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Abstract of the Dissertation

Beam Energy and Collision System Dependence of Anisotropic Flow and Its Fluctuations

by

Niseem Magdy Abdelwahab Abdelrahman

Doctor of Philosophy

in

Chemistry

(Concentration - optional)

Stony Brook University

2017

New measurements of the flow harmonics (vn≤5) and the elliptic flow
fluctuations are presented as a function of harmonic number (n), transverse
momentum (pT ), pseudorapidity (η) and collision centrality, for Au+Au col-
lisions spanning a broad range of beam energies (

√
sNN = 7.7 − 200 GeV),

as well as for U+U (
√
sNN = 193 GeV) and Cu+Au, Cu+Cu and d+Au col-

lisions at
√
sNN = 200 GeV. The measurements, performed with the STAR

detector at the Relativistic Heavy Ion Collider (RHIC), show characteristic
dependencies on centrality,

√
sNN, η, pT and collision system, consistent with

the development of hydrodynamic-like flow in Quark-Gluon Plasma (QGP)
created in these collisions. The rapidity-even dipolar flow (veven1 ) measure-
ments underscore the importance of momentum conservation and the role of
geometric fluctuations generated in the initial stages of the collisions. The
vn=2−5 measurements accentuate the influence of the specific shear viscosity
(η
s
), initial-state eccentricity (εn) and dimensionless size (RT), on the mag-

nitude of vn and its viscous attenuation in the QGP. The measurements for
elliptic flow fluctuations in Au+Au collisions for

√
sNN = 7.7 − 200 GeV

(Beam Energy Scan (BES) energies), as well as for different collision systems

iii



at
√
sNN ∼ 200 GeV, give new insight into the origin of flow fluctuations

as well as their influence on the magnitude of vn. They indicate sizeable
fluctuations in central collisions, a modest dependence on event-shape and
system size, and a rather weak dependence on pT , beam energy and particle
species. The detailed vn≤5 and fluctuations measurements presented, give
new insight into the patterns of viscous attenuation and η

s
for the matter

created in the systems studied. The unique set of measurements spanning
the BES energies are essential to ongoing theoretical efforts to extract both
the µB and T dependence of the specific shear viscosity η

s
, of the quark-gluon

plasma.
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Chapter 1

Introduction

1.1 The Quantum Chromodynamics

Studies of the strong nuclear force constitute a central theme in nuclear
science research. The strong force is one of the four fundamental forces in
nature. It binds quarks and gluons to form composite particles such as the
neutrons and protons which comprise the nucleus of atoms. Here, gluons are
the force carriers which mediate the interaction between quarks as stipulated
by Quantum Chromodynamics (QCD) – the theory of the strong interaction.

One description of QCD is akin to the theory of Quantum Electrodynam-
ics (QED) which describes the electromagnetic force mediated by photons.
However, QCD has a larger number of degrees of freedom which compli-
cates the theory. In QED, there is only one kind of charge (electric charge).
By contrast, QCD has three charges (color-charges), commonly identified as
red, blue and green, and their corresponding anti-colors. Unlike the photons,
QED’s electrically neutral mediator, the gluons carry color charge and hence,
couple to each other to generatee important nonlinearities in the theory.

QCD theory incorporates six quark flavors, up(u), down(d), strange(s),
charm(c), bottom(b) and top(t), with the up quark being the lightest and the
top quark being the heaviest. The heavier quarks are unstable and readily
decay into lighter quarks. Thus, the two light quarks, u and d, play an
important role in QCD-matter formation. In addition to electric charge (e),
quarks of any type can carry any of the three colors; the quarks also have
fractional electric charges (u, c and t carry +2/3e, and d, s, and b carry
−1/3e).
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Composite particles derived from quarks are colorless and are called
hadrons. Hadrons comprised of two and three quarks (respectively) are
called mesons and baryons; mesons contain quark-anti-quark pairs. Quark
confinement, which is essential to QCD, dictates that single quarks are not
detectable.

Conceptually QCD is a simple theory [1]. However, it is notoriously
difficult to solve [1]. Currently, there are several procedures employed to
utilize QCD. One approach is a lattice gauge theory formulated on a grid
or lattice of points in space and time (LQCD) . This numerical approach
has made it possible to obtain several key predictions for the nature of QCD
matter from first principles calculations [2]. Another approach is the common
practice of incorporating the essential ideas of the QCD Lagrangian into
Monte Carlo models such as PYTHIA[3] and HIJING[4]. The results from
these approaches often provide an important basis for model comparisons to
experimental measurements. Thus, the interplay between model calculations
and experimental measurements play a vital role in ongoing efforts to study
and develop a full understanding of QCD.

1.1.1 The QCD Phase Diagram

When subjected to the extremes of temperature (T) and pressure, QCD
matter can undergo phase transitions to produce new states of matter. Such
states of matter are schematically illustrated in Fig. 1.1 as a function T and
baryon chemical potential (µB). Each point in the T−µB plane corresponds
to a thermodynamic state. The diagram conveys many of the rudiments
presented in one of the early phase diagram suggested by N.Cabibbo and
G.Parisi in 1975 [5]. It also reflects crucial ideas from Hagedorn who inferred
a critical temperature Tc, beyond which hadronic matter would not exist, due
to an exponential increase in the mass spectra for hadronic states [6]. The
solid line in Fig. 1.1 represents a first order transition line which separate the
hadronic and quark-gluon plasma phases. The end point of this line is the
Critical End Point (CEP). The dashed line at small µB indicates a cross-over
transition between the quark-gluon plasma and the hadronic phases. At low
temperatures and very high baryon density other exotic flavor-locked phases
of QCD matter have been conjectured to exist as well.

In general, the indicated phase transitions, as well as those for other
substances, are identified via derivatives of the thermodynamic potential with
respect to T and µ. The transition between two different phases is usually
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Fig. 1.1: Shematic diagram for of a conjectured phase diagram for QCD
matter in the µB and T plain. A possible trajectory for a high energy heavy
ion collision is indicated for orientation.

characterized by an order parameter that varies from one in the ordered phase
to zero in the disordered phase. For example, phase transitions in water (i.e.
solid (ice) liquid (water) and gas (vapor) ) can be characterized using the
density difference as an order parameter.

Phase transitions can be first or second order. A first order transition
results in a discontinuous first derivative of the thermodynamic potential. If
the thermodynamic potential’s second derivative is divergent a second order
phase transition occurs. The absence of a discontinuity in the derivatives of
thermodynamical potential leads to cross-over phase transition.

In conjunction with the chiral symmetry arguments, first principles the-
oretical calculations predict a phase diagram similar to the one illustrated
in Fig. 1.1. That is, for large µB and low temperature, the transition be-
tween hadronic matter and the QGP is first order [7–12]. However, for small
µB values and high temperatures, a smooth crossover phase transition oc-
curs [13, 14] such that it does not cross the singularity where the quark masses
(chiral symmetry order parameter) become zero. Both transition domains,
crossover, and the first-order are connected by the critical endpoint (CEP),
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Fig. 1.2: Illustration of the time evolution of heavy ion collision. The figure
is taken from Ref. [18].

at which the phase transition is expected to be second order.

1.2 The Quark Gluon Plasma

An important approach to furthering the study of QCD is to experimen-
tally produce and study nuclear matter at extreme temperatures and pres-
sures. Under such conditions, QCD theory predicts that, asymptotic freedom
which makes the coupling strength between quarks and gluons weaker, leads
to a fluid-like collection of quarks and gluons [15] indicated in Fig. 1.1. The
resulting state of matter in which quark and gluon degrees of freedom are
mostly freed is called Quark Gluon Plasma (QGP) [16]. That is, quarks and
gluons are no longer confined within the dimensions of nucleons. The ex-
traordinary conditions of temperature and pressure required to produce this
state of matter, is produced in ion-ion collisions at relativistic energies [17],
especially for heavy ions.
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1.2.1 Space-time evolution of heavy ion collisions

In energetic heavy ion collisions, the quarks and gluons which reside inside
the colliding nucleons, can be de-confined to produce a hot and dense QGP
medium as illustrated in Fig.1.2. Before the collision, the two Lorentz con-
tracted nuclei approach each other along the beam direction. Subsequently,
they cross each other and the resulting interactions between the nucleons in
the interaction region, drives the creation of a high energy density fireball.
When this fireball is sufficiently hot, the QGP is created.

The QGP is expected to have a very short lifetime (∼ 10 fm/c) [19]
since it will rapidly expand and cool down, due to a high-pressure gradient
between the medium and the external vacuum. As it cools down, the quarks
and gluons recombine or hadronize to form a colorless hadronic gas. Further
interactions can occur in this gas as it expands; the kinetic freeze-out of these
hadrons occur when such interactions cease. The resulting free-streaming
hadrons, which can be detected, encode important information about the
properties of the QGP and the hadronic gas, as well as their expansion dy-
namics. Consequently, a major motivation for current heavy ion research is
the possibility of obtaining profound insights on the phase structure and the
properties of QCD matter at high temperature and non-zero baryon num-
ber density. Ongoing heavy ion research programs at RHIC [20] and the
LHC [21], as well as future facilities at FAIR [22] and NICA [23] are at the
leading edge of the experimental efforts designed to map the thermodynamic
and transport properties of QCD matter.

1.2.2 Heavy-Ion collision experiments

Heavy-ion collisions were initially studied at the Lawrence Berkeley Na-
tional Laboratory with the Bevatron accelerator experiment (BEVALAC) at
the beam energy of 6 GeV, in early 1954. The BEVALAC projectile energy
was not large enough to study the QGP. At Brookhaven National Laboratory
in 1960, the Alternating Gradient Synchrotron (AGS) was the next major
experimental facility for studying heavy-ion collisions [24]. The AGS started
operating at an energy of 28 GeV and has enabled a wealth of studies. It
is still in operation. The highest energy heavy-ion fixed target experiment
was the Super Proton Synchrotron (SPS) at CERN [25]. The fixed target
high energy collision experiments at the BEVALAC, AGS and SPS were not
able to study the behavior of nuclear matter at the very extremes of high
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energy-density.
In the summer of 2000 the Relativistic Heavy Ion Collider (RHIC) deliv-

ered Au beams with the primary objective of creating and studying the QGP.
Subsequently, RHIC has provided excellent opportunities to fulfill this ob-
jective. The data collected at different energies by the Solenoidal Tracker at
RHIC (STAR) has been used to observe and study many of the initially pro-
posed signatures signaling the formation of the QGP in heavy-ion collisions.
Today, the STAR experiment continues to provide valuable measurements
designed to extend our understanding of hot and dense QCD matter. The
measurements for Au+Au collisions span a broad range of collision energies.
Data for other ion species including protons, He, Cu, U have also been ob-
tained with the STAR experiment. In this dissertation several of these data
sets were used in analyses’ designed to gain further insights on the properties
of the QGP.

1.2.3 The RHIC Beam Energy Scan Program

The RHIC Beam Energy Scan (BES) program leverages the the collider’s
capability of accelerating nuclei at different collision energies spanning the
range

√
sNN = 7 − 200 GeV. This is especially important to experimental

studies of the QCD phase diagram since T and µB are known to vary with√
sNN [26]. The variation of

√
sNN of the colliding nuclei, lead to different

reaction trajectories in the phase diagram which could cross the phase bound-
ary at different T and µB values as illustrated schematically in Fig.1.4. Such
trajectories could also traverse T − µB regions close to the CEP. Therefore,
studies involving measurements which span BES energies could give insights
on the detailed structure of the phase diagram, as well as the properties of
the respective QCD phases.

A major focus of the ongoing BES program is aimed at: (a) detailed
studies of the QGP transport properties as a function of T and µB; (b) the
detection of signatures which signal the first order phase transition, and (c)
the detection of experimental signatures which can aid identification and
characterization of the QCD Critical End Point.
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Fig. 1.3: Schematic illustration of the phase diagram of QCD matter with
conjectured trajectories for several collision energies at RHIC. The yellow
lines indicate the conjectured trajectories for Au+Au collisions for the beam
energies indicated.

1.2.4 Essential concepts and definitions for heavy ion
collisions

Given the focus of this work, a set of definitions and concepts important
for navigating the ins and outs of heavy ion collisions is outlined as follows;

• Collision Geometry
When observed from the center of mass (CM) frame, two nuclei accel-
erated to highly relativistic speeds will appear as two flat pancakes due
to Lorentz contraction along the beam direction. A schematic view of
this picture is shown in Fig(1.4). The transverse radius of each nuclei
can be estimated as R = 1.2A1/3, where A is the atomic mass number.
For Au ions, this radius is approximately 7.0 fm (1 fm = 10−15 m).
Thus, extremely peripheral collisions have an impact parameter ( the
distance between the centers of the two colliding nuclei) of about 14.0
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Fig. 1.4: Schematic illustration of a heavy ion collision seem from the CM
frame. Panel (a) illustrates the definition of the impact parameter and pannel
(b) shows the participant and spectators (see text).

fm while central collisions have an impact parameter of 0.0 fm. This
impact parameter (b) (c.f. Fig(1.4)) can not be measured directly and is
typically estimated via the multiplicity of the produced particles. That
is, central collisions (b = 0) lead to large multiplicities while periph-
eral collisions result in much smaller multiplicities. Fig(1.4) gives an
illustration of two colliding nuclei, before and after the collision. The
nucleons inside the overlap region (participants) leads to the creation
of the fireball which expands and ultimately decays into particles. The
nucleons outside of the overlap region (spectators) continue to move
along their original trajectories and can also decay into particles if
they have sufficient excitation energy.

• Kinematics
At RHIC, the coordinate system is such that the z-axis is parallel to
the collision axis (beam axis); the x- and y-axes form a plane which is
perpendicular to the z-axis and the y-axis is taken to be vertical point-
ing up. The nominal interaction point is at the (0, 0, 0)-coordinate; the
beams are tuned such that collisions take place at this point. However,
collisions do not always occur exactly at the interaction point, so its
actual location has to be measured. This location is called the primary
vertex or just the vertex.
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• Collision Energies
The energy in the CM frame can be calculated using the 4-vectors of
the beams E(E, 0, 0, pz) as:

ECM =
√

(2E)2 = 2E (1.1)

I.e. twice the beam energy. Usually, the CM energy is denoted as√
sNN , where the subscript NN makes it clear that it is the CM energy

per nucleon pair.

• Transverse momentum
Often the momentum is divided into a transverse component pT , and
a longitudinal component pz. The transverse momentum has the ad-
vantage of being Lorentz invariant. It is defined as:

pT =
√

p2x + p2y (1.2)

• Rapidity
The longitudinal momentum component pz is rarely used by itself.
More than often, it is used to define the rapidity, y, of a particle:

y = ln

[

1

2

(

E + pz
E − pz

)]

(1.3)

One of the advantages of the rapidity variable is that it is additively
invariant under Lorentz transformations, while pz is not

• Pseudorapidity
The rapidity (y) of a particle requires knowledge of the particle mass.
However, this mass is not necessarily known experimentally, in which
case the pseudorapidity variable η, is used:

η = − ln

[

tan(
θ

2
)

]

(1.4)

where tan(θ) =
√

x2 + y2/z. Since this reduces the variables into
(x, y, z) coordinates, knowledge about the momentum of a particle is
not necessary to calculate its pseudorapidity. For particles with m ≪ p
the energy E =

√

m2 + p2 → p and y → η.
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Quantoty Conversion ~ = c = 1units
Mass 1kg = 5.61x1026 GeV GeV
Length 1m = 5.07x1016 GeV −1 GeV −1

T ime 1s = 5.61x1026 GeV −1 GeV −1

Tab. 1.1: Mass, length and time in Natural units.

• Multiplicity
The multiplicity is defined as the number of particles emitted in a given
collision event. Usually, multiplicity will refer only to the number of
charged particles. The multiplicity is often measured differentially as
a function of pseudorapidity, dN/dη.

• Units and conversion factors
In this thesis, all quantities are measured and expressed in terms of
natural units as shown in table 1.1.

Some other conversion factors often used in heavy-ion physics:

(a) 1 fm = 10−15 m = 5.07 GeV −1
(b) 1 ~c = 197 MeV fm

1.3 Anisotropic Flow

A major focus of this dissertation is the presentation of new flow mea-
surements, as well as their use to gain insight on both reaction dynamics
and the transport properties of the QGP produced in relativistic heavy ion
collisions. In such collisions, the interaction zone, where the initial nucleon-
nucleon interactions occur, is elliptical for non-central collisions - see Fig. 1.5.
If QGP develops in this interaction zone, then the pressure gradients which
develop as a result of the initial spatial anisotropy, drives an anisotropic ex-
pansion of the fireball which leads to an azimuthal momentum anisotropy of
the particles emitted subsequent to handronization. This anisotropic flow of
the emitted particles, not only reflect the Equation of State (EOS) of QCD
matter, but also the transport coefficients which influence the magnitude of
the flow-driven anisotropy.
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Fig. 1.5: Example of a standard non-central heavy-ion collision in which the
eccentric shape of initial collision geometry is transposed into the elliptic flow
anisotropy in the final state momentum space. Figure taken from [27].

Experimentally, this anisotropic flow is usually characterized via a Fourier
expansion of the azimuthal distribution of the emitted particles:

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

(

1 + 2
∞
∑

n=1

vn cos[n(φ−Ψn)]

)

, (1.5)

where E is the energy, p is the momentum, pT is the transverse momentum,
φ is the azimuthal angle and y is the rapidity of the particle respectively. Ψn

is the nth-order event plane and vn is the nth-order flow coefficients; v1, v2
and v3 are called directed flow, elliptic flow and triangular flow respectively.

In the last decade, the v2 coefficient which is dominated by asymmetries
related to the initial elliptic shape of the collision zone, has recieved a lot of
experimental and theoretical attention [28, 29]. More recently it was realized
that higher odd and even anisotropic flow coefficients are also important,
and are more sensitive to the transport coefficients. In this dissertation, a
comprehensive set of new measurements of both odd an even harmonics will
be presented and studied.

1.4 Scope and Organization of this thesis

In this thesis, I will present and discuss new measurements of anisotropic
flow and its fluctuations, for Au+Au collisions at all BES energies, as well
as d+Au, Cu+Cu and Cu+Au at

√
sNN = 200 GeV, and U+U at

√
sNN
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= 193 GeV. The beam energy dependent measurements provide important
constraints for the extraction of the specific viscosity η/s (the ratio of shear
viscosity to entropy density) as well as its T and µB dependence. In turn the
measurements for different collision systems provide stringent constraints for
initial-state models.

The organization of this thesis is as follows:
Chapter 2 gives a brief outline of the RHIC accelerator facility and the de-
tector setup employed for the measurements. In chapters 3 and 4 the data
analysis method is presented with emphasis on the two- and multi-particle
correlation techniques [30–34] employed for the anisotropic flow measure-
ments. The detailed results from these analysis techniques, for all collision
systems and beam energies are also presented. In chapter 5, detailed mea-
surements of the two-, four- and six-particle elliptic flow harmonic, as well as
elliptic flow fluctuations are presented and discussed. Chapter 6 summarizes
the main findings of this thesis and gives further in-depth discussions on the
results obtained. An outlook for the future studies is also presented.
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Chapter 2

Experimental Setups and Data
Sets

The measurements presented in this thesis were conducted with d+Au,
Cu+Cu and Cu+Au collisions at

√
sNN = 200 GeV, U+U collisions at

√
sNN

= 193 GeV and Au+Au collisions at
√
sNN = 7.7-200 GeV. The beams were

provided by the Relativistic Heavy Ion Collider and the data were collected
with the STAR detector[35, 36].

2.1 Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) [37] is located at Brookhaven
National Laboratory in Upton, New York on Long Island. RHIC is a versatile
collider capable of accelerating various species of ions over a broad range of
energies. The two primary physics programs at RHIC are spin physics[38]],
using polarized protons, and “heavy ion” physics. For the heavy ion program,
data has been collected for p+p, p+Au, d+Au, 3He+Au, Cu+Cu, Cu+Au,
Au+Au and U+U collisions at several beam energies. Data has also been
collected for a beam energy scan involving Au+Au collisions. As Fig(2.1)
shows, there are six interaction points on RHICs 3.8 km ring where collisions
can occur. Measurements have been performed at four of these interaction
points by the STAR experiment at 6 clock, the PHENIX experiment at 8
clock, the PHOBOS experiment at 10 clock, and the BRAHMS experiment at
1 clock. The PHOBOS, BRAHMS and PHENIX experiments completed their
experimental missions in 2005, 2006 and 2017 respectively. The data reported
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Fig. 2.1: The RHIC accelerator complex at Brookhaven National Laboratory.

in this work were obtained with STAR experiment which still maintains an
active experimental program at RHIC.

The BNL accelerator complex consists of an ion source and several ac-
celerators [37] which the Ions go through before they enter the RHIC ring
where the ions are further accelerated and made to collide. Several of the
major components of the accelerator complex are briefly described below:

• Linear Accelerator
In 1971 the Brookhaven Linear Accelerator (Linac) was built as an
upgrade to the Alternating Gradient Synchrotron (AGS). Presently,
the Linac is the main source of the polarized and/or high intensity
proton beams injected into RHIC.

• Tandem Van de Graaff
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For many years the Tandem Van de Graaff was the largest electro-
static facility. It has the ability to produce a wide range of ion species
spanning the full range from hydrogen to uranium.

• Tandem-to-Booster line
The TtB line is a beam transport system. The TtB line is situated in a
700-meter-long tunnel. The TtB delivers heavy ions from the Tandem
to the AGS for further acceleration. This line is critical for moving ions
from the Tandem to RHIC.

• Electron Beam Ion Source
The EBIS is the ion source for RHIC. It creates ion beams from the
lightest to the heaviest elements. These ions are injected into RHIC
after acceleration by the Linac, Booster and the AGS.

• Booster Accelerator
The Booster is an important part of AGS with size less than a quarter
of AGS operated by Collider-Accelerator Department. The Booster
receives heavy ions from EBIS or protons from the Linac. It then pre-
accelerates particles and injects them into the AGS ring.

• Alternating Gradient Synchrotron
The AGS is the final and most important part in the injector chain. It
receives beam from Booster and accelerates it before releasing it to the
two RHIC accelerator ring.

• AGS-to-RHIC Line
The AGS-to-RHIC (ATR) line is the last platform for the beam before
entering the RHIC ring. The characterization of the beam extracted
from AGS is done in this transfer line. At the end of this line a switching
magnet gives direction to the ion bunches either in clockwise or in anti-
clockwise direction.

• RHIC Ring
The RHIC ring consists of two independent rings called Blue and Yellow
rings which accelerate ions clockwise and counter clockwise in each ring
respectively. There are six interaction point in the ring where the these
beams can be tuned to collide.
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Fig. 2.2: A perspective view of the STAR detector system with a cutaway
for viewing the inner sub-systems.

2.2 STAR Detector

The Solenoidal Tracker at RHIC (STAR) detector Fig. 2.2 has various
detector subsystems. In the STAR coordinate system, the z-axis is along
the beam direction as shown in Fig. 2.2. The applied magnetic field in the
z-direction from the STAR magnet bends the trajectories of charged parti-
cles enabling momentum measurements. This magnet can be maintained at
magnetic fields of 0,± 0.25 or ± 0.5 Tesla. The Time Projection Chamber
(TPC) [39], is the main tracking detector and is capable of measuring charged
particles within |η| < 1.8 and full azimuthal coverage in the x− y plane. In
2010, a barrel Time-of-Flight (TOF) detector [40] based on Multi-gap Resis-
tive Plate Chamber (MRPC) technology was fully installed in STAR. The
TOF consists of a total of 120 trays spanning a pseudo-rapidity range |η| <
0.9 with full azimuthal coverage. The TPC, and the TOF are the main sub-
systems of the STAR detector used for the measurements presented in this
thesis. Both subsystems are briefly discussed in the following.
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Fig. 2.3: The diagram of STAR Time Projection Chamber at RHIC.

2.2.1 Time Projection Chamber (TPC)

The TPC is the main tracking detector at STAR [39]. The TPC tracks
charged particles via the ionization trail that they leave in the volume of
the TPC; it measures particle momentum and charge and facilitates particle
identification over a limited pT range. It is 4-meters in diameter and 4.2-
meters long, providing coverage of −1 < η < 1 with high-quality tracking.
For a magnetic field of 0.5 Tesla in the z-direction, the TPC can measure
particles with momentum larger than 150 MeV/c. Fig.(2.2.1) shows the thin
conductive Central Membrane, the concentric field cage cylinders, and two
end caps which provide a nearly uniform electric field along the beam (z)
direction in the TPC. The TPC is filled with P10 gas (90% Ar + 10% CH4)
which provides a stable electron drift velocity that is insensitive to small
variations of temperature and pressure.

When a charged particle crosses the TPC’s volume, it ionizes the gas
atoms and the ionized electrons drift in the electric field to the anode in
the Multi-Wire Proportional Chambers at the end cap readout. The current
collected by the wires gives the hit location in the x−y plane and the current
amplitude is proportional to the ionization energy loss. The drift time gives
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Fig. 2.4: The energy loss distribution for primary and secondary particles in
the STAR TPC as a function of the momentum of the primary particles [39].

the z coordinate of the hit location. Using the hit point coordinates (x, y, z)
the helix of a particle’s motion can be reconstructed. The particle’s helix
is used in conjunction with the magnitude of the STAR magnetic field to
determine its momentum and the sign of its charge via the Lorentz force
equation of motion.

The energy loss (dE/dx ) is proportional to the number of electrons mea-
sured for that track at each hit. Thus, by carefully calibrating the TPC
track’s, dE/dx can be measured. Fig. 2.6 shows the measured dE/dx of
tracks as a function of total momentum. Clear separation can be seen be-
tween the tracks of different species at low momentum. However, the merger
of the energy loss bands at high momenta require an alternative method for
particle identification at higher momenta.
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2.2.2 Time Of Flight (TOF)

One of the important upgrades of the STAR detector is the Time of Flight
(TOF) detector which increases STAR’s particle identification capability over
an extended momentum range [40]. The TOF detector was installed in 2010.
As its name proposes, TOF measures the time of flight of a charged particles,
starting from the collision vertex, as it traverses the TPC and hits the TOF
detector itself. The detectors timing resolution of ∼ 100 ps serve to extend
the momentum range for particle identification.

The TOF system consists of two sub-systems: the upgraded pseudo-
Vertex Position Detector (up-VPD) and the TOF detector itself. The up-
VPD detector is designed to measure the collision time of an event with a
resolution of 10-20 ps. The up-VPDs are placed around the beam pipe and
are located at z = ±5.7m away from the center, covering 4.24 < |η| < 5.1.
The up-VPD measures the start time (t-start ) of the charged particles. The
TOF measures the stop time (t-stop) or time of flight, i.e., ∆t = (tstop−tstart).

In general one can write the reciprocal speed of a particle as;

1

β
=

∆t

L
=

√

m2 + p2

p2
, (2.1)

which gives the mass of the particle as;

m2 =
p2

(βγ)2
= p2

(

(c∆t)2

L2
− 1

)

, (2.2)

where

∆t = Time of Flight

L = Path Length

p = Momentum

γ = GammaFactor

The computed masses of the particles can then be used for particle identifi-
cation. Fig. 2.2.2 shows the computed m2 vs. particle momentum multiplied
by the particle charge, for different measured tracks. The various species are
clearly discernible over a wide range of momenta. However, it is apparent
that they become indistinguishable as their momenta become larger than
their mass and their velocities approach the speed of light.
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Fig. 2.5: m2 vs. total momentum multiplied by the particle charge q [41].
m2 is computed with the time of flight measurements obtained with the TOF
detector.

2.3 Centrality Definition in Heavy-Ion Colli-

sions

The impact parameter b of a collision measures the distance between the
centers of two colliding nuclei. It varies from event to event and ranges from
central collision with b = 0 leading to complete area overlap (for symmetric
systems) to peripheral collision with large b values corresponding to a small
overlap zone. Experimentally, the full range of b values are obtained in
collisions spanning very many events. Each of these b values can be linked to
a corresponding multiplicity distribution for charged tracks. Therefore, cuts
on the total multiplicity distribution can be used to select b or the centrality
of the collisions. The calibration for these cuts is usually obtained via a
Glauber Model [42].

For a given b, the Glauber Monte Carlo model generates the distribution
of nucleons which collide, assuming that nucleons are moving in straight lines,
and each N+N collision occurs independently. Each nucleon in a nucleus
interacts with the nucleons in the other nucleus in their path. The N+N
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Fig. 2.6: Illustration of the calibrated relationship between Glauber Model
parameters (b, Npart) and the number of charged tracks. The figure taken
from Ref. [42]

collisions occur when the distance of nucleons are within a range fixed by the
N+N inelastic cross section. In this way, the model is able to give estimates
of the total number of collisions Ncoll, that occur, as well the number of
nucleons which participate in the collision Npart, for a given b. The model
also gives other initial-state geometric quantities such as the eccentricity.
A primary assumption for the calibration is that track multiplicity should
be a monotonic function of the impact parameter b. Fig.(2.6) illustrate the
centrality selections which are obtained from a calibration of the measured
inclusive charged particle tracks. Note that the larger the multiplicity, the
smaller the value of b. The dashed lines show typical centrality binning.
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Vertex Cut

Collision system Collision energy Run |Vz| < Vr =
√

V 2
x + V 2

y <

Cu+ Cu 200 GeV 5 40 2
Cu+ Au 200 GeV 12 30 2
U + U 193 GeV 12 30 2

Au+ Au 200 GeV 11 30 2
Au+ Au 62.4 GeV 4 30 2
Au+ Au 54 GeV 17 30 2
Au+ Au 39 GeV 10 40 2
Au+ Au 27 GeV 11 40 2
Au+ Au 19.6 GeV 11 40 2
Au+ Au 14.5 GeV 14 40 1
Au+ Au 11.5 GeV 10 50 2
Au+ Au 7.7 GeV 10 70 2

Tab. 2.1: The run year and the vertex cut used for the different collision
systems and energies studied in this thesis.

2.4 Data Sets

In this section the data sets used in this thesis, as well as the event and
track cuts used in subsequent analyses’ are presented. Table 2.4 gives a
summary of this information for all systems and energies.

One set of track cuts was used for all systems and energies. These cuts
are summarized in Table. 2.4.
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Quantities The cut used
DCA < 3.0
|η| ≤ 1.0

pT (GeV/c) > 0.2
< 4.0

Minimum number of TPC hist 15

Tab. 2.2: Track-cuts used in subsequent analyses’.
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Chapter 3

Flow Analysis Methodology

In the last decade, significant effort, both experimental and theoretical,
has gone towards studying the transport properties of the hot and dense
matter created in heavy ion collisions using the anisotropic flow coefficients
vn[29, 43–71]. In this chapter anisotropic flow and its associated coefficients
vn, are introduced. The analysis methods for the extraction of the vn coeffi-
cients are also discussed.

3.1 Anisotropic Flow

In this section, we will start by first outlining the traditional definition for
the anisotropic flow harmonics vn. The azimuthal distribution, r(φ), of the
total transverse momentum of particles produced in a heavy-ion collision, is
a periodic quantity and it is reasonable to expand it in a Fourier series as:

r(φ) =
x0

2π
+

1

π

∞
∑

n=1

[xn cos(nφ) + yn sin(nφ)], (3.1)

where,

xn =

∫ 2π

0

r(φ) cos(nφ)dφ, (3.2)

yn =

∫ 2π

0

r(φ) sin(nφ)dφ (3.3)
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For each Fourier coefficient, xn and yn, we can define the corresponding nth

order flow harmonic, vn, as:

vn =
√

x2
n + y2n. (3.4)

For symmetric collisions with equal probability for particles to be emitted
in the φ and −φ directions, the average of the sin(nφ) contribution will
always cancel, yn = 0. Also the equal probability for particles to be emitted
in directions of φ and φ + π will lead to xn = 〈cos(nφ)〉 = 0 for the odd
harmonics.

cos(nφ) + cos(n(φ+ π)) = cos(nφ)[1 + (−1)m] = 0 for odd n (3.5)

These symmetries lead to the flow harmonics vn being equal to xn, which
are non-zero for even harmonics. The nth harmonic can be related to the
starting distribution r(φ) as:

〈cos(nφ)〉 =

∫ 2π

0
r(φ) cos(nφ)dφ
∫ 2π

0
r(φ)dφ

. (3.6)

By using a normalized distribution for r(φ) for which
∫ 2π

0
r(φ)dφ = 1, we can

write

〈cos(nφ)〉 =
1

π
vn

∫ 2π

0

cos(nφ)2dφ, (3.7)

using the orthogonality relationship of the cosine functions,

∫ 2π

0

cos(nφ) cos(mφ)dφ = πδnm, (3.8)

where δnm is the Kronecker delta function. Therefore,

vn = 〈cos(nφ)〉 (3.9)

The orientation of the impact parameter vector b (the vector connecting
the centers of two colliding nuclei) changes event-by-event in heavy-ion col-
lisions, which in turn yields a random reaction plane angle ΨR (the plane
spanned by the impact parameter and the beam axis z see Fig. 3.1. Due to
these random orientations, it is useless to measure the azimuthal angles in
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Fig. 3.1: A representation of the formation of almond-shaped interaction
volume created in mid-central collision of two nuclei. The spatial anisotropy
of the interaction volume with respect to reaction-plane (x-z plane), leads to
a momentum anisotropy of the produced particles.

a fixed coordinate system in the laboratory. Therefore Eq.(3.9) is not much
used in the vn measurements. The way to avoid this problem is to use ob-
servables which are sensitive only to flow harmonics vn but do not require
the knowledge of reaction plane orientation event-by-event. Such observables
will be discussed, but more on that later.

In addition to the spatial anisotropy (c.f. Fig. 3.1) which stems from
the collision geometry, there are also the anisotropies arising from the fluc-
tuations in the initial positions of participating nucleons within the created
system[72]. This fluctuation can in principle, generates anisotropy in coor-
dinate space, which will be also transferred to momentum space, where they
can give rise to the harmonics vn. To understand more the fluctuations effects
on the anisotropic flow analysis we will need to rewrite Eq.(3.1) by using the
well-known identities:

cos(nφ) =
1

2
(einφ + e−inφ),

sin(nφ) =
1

2i
(einφ − e−inφ), (3.10)
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then,

vn = xn − iyn, n > 0,

= xn + iyn, n < 0,

= x0, n = 0. (3.11)

Using Eq.(3.10) we can rewrite Eq.(3.1) as,

r(φ) =
x0

2π
+

1

2π

∞
∑

n=1

(xn − iyn)e
inφ +

1

2π

∞
∑

n=1

(xn + iyn)e
−inφ,

=
x0

2π
+

1

2π

∞
∑

n=1

(xn − iyn)e
inφ +

1

2π

−1
∑

n=−∞

(x−n + iy−n)e
inφ,(3.12)

by inserting the definitions Eq.(3.11),

r(φ) =
v0
2π

+
1

2π

{

∞
∑

n=1

vne
inφ +

∞
∑

n=1

v∗−ne
−inφ

}

, (3.13)

where vn in general is complex, so we can use vn = v∗−n:

r(φ) =
v0
2π

+
1

π

∞
∑

n=1

Re{vneinφ}. (3.14)

Since vn is complex, and in general each harmonic can be defined rel-
ative to its own symmetry plane (the so called participant plane) Ψn as
vn ≡ |vn| e−inΨn.

r(φ) =
v0
2π

+
1

π

∞
∑

n=1

|vn|Re{ein(φ−Ψn)}.,

r(φ) =
v0
2π

+
1

π

∞
∑

n=1

vn cos[n(φ−Ψn)] (3.15)

Therefore, anisotropic flow analysis in the general case, requires the measure-
ment of both Ψn and vn. By generalizing Eq.(3.9) one can show straightfor-
wardly that:

vn = 〈cos[n(φ−Ψn)]〉, (3.16)
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The harmonic v1 is called directed flow, the harmonic v2 elliptic flow, the
harmonic v3 triangular flow, etc. When vn are considered as a function
of transverse momentum or rapidity, we refer to them as differential flow
harmonics.

In this thesis the two-particle mixed-events method [30] as well as the
multi-particle correlation (cumulant) mthod [31–34] are used. Both methods
are disused in the following sections.

3.2 Two-Particle Azimuthal Correlations

(Event-Mixing Technique)

All techniques used to extract vn are related to the azimuthal correlation
function that can be expressed as,

C(∆φ,∆η) =
(dN/d∆φ)Same

(dN/d∆φ)Mix
(3.17)

∆φ = φa − φb (3.18)

∆η = ηa − ηb (3.19)

where (dN/d∆φ)Same is the azimuthal distribution of charged hadron pairs
from the same event and (dN/d∆φ)Mix is the azimuthal pair distribution
for particles from different events belonging to the same class; ∆φ is the
azimuthal angle difference for particle pairs. Event classes, which retain
the residual detector single particle relative efficiencies etc., eliminate the
the genuine two-particle physics correlations. To optimize mixing, events are
pooled into classes to ensure similar global characteristics for same-event and
mixed-event tracks. Twenty Vz classes and ten centrality classes were used.
A pool depth of ten events was employed for mixing.

The Fourier coefficients vnn, used to characterize the magnitude of the
azimuthal anisotropy, are obtained from the correlation function as,

vnn =

∑

∆φC(∆φ,∆η) cos(n∆φ)
∑

∆φ C(∆φ,∆η)
, (3.20)

where C(∆φ,∆η) =
(dN/d∆φ)Same

(dN/d∆φ)Mix
. The two-particle correlations contain
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flow, as well as so-called non-flow (NF) contributions [30, 73–75]:

vnn(a, b) = vn(a)vn(b) + δNF , (3.21)

where δNF include contributions from resonance decays, Bose-Einstein corre-
lations, jets, and global momentum conservation (GMC). This non-flow can
be classified into both a short- and a long-range component. The suppression
of both components is required for reliable vn measurements.

3.2.1 Suppression of short range non-flow effects

The short-range non-flow, typically involving particles emitted within a
localized region in η, is dominated by resonance decays and Bose-Einstein
correlations. Since resonance decays often lead to unlike-sign charged pairs,
one expects the correlations for such pairs to be influenced by short-range
non-flow effects. For Bose-Einstein correlations, one expects the correla-
tions for like-sign pairs to be similarly influenced. Since ∆η cuts enforce a
separation between same-sign and unlike-sign particle pairs, such cuts can
suppress resonance decays and reduce the influence of Bose-Einstein correla-
tions. Therefore, studies of the influence of ∆η cuts on like-sign and unlike-
sign correlation functions and their associated vn values, can provide unique
constraints for the cuts required to suppress short-range non-flow effects.

Representative examples of the correlation function for like-sign and unlike-
sign charged particle pairs are shown in Figs. 3.2 and 3.3 for 0−5%, 40−50%
and 70− 80% central Au+Au collisions (

√
sNN = 200 GeV) for several |∆η|

selections as indicated. The solid lines in the figures represent the fit function:

Cr = A

(

1 + 2
∑

n

vnn cos(n∆φ)

)

, (3.22)

where A is a constant and vnn is the product nth-order flow harmonic. These
correlation functions reflect both flow and non-flow contributions, as well
as some residual detector/tracking effects. The latter effects are especially
evident in the central collisions (Figs. 3.2(a) and 3.3 (a)) where a dip and a
peak in the correlation function at ∆φ ∼ 0 is evident. We attribute the dip
(peak) to track merging (splitting) effects.

The short-range non-flow contributions and the residual detector effects
(track merging/splitting) are expected to dominate at small ∆η. This is
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Fig. 3.2: Like-sign two-particle correlation function for 0 − 5%, 40 − 50%
and 70−80% central Au+Au collisions at

√
sNN = 200 GeV for different ∆η

cuts.

confirmed by the correlation functions shown in Figs. 3.2 (a, b and c) and
3.3 (a, b and c), which were generated for the full ∆η range for both like-
sign (LS) and unlike-sign (US) charged hadron pairs. They indicate that
the distortions which result from non-flow contributions and detector effects
persist over different ranges of centrality selections.

To suppress these distortions, the correlation functions were studied as a
function of ∆η cut, for several centrality selections, over the full span of beam
energies. This comprehensive study indicated that the cut |∆η| > 0.7 leads to
significant suppression of track merging/splitting and non-flow contributions,
while allowing reasonable statistical significance for our study over the full
beam energy range. Here, it is noteworthy that a large |∆η| leads to a
significant reduction in the available statistics, especially for the lower beam
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Fig. 3.3: Unlike-sign two-particle correlation functions for 0−5%, 40−50%
and 70 − 80% central Au+Au collisions at

√
sNN = 200 GeV, for different

|∆η| cuts.

energies. The representative set of correlation functions shown in Figs. 3.2
and 3.3 (g, h and j) clearly indicate that the distortions are suppressed for
|∆η| > 0.7.

A further study, involving LS and US charged hadrons was employed to
validate the effectiveness of the |∆η| cut for suppressing short-range non-
flow contributions and to estimate their influence on the magnitude of the
extracted values of vn. Here, the essential idea is that the LS and US se-
lections can be used to enhance the respective short-range contributions due
to HBT, Resonance decay, Jet-like correlation, etc. We use the similarity
between the vn values extracted from LS and US correlation functions as a
figure of merit for the suppression of short-range non-flow contributions.
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Fig. 3.4: Comparison of LS- and US-v2 values for Au+Au collisions at√
sNN = 200 GeV. Results are shown for |∆η| > 0.3, 0.7 and 0.9 respec-

tively.

For each beam energy, correlation functions were generated for several
|∆η| selections for both LS and US charged hadrons. The resulting correla-
tion functions were then Fourier analyzed (cf. Eqs. 3.83 and 3.84) to obtain
vn(cent) for further comparisons. Representative results from this study are
show for Au+Au collisions at

√
sNN = 200 GeV in Figs. 3.4, 3.5 and 3.6.

The bottom panels in these figures gives the ratio (LS/US) of the vn values
shown in the top panels.

The comparisons shown in Figs. 3.4, 3.5 and 3.6 (a) for LS- and US-vn
for |∆η| > 0.3, indicate clear differences which vary with centrality. We
attribute these differences to the influence of short-range non-flow contribu-
tions. Figs. 3.4, 3.5 and 3.6 (b) show that these differences are significantly
reduced for |∆η| > 0.7, confirming the utility of this cut for suppressing non-
flow contributions. Figs. 3.4, 3.5 and 3.6 (c) indicate that a further increase
to |∆η| > 0.9 leads to little, if any, improvement in the agreement between
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Fig. 3.5: Comparison of LS- and US-v3 for Au+Au collisions at
√
sNN = 200

GeV for |∆η| > 0.3, 0.7 and 0.9 respectively.

the LS- and US-vn values. However, one can see a clear deterioration in the
statistical significance of the measured vn values, especially for the higher
harmonics. Consequently, the cut |∆η| > 0.7, was employed to suppress
short-range non-flow contributions for the data sets studied.

3.2.2 Supression of long-range non-flow
(Global Momentum Conservation)

The conventional image of heavy-ion collisions is that a relatively ther-
malized fluid is formed which ultimately hadronizes into particles. Particles
are emitted independently in each event, with an azimuthal distribution that
fluctuates from one event to another. This leads to two-particle correlations
which factorize into the product of two single-particle distributions [76] in
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Fig. 3.6: Comparison of LS- and US-v4 for Au+Au collisions at
√
sNN = 200

GeV and |∆η| > 0.3, 0.7 and 0.9 respectively.

the absence of the short range non-flow effect:

vnn(p
a
T , p

b
T ) = vn(p

a
T )vn(p

b
T ), (3.23)

where the superscripts a and b are two different particles that can be selected
from different bins in transverse momentum, and vn(pT ) is the anisotropic
flow coefficient.

This factorization (Eq. 3.23) has been tested at the LHC for Pb+Pb
collisions [77]. The tests were performed via fits to the left-hand side of
Eq. 3.23, an N × N symmetric matrix for N bins in pT , with the right-
hand side of Eq. (3.23), using the N values of vn(pT ) as fit parameters. The
ALICE collaboration showed that, while the data does factorize for n > 1,
this factorization does not hold for n = 1 [77]. This is expected because
the additional long-range correlation produced by momentum conservation
largely affects the first harmonic [78].

As discussed in a later chapter, the first harmonic v1 is comprised of
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both a symmetric component veven1 , and anti-symmetric component com-
monly termed sidewards flow. The nature and the physics of the veven1 will
be discussed in the coming chapter. Here, I will present a representative ex-
ample on how long-range non-flow is suppressed to enable reliable extraction
of veven1 .

In general, the constraint that all transverse momenta adds up to zero
yields a back-to-back correlation between pairs, which grows linearly with the
transverse momenta of both particles. This correlation adds to the correlation
from flow as:

v11(p
a
T, p

b
T) = veven1 (pa

T)v
even
1 (pb

T)−Kpa
Tp

b
T. (3.24)

Here, K ∝ 1/(〈Nch〉〈p2
T〉) takes into account the non-flow correlations induced

by global momentum conservation [74, 75]; 〈Nch〉 is the mean multiplicity
and 〈p2

T〉 is proportional to the variance of the transverse momentum over
the full phase space. The charged particle multiplicity measured in the TPC
acceptance is used as a proxy for 〈Nch〉. For a given centrality selection, the
left hand side of Eq. (3.24) represents a N-by-M v11 matrix (i.e., N values
for pbT for each of the M paT selections) which we fit with the right hand side
using N+1 parameters; N values of veven1 (pT) and one additional parameter,
K, which represent the momentum conservation effect [79].
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Fig. 3.7: v11 vs. pbT for several selections of paT for 0-5% central Au+Au
collisions at

√
s
NN

= 200 GeV. The curve shows the result of the simultaneous
fit with Eq. (3.24). The fit resulted in the value χ2 = 1.1 per degree of
freedom.
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result from a hydrodynamic calculations [74]. In panel (b) the associated
momentum conservation coefficient, K vs. 〈Nch〉−1 is presented

Figure. 3.7 illustrates the efficacy of the fitting procedure for 0-5% cen-
tral Au+Au collisions at

√
s
NN

= 200 GeV. The solid curve (obtained with
Eq. (3.24)) in each panel illustrates the effectiveness of the simultaneous fits,
as well as the constraining power of the data. That is, v11(p

b
T) evolves from

purely negative to negative and positive values as the selection range for pa
T

is increased.
The values of veven1 (pT ) extracted for different centrality selections are

shown in Fig. 3.8(a). They indicate the characteristic pattern of a change
from negative veven1 (pT ) at low pT to positive veven1 (pT ) for pT > 1 GeV/c.
They also show the expected increase of veven1 as collisions become more
peripheral [74, 80]. Also, they show a good agreement with the hydrodynamic
calculations [74]. Fig. 3.8(b) shows the results for the associated momentum
conservation coefficients, K; they indicate the expected linear dependence
on 〈Nch〉−1. More details about the veven1 will be discussed in the coming
chapter.

36



3.3 Multi-Particle Correlation Technique

The multi-particle correlation technique or the cumulant technique [31–
34] was also used in this work. The framework for the cumulant method is
described in Refs. [32, 33], which was recently extended to the case of sub-
event cumulants in Ref. [34, 81]. The cumulant technique requires a uniform
detector acceptance. Therefore we will first discuss the procedure often used
to account for non-uniform detector acceptance.

Fig. 3.9: The φ-η map for Au+Au
√
s
NN

= 200 GeV before weighting for
low (a) and high (b) pT .

3.3.1 Correcting for detector acceptance

Since the event plane angle fluctuates randomly from event to event, the
φ distribution of the emitted particles averaged over many events, should
be flat. Deviations from this flat distribution would indicate detector ac-
ceptance effects as illustrated in Fig3.9. These effects can be corrected for
using track-by-track weights (wi). This weighting procedure involves first
binning particles in φ-η maps and averaging over all events to obtain inverse
weights which reflect deviations from a flat distribution. Since acceptance
depends on particle charge, track curvature (related to pT ), Z-vertex, and
centrality, separate φ-η maps were created for tracks with different event Z-
vertex, event centrality, curvature, and charge. Subsequently, the weights
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Fig. 3.10: The φ distribution for different collision systems before and after
the acceptance correction.

were used to carry out acceptance corrections on the φ-η maps. After cor-
rection, we verified that for each φ-η map, the distribution of tracks was flat,
as illustrated for several collision systems in Fig. 3.10.

3.3.2 Standard cumulant method

All of our differential and integrated four- and six-particle cumulants were
constructed using the standard cumulant method with particle weights; in
this method all quadruplets and pairs are selected using the entire TPC
detector acceptance, |η| < 1.

The multi-particle correlations could be defined using the event-by-event
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weighted Q vector evaluated for harmonic n as:

Qn,k =
M
∑

i=1

wk
i e

inφi (3.25)

where wi is the particle weight of the i’th particle and M is the total number
of Reference Particles (REP) in an event. For the REP we can also introduce
the relation,

Sp,k =

[

M
∑

i=1

wk
i

]p

(3.26)

Using Eqs. (3.25) and (3.26) we can write the two-particle correlations:

〈2〉n =
|Qn,1|2 − S1,2

M2
, (3.27)

〈〈2〉〉n =

∑N
i=1 (M2 〈2〉n)i
∑N

i=1 (M2)i
, (3.28)

where N is the total number of events and M2 is:

M2 = S2,1 − S1,2 (3.29)

〈4〉n,m =

[

|Qn,1|2 |Qm,1|2 + |Qm+n,2|2 + |Qn−m,2|2

− 2 Re
(

Qm+n,2 Q∗
n,1 Q∗

m,1 − 2 Qn−m,2 Qm,1 Q∗
n,1

)

+ 4 Re
(

Qm,3 Q∗
m,1 + Qn,3 Q∗

n,1

)

− S1,2 Re
(

Qm,1 Q∗
m,1 + Qn,1 Q∗

n,1

)

+ S2,2 − 6 S1,4

]/

M4, (3.30)

〈〈4〉〉n,m =

∑N
i=1

(

M4 〈4〉n,m
)

i
∑N

i=1 (M4)i
, (3.31)
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where n and m are harmonic orders and M4 is:

M4 = S4,1 − 6S,2S2,1 + 8S1,3S1,1 + 3S2,2 − 6S1,4 (3.32)

The four-particle cumulant can be given as:

Cn{4} = 〈〈4〉〉n,n − 2 〈〈2〉〉n 〈〈2〉〉n, (3.33)

which leads to the four-particle flow harmonics:

v4n{4} = Cn{4}, (3.34)

In similar fashion, the 6-particle cumulant can be written as:

〈6〉n = (|Qn,1|6 − 6|Qn,1|2Re(QQQ2n,2QQQ
∗
n,1QQQ

∗
n,1)

+ 9|Q2n,2|2|Qn,1|2 + 4Re(QQQ3n,3QQQ
∗
n,1QQQ

∗
n,1QQQ

∗
n,1)

