ and } \Psi_m \text{ from different event}$$

ATLAS Collaboration

24

Soumya Mohapatra

Stony Brook University

Observed two-plane signal

Significant correlations beyond detector systematics

Two-plane resolutions

Soumya Mohapatra

Stony Brook University

ATLAS Collaboration

Observed three-plane signal

Two-plane correlations : ID

Three-plane correlations : ID

Deriving the sine and cosine product

$$\langle \sin 4(\Phi_2 - \Phi_4) \sin 6(\Phi_2 - \Phi_6) \rangle = \frac{1}{2} \left(\langle \cos(2\Phi_2 + 4\Phi_4 - 6\Phi_6) \rangle - \langle \cos(-10\Phi_2 + 4\Phi_4 + 6\Phi_6) \rangle \right) \\ \langle \cos 4(\Phi_2 - \Phi_4) \cos 6(\Phi_2 - \Phi_6) \rangle = \frac{1}{2} \left(\langle \cos(2\Phi_2 + 4\Phi_4 - 6\Phi_6) \rangle + \langle \cos(-10\Phi_2 + 4\Phi_4 + 6\Phi_6) \rangle \right)$$

Comparison with Teaney and Yan

The correlations are well reproduced using Teaney and Yan's cumulant method (see Li Yan talk in Parallel 1A).

Their method includes linear+non-linear response to initial geometry

ATLAS Detector

EM Cal + FCal coverage : -4.9< η <4.9</p>

Tracking coverage : |η|<2.5

ATLAS Collaboration