ATLAS Measurements of the ridge(s) in p+Pb collisions

Soumya Mohapatra

Phys. Rev. Lett. 110, 182302 (2013) and arXiv:1303.2084

> ECT* Trento 7th May 2013

2

• Two-particle correlations show long range correlation structure along $\Delta \eta$ at $\Delta \phi = 0$.

- Two-particle correlations show long range correlation structure along $\Delta \eta$ at $\Delta \phi = 0$.
- Is there an effective mechanism that rules them all? Is it initial state effect, final state effect or both?
 - Final state effect may not imply hydro.

- Two-particle correlations show long range correlation structure along $\Delta \eta$ at $\Delta \phi = 0$.
- Is there an effective mechanism that rules them all? Is it initial state effect, final state effect or both?
 - Final state effect may not imply hydro.
- Is there an away-side ridge in pp and pPb?

- Two-particle correlations show long range correlation structure along $\Delta \eta$ at $\Delta \phi = 0$.
- Is there an effective mechanism that rules them all? Is it initial state effect, final state effect or both?
 - Final state effect may not imply hydro.
- Is there an away-side ridge in pp and pPb?
- What is its detailed p_T , η , and centrality dependence?

ATLAS Detector

ATLAS Detector

Tracking coverage : |η|<2.5

ATLAS Detector

- Tracking coverage : |η|<2.5
- FCal coverage : 3.2<|η|<4.9 used to determine Centrality (Pb side only)

High multiplicity event

contains 273 tracks with $p_T > 0.4$ GeV, but only $p_T > 1$ GeV tracks are shown

9

Event activity : N_{ch} vs ΣE_T(Pb)

- Broad correlation between ΣE_T(Pb) with N_{ch},
 - but overall along diagonal
- No overlap between Fcal and tracking detectors => no auto-correlation bias in event activity definition

Event activity classes (centrality)

- Classes made by dividing ΣE_T in Pb-going side into 12 fine classes.
- Four coarse classes:
 - >80 GeV (0-2%), 55-80 GeV (2-9%), 25-55 GeV (9-39%) and <20 GeV (48-100%)</p>

Near side ridge in p-Pb

Ridge on away side ?

13

Subtracting a pedestal and integrated over away side

$$\int \left[C\left(\Delta\phi, \Delta\eta\right) - \xi_{\rm ZYAM} \right] d\Delta\phi$$

Ridge on away side ?

14

Subtracting a pedestal and integrated over away side

$$\int \left[C\left(\Delta\phi, \Delta\eta\right) - \xi_{\rm ZYAM} \right] d\Delta\phi$$

- Away-side is broadened along Δη, for central events.
- Is there an away-side ridge?

Per Trigger Yields

 $Y(\Delta \Phi) = (Number of pairs)/(Number of triggers) - Pedestal(ZYAM)$

- Compare central PTY with peripheral PTY for $2 < |\Delta \eta| < 5$
- In peripheral case see away-side jet contribution
- See ridge on near side in central events
- Excess is also seen on away side

Per Trigger Yields

 $Y(\Delta \Phi) = (Number of pairs)/(Number of triggers) - Pedestal(ZYAM)$

- Compare central PTY with peripheral PTY for $2 < |\Delta \eta| < 5$
- In peripheral case see away-side jet contribution
- See ridge on near side in central events
- Excess is also seen on away side

Per Trigger Yields

 $Y(\Delta \Phi) = (Number of pairs)/(Number of triggers) - Pedestal(ZYAM)$

- Compare central PTY with peripheral PTY for $2 < |\Delta \eta| < 5$
- In peripheral case see away-side jet contribution
- See ridge on near side in central events
- Excess is also seen on away side
- Excess is symmetric

Auto-correlation bias for N_{ch} based result¹⁸

 clear drop in the away-side yield for events explicitly required to have small N_{ch} : Auto-correlation bias

Auto-correlation bias for N_{ch} based result¹⁹

 clear drop in the away-side yield for events explicitly required to have small N_{ch} : Auto-correlation bias

PTY for different trigger p_T

p_T dependence of ridge yield

 Subtraction of recoil has no effects on the near-side, but is important for the away-side. Yield difference is symmetric Ridge persists to at least 6 GeV!

p_T dependence of ridge yield

 Subtraction of recoil has no effects on the near-side, but is important for the away-side. Yield difference is symmetric Ridge persists to at least 6 GeV!, similar p_T dependence as Pb+Pb ridge : suggestive of hydrodynamic origin

Recoil subtracted correlation function

Remove the recoil on the per-trigger level, then convert the remainder back into a 2D correlation function

23

Recoil subtracted correlation function

Remove the recoil on the per-trigger level, then convert the remainder back into a 2D correlation function

 $C \propto \left(PTY^{Central} + Pedestal^{Central} - PTY^{Peripheral} \right)$

Ridge remains symmetric to $\Delta \eta$ =5 and ~ constant, and for all FCal E_T classes The near-side removal of short-range correlations not complete! (about 5-10% signal remain)