+ 18S1,2Re(QQQ2n,2QQQ
∗
n,1QQQ

∗
n,1)

− 36Re(QQQ2n,4QQQ
∗
n,1QQQ

∗
n,1)− 36Re(QQQn,3QQQn,1QQQ

∗
2n,2) + 18S2,2|Qn,1|2

− 54S1,4|Qn,1|2 − 72S1,2Re(QQQn,3QQQ
∗
n,1) + 36|Qn,3|2

+ 144Re(QQQn,5QQQ
∗
n,1)− 9S1,2|Qn,1|4

+ 36|Qn,1|2Re(QQQn,3QQQ
∗
n,1)− 9S1,2|Q2n,2|2 + 36Re(QQQ2n,4QQQ

∗
2n,2)

− 12Re(QQQ3n,3QQQ
∗
2n,2QQQ

∗
n,1) + 4|Q3n,3|2

+ 54S1,4S1,2 − 6S3,2 − 120S1,6)/(S6,1 − 15S1,2S4,1 + 40S1,3S3,1 + 45S2,2S2,1

− 90S1,4S2,1 − 120S1,3S1,2S1,1 − 15S3,2

+ 144S1,5S1,1 + 90S1,4S1,2 + 40S2,3 − 120S1,6) (3.35)

〈〈6〉〉n =

∑N
i=1 (M6 〈6〉n)i
∑N

i=1 (M6)i
, (3.36)

where n is the harmonic order and M6 is:

M6 = S6,1 − 15S1,2S4,1 + 40S1,3S3,1 + 45S2,2S2,1

− 90S1,4S2,1 − 120S1,3S1,2S1,1 − 15S3,2

+ 144S1,5S1,1 + 90S1,4S1,2 + 40S2,3 − 120S1,6. (3.37)

Thus,

Cn{6} = 〈〈6〉〉n − 9 〈〈4〉〉n,n 〈〈2〉〉n + 12 〈〈2〉〉3n (3.38)

40



and

v6n{6} =
1

4
Cn{6} (3.39)

The two- and four-particle differential flow can also be obtained using a
differential vector for the particle of interest (POI) as,

pn,k =

mp
∑

i=1

wk
i e

inφi , (3.40)

mpp,k =

[

mp
∑

i=1

wk
i

]p

. (3.41)

For particles labeled as POI wi = 1. For the subset labeled as both POI and
REP we can introduce the expressions,

qn,k =

mq
∑

i=1

wk
i e

inφi , (3.42)

sp,k =

[

mq
∑

i=1

wk
i

]p

. (3.43)

Thus, the weighted reduced 2- and 4-particle azimuthal correlations can be
expressed as:

〈

2d
〉

n
=

pn,0Q
∗
n,1 − s1,1

Md
2

(3.44)

〈〈

2d
〉〉

n
=

∑N
i=1

(

Md
2

〈

2d
〉

n

)

i
∑N

i=1

(

Md
2

)

i

, (3.45)

Md
2 = mp1,1S1,1 − s1,1 (3.46)
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〈

4d
〉

=

[

pn,0 Qn,1 Q∗
n,1 Q∗

n,1

− q2n,1 Q∗
n,1 Q∗

n,1 − pn,0 Qn,1 Q∗
2n,2

− 2 S1,2 pn,0 Q∗
n,1 − 2 s1,1 |Qn,1|2

+ 7 qn,2 Q∗
n,1 − Qn,1 q∗n,2

+ q2n,1 Q∗
2n,2 + 2 pn,0 Q∗

n,3

+ 2 s1,1 S1,2 − 6 s1,3

]

/Md
4 (3.47)

〈〈

4d
〉〉

=

∑N
i=1

(

Md
4

〈

4d
〉)

i
∑N

i=1

(

Md
4

)

i

, (3.48)

Md
4 = mp1,1 [S3,1 − 3 S1,1S1,2 + 2 S1,3]

− 3 [ s1,1 (S2,1 − S1,2) + 2 (s1,3 − s1,2 S1,1)] . (3.49)

The four-particle differential cumulant can also be expressed as:

Cd
n{4} =

〈〈

4d
〉〉

n,n
− 2

〈〈

2d
〉〉

n

〈〈

2
〉〉

n
, (3.50)

and the four-particle differential flow harmonics can be written as:

vdn{4} =
Cd

n{4}
(−Cn{4})3/4

(3.51)

3.3.3 The two-subevents cumulant method

A major advantage of the cumulant method is that it is designed to
suppress non-flow contributions which originate from resonance decays, HBT,
jet correlation and so on. In contrast to flow, this non-flow usually involves
fewer particles. The multi-particle correlation method does not completely
suppress such non-flow contributions [34]. For this reason, the sub-event
cumulant method [34] was developed to further suppress the residual non-
flow that the traditional method does not suppress.

In this method particles can be grouped into two different sub-events
(A and B) in η. Each sub-event covers a non-overlapping η interval with
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|∆η| > 0.7. Therefore the event-by-event weighted Q vector is evaluated for
harmonic n as:

QA,n,k =
M
∑

i=1

wk
i (A)e

inφA
i , (3.52)

SA,p,k =

[

M
∑

i=1

wk
i (A)

]p

, (3.53)

QB,n,k =
M
∑

i=1

wk
i (B)e

inφB
i , (3.54)

SB,p,k =

[

M
∑

i=1

wk
i (B)

]p

. (3.55)

Accordingly the two-particle cumulant is expressed as:

〈2Sub−2〉n =
QA,n,1Q

∗
B,n,1

SA,1,1 SB,1,1

, (3.56)

〈〈2Sub−2〉〉n =

∑N
i=1 ((SA,1,1 SB,1,1) 〈2Sub〉n)i
∑N

i=1

(

SA,1,1 SB
B,1,1

)

i

, (3.57)

where N is the total number of events in a particular subevent class, and
A and B represent two different subevents in η. The resulting two-particle
cumulant and flow harmonics are:

CSub−2
n {2} = 〈〈2Sub−2〉〉n, (3.58)

vn{2} =
√

CSub−2
n {2}. (3.59)

Similarly, the four-particle cumulant can be obtained as:

〈4Sub−2〉n = |QA,n,1|2|QB,n,1|2

− QA,2n,2Q
∗
B,n,1Q

∗
B,n,1

− QB,2n,2Q
∗
A,n,1Q

∗
A,n,1

− QB,2n,2Q
∗
A,2n,2/(M

Sub
4 ). (3.60)
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and

〈〈4Sub−2〉〉n =

∑N
i=1

(

MSub−2
4 〈4Sub−2〉n

)

i
∑N

i=1

(

MSub−2
4

)

i

, (3.61)

where n and m are harmonic orders and

MSub−2
4 = (SA,2,1 − SA,1,2)(SB,2,1 − SB,1,2). (3.62)

The four-particle cumulant [34] is therefore given as:

CSub−2
n {4} = 〈〈4Sub−2〉〉n − 2 〈〈2Sub−2〉〉n 〈〈2Sub−2〉〉n, (3.63)

and the four-particle flow harmonics given as:

v4n{4} = CSub−2
n {4} (3.64)

The two-particle differential flow harmonics can also be obtained via a
differential vector for the particle of interest (POI) in sub-events B as:

〈

2dSub−2

〉

n
=

QA
n,1p

B
n,1

SA
1,1 mpB

1,1

, (3.65)

〈〈

2dSub−2

〉〉

n
=

∑N
i=1

(

(SA
1,1 mpB

1,1)
〈

2dSub
〉

n

)

i
∑N

i=1

(

SA
1,1 mpB

1,1

)

i

, (3.66)

to give the two-particle differential cumulants and flow harmonics as:

Cd
n{2} =

〈〈

2dSub−2

〉〉

n
, (3.67)

vdn{2} =
Cd

n{2}
√

Cn{2}
. (3.68)

3.3.4 The three sub-events cumulant method

As stated before, multi-particle correlations [34] can suppress the non-flow
contributions to the correlations. However, for jets multiple particles can be
correlated, which renders the standard cumulant ineffective for suppression
of such non-flow contributions. The three sub-events cumulant method was
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introduced to suppress this non-flow contribution especially for collisions in
which jet production is significant.

In this method [34], particles are grouped into three different sub-events
(A, B and C) in η, with non-overlapping η intervals. In each event, particles
are then selected from these sub-events to form correlated multiplets. The
introduction of this additional sub-event serves to further reduce the short-
range (in η) non-flow correlations usually associated with jets. An additional
benefit is that the three sub-events method is also able to reduce the effects of
long-range non-flow correlations, i.e. back-to-back di-jet correlations. This
is primarily because the particles from the two correlated jets (near- and
away-side jets) can only fall into two out of the three sub-events. Thus there
will always be at least one particle in the four-particle correlation that is
not associated with the di-jet. After averaging all the combinations, the di-
jet correlation is significantly suppressed [34]. The di-jet contribution can
be further reduced via a small η gaps between the three subevents if the
statistical significance of the data allow these additional cuts [34].

For this method, the event-by-event weighted Q vector is evaluated for
harmonic n as:

QA,n,k =

M
∑

i=1

wk
i (A)e

inφA
i , (3.69)

SA,p,k =

[

M
∑

i=1

wk
i (A)

]p

, (3.70)

QB,n,k =

M
∑

i=1

wk
i (B)e

inφB
i , (3.71)

SB,p,k =

[

M
∑

i=1

wk
i (B)

]p

. (3.72)

QC,n,k =

M
∑

i=1

wk
i (C)e

inφC
i , (3.73)

SC,p,k =

[

M
∑

i=1

wk
i (C)

]p

. (3.74)
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Due to symmetry, there are six ways to construct the 4-particle correlations:

〈

4Sub−3
〉

= eφA+φ∗

A
−φB−φC ,

= eφB+φ∗

B
−φA−φC ,

= eφC+φ∗

C
−φA−φB ,

= eφA+φB−φ∗

A−φC ,

= eφB+φC−φ∗

B
−φA,

= eφC+φ∗

A
−φ∗

C
−φB , (3.75)

where φ∗
X belong to the same sub-event X but different from φX . Further

details can be found in Ref.[34].
We will focus only on the first one eφA+φ∗

A−φB−φC , which leads to:

〈

4Sub−3
〉

= (Re(QA,n,1Q
∗
b,n,1QA,n,1Q

∗
C,n,1)

− Re(QA,2n,2Q
∗
B,n,1Q

∗
C,n,1))/M

Sub−3
4 . (3.76)

Then,

〈〈4Sub−3〉〉n =

∑N
i=1

(

MSub−3
4 〈4Sub−3〉n

)

i
∑N

i=1

(

MSub−3
4

)

i

, (3.77)

where n and m are harmonic orders and M4 is:

MSub−3
4 = (SA,2,1 − SA,1,2)(SB,1,1SC,1,1) (3.78)

This gives the four-particle cumulants as:

CSub−3
n {4} = 〈〈4Sub−3〉〉n − 2 〈〈2Sub−2〉〉AB

n 〈〈2Sub−2〉〉AC
n , (3.79)

and the four-particle flow harmonics as:

v4n{4} = CSub−3
n {4} (3.80)

3.3.5 Flow fluctuations effects

In addition to non-flow, fluctuations also impact vn experimental mea-
surements. When the heavy-ion collision starts, the nucleon distributions
in the overlap region fluctuates event-by-event. These initial geometry fluc-
tuations will drive flow fluctuations in the final state. As discussed earlier
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the 2m-particle azimuthal correlator is obtained by averaging over all unique
combinations in one event then overall events [32, 82]:

〈2m〉 = 〈ein
∑m

j=1(φ2j−1−φ2j)〉 (3.81)

where the mean 〈...〉 is taken within a single event. Assuming that the non-
flow contributions are negligible, we can write:

vn{2}2 = 〈〈2〉〉, (3.82)

vn{4}4 = 2〈〈2〉〉 − 〈〈4〉〉.

Therefore we can relate the ratio vn{4}/vn{2} to the variance of v2n, σ2(v2n) ≡ 〈v42〉−
〈v22〉2

(vn{4}
vn{2}

)4

= 2− 〈v42〉
〈v22〉2

, (3.83)

(vn{4}
vn{2}

)4

= 1− σ2(v2n)

〈v22〉2
.

Therefore, the ratio vn{4}/vn{2} can be used to estimate the strength of
the flow fluctuations as a fraction of the measured flow harmonic. Here, a
large value of vn{4}/vn{2} indicates less fluctuations whereas a smaller value
indicate large fluctuations.
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Chapter 4

Beam Energy and Collision
System Dependence of Flow
Harmonics

Anisotropic flow is derived from an eccentricity-driven hydrodynamic ex-
pansion of the plasma created in the collision zone [83–88] produced by the
colliding ions. That is, the eccentricity ǫn, drives unequal pressure gradi-
ents in- and out of the event plane Ψn, leading to an anisotropic expansion
that results in the anisotropic emission of particles about this plane. Thus,
anisotropic flow measurements are sensitive to the initial-state eccentricity,
the equation of state (EOS) and the transport properties of the medium.
Accordingly, such measurements are at the forefront of ongoing efforts to
extract the T and µB dependence of the transport coefficient η/s, as well as
to constrain the initial-state eccentricity spectrum.

In this chapter, the differential and pT -integrated flow harmonics for the
systems studied are presented and discussed.

4.1 Beam Energy Dependence of vn

The vn measurements from the RHIC BES can aid the study of η/s for
the broad range of µB and T , produced in these collisions [89]. Currently,
there is little, if any, experimental constraints for the µB and T dependence
of η/s, especially for the lower beam energies i.e, low T and large µB.

Theory suggests that η/s depends on both µB and T , and could have a
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Fig. 4.1: The left panel shows the pT integrated v2 and v3 coefficients
vs.

√
sNN . The lines represents the results obtained using

√
sNN dependent

η/s. The experimental data is from the STAR collaboration [90]. The right
panel shows the effective values of η/s used to describe the experimental
data at different collision energies. The green-band represents the estimated
uncertainty. Both panels are taken from Ref. [89].

minimum in the vicinity of the critical point [91]. A recent study involving
the theoretical calculation of v2 for different values of η/s at each beam en-
ergy [89], indicate agreement with the data (Fig.4.1 ) only for an increase in
η/s as the beam energy is lowered. For these calculations η/s was assumed
to be constant during the evolution of the fireball at each collision energy.
Since smaller values of

√
sNN result in larger values of µB and lower temper-

atures, Fig.4.1 suggests that η/s could have a dependence on both µB and T .
The new BES vn measurements presented in the following are expected to
provide better constraints for theoretical models and hence, lead to a better
characterization of η

s
(µB, T ).

4.1.1 Flow harmonics measurements for vn>1

A representative set of results for differential and integrated vn≥2 for
Au+Au collisions at

√
sNN = 7.7-200 GeV is summarized in Figs. 4.2, 4.3,

4.4, and 4.5. Fig. 4.2 shows the η dependence of vn for the centrality
selection 0-40%, for

√
sNN = 7.7-200 GeV. It indicates a sizable dependence

of the magnitude of vn on the harmonic number, n, with similar trends for
each beam energy. By contrast, the figure shows a weak dependence of vn
on η over the full range of beam energies. These respective dependencies can
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Fig. 4.2: The vn≥2 as a function of |η| for charged particles with 0.2 < pT <
4 GeV/c in 0-40% central Au+Au collisions at

√
sNN = 7.7-200 GeV. The

shaded bands represent the systematic uncertainty.

serve as important constraints for theoretical models.
The pT -differential measurements are shown in Fig 4.3 for the centrality

selection 0-40%, for Au+Au at
√
sNN = 7.7-200 GeV. They indicate sizable

dependencies on pT and the harmonic number, with similar trends for each
beam energy. These data also indicate a weak dependence on

√
sNN .

The centrality dependence of vn is shown in Fig. 4.4 for a similar beam
energy range for Au+Au collisions. The figure shows a weak centrality de-
pendence for the higher harmonics, which all decrease with decreasing values
of

√
sNN. These patterns may be related to the detailed dependence of the

viscous effects in the created medium, which serve to attenuate the magni-
tude of vn.

Figure 4.5 shows the excitation functions for the pT -integrated v2,3,4 for
0− 40% central Au+Au collisions. An essentially monotonic trend for v2, v3
and v4 with

√
sNN can be observed, as might be expected for a temperature
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Fig. 4.3: The vn≥2 as a function of pT for charged particles in 0-40% central
Au+Au collisions at

√
sNN = 7.7-200 GeV. The shaded bands represent the

systematic uncertainty.

increase with
√
sNN.

51



0

0.04

0 20 40 60

¨

n

Au+Au
200 GeV

(a)

0

0.04

0 20 40 60

© n

ª«¬ ®¯°(b)

0

0.04

0 20 40 ±²

© n

39 GeV(c)
³2/2
³3
³4
³5

0

0.04

0 20 40 ±²

© n

27 GeV(d)

0

0.04

0 20 40 ´µ

¶·¬ª ®¯°(e)

0

0.04

0 20 40 ª¸

Centrality %

(f) 14.5 GeV

0

0.04

0 20 40 60

11.5 GeV(g)

0

0.04

0 20 40 60

7.7 GeV(h)

Fig