After recoil removal: charge dependence

After recoil removal: charge dependence

Ridge magnitude and its symmetry do not dependent on charge combinations

26

Peripheral subtracted correlation function²⁷

Extract anisotropy c_n from correlation function: $c_n \leftrightarrow v_{n,n}$

Peripheral subtracted correlation function²⁸

Extract anisotropy c_n from correlation function: $c_n \leftrightarrow v_{n,n}$

Factorize c_n (as in Heavy Ion 2PC's): $c_n(p_T^a, p_T^b) = s_n(p_T^a)s_n(p_T^b)$ $s_n(p_T^a) = c_n(p_T^a, p_T^b) / \sqrt{c_n(p_T^b, p_T^b)}$

Peripheral subtracted correlation function²⁹

Extract anisotropy c_n from correlation function: $c_n \leftrightarrow v_{n,n}$

Factorize c_n (as in Heavy Ion 2PC's): $c_n(p_T^a, p_T^b) = s_n(p_T^a)s_n(p_T^b)$ $s_n(p_T^a) = c_n(p_T^a, p_T^b) / \sqrt{c_n(p_T^b, p_T^b)}$

Factorization of s_r

• Check whether we get the same answer using different ref. $\ensuremath{p_{T}}$.

 $c_2(p_{\rm T}^{\rm a}, p_{\rm T}^{\rm b}) = s_2(p_{\rm T}^{\rm a})s_2(p_{\rm T}^{\rm b})$

Factorization of s_r

• Check whether we get the same answer using different ref. p_T. $c_2(p_{
m T}^{
m a},p_{
m T}^{
m b})~=~s_2(p_{
m T}^{
m a})s_2(p_{
m T}^{
m b})$

The factorization is valid at 10-20% level for s_2 !

Measurement of correlations via cumulants³²

- Can also study the long correlations via 2 and 4–particle cumulants
- 4-particle cumulants suppresses short range two –particle correlations (jets, resonance decays etc)
 - Peripheral subtraction not necessary
- v₂{4} centrality and p_T dependence similar to the results from 2PC for central events
 - Some deviation for peripheral events

Comparison to hydro calculations

 v_2 {4} and results from 2PC consistent with hydro calculations

Comparison to CGC calculations

Also possible from initial stage saturation effects (C.G.C)

Ridge magnitude and \mathbf{p}_{T} dependence is well described

Kevin Dusling, Raju Venugopalan (arXiv 1302.7018)

Summary

- Iong-range correlations(ridges) are seen in central p-Pb events.
- The ridge is also present on the away side.
- Magnitude is almost flat out till |Δη|=5 and increases with centrality.
- Shape largely described by a cos(2Δφ) component
- p_T dependence of the ridge is similar to that seen in HI collisions
 - Magnitude as quantified by 2nd harmonic coefficient (c₂) increases till ~3GeV then drops
 - Suggests similar origin of ridge in p-Pb
- Also possible from initial stage effects (C.G.C)

Centrality Dependence

charge dependence of the yield

No change dependence of the per-trigger yield

Recoil subtracted correlation function

Remove the recoil on the per-trigger level, then convert the remainder back into a 2D correlation function

Ridge remains symmetric to $\Delta\eta$ =5 and ~ constant, and for all FCal E_T classes The near-side removal of short-range correlations not complete! (about 5-10% signal remain)

Illustrate bias with HIJING simulation

Parameters

$\Sigma E_{\mathrm{T}}^{\mathrm{Pb}}$ range [GeV]	> 110	95-110	80-95	65-80	55-65	45-55	35-45	25-35
Percentage [%]	0.21	0.45	1.24	3.11	3.99	6.37	9.71	13.80
$\langle \Sigma E_{\mathrm{T}}^{\mathrm{Pb}} \rangle [\mathrm{GeV}]$	122.4	101.2	86.4	71.4	59.6	49.7	39.7	29.7
$\langle N_{ m ch} angle$	183.1 ± 8.2	159.9 ± 7.2	141.3 ± 6.4	122.5 ± 5.5	107.2 ± 4.8	$93.3{\pm}4.2$	78.8 ± 3.6	$63.3{\pm}2.9$
$\sigma_{N_{ m ch}}$	$37.0{\pm}2.1$	$33.1{\pm}1.9$	$31.5{\pm}1.8$	$29.6{\pm}1.7$	$27.6{\pm}1.6$	$25.9{\pm}1.5$	24.1 ± 1.4	$21.8{\pm}1.2$
$\Sigma E_{\mathrm{T}}^{\mathrm{Pb}}$ range [GeV]	20-25	15-20	10-15	< 10	> 80	55-80	25 - 55	< 20
Percentage [%]	8.67	10.11	11.98	30.36	1.90	13.47	29.88	52.45
$\langle \Sigma E_{\mathrm{T}}^{\mathrm{Pb}} \rangle [\mathrm{GeV}]$	22.4	17.4	12.4	4.9	94.4	64.8	37.3	9.0
$\langle N_{ m ch} angle$	$51.0{\pm}2.3$	41.8 ± 1.9	$31.7{\pm}1.5$	$15.9{\pm}0.7$	$150.3 {\pm} 6.8$	113.9 ± 5.1	74.7 ± 3.4	24.5 ± 1.1
$\sigma_{N_{ m ch}}$	$19.6{\pm}1.1$	17.9 ± 1.0	$15.7 {\pm} 0.9$	11.8 ± 0.7	$35.2{\pm}2.0$	$29.4{\pm}1.7$	26.1 ± 1.5	$17.5 {\pm} 1.0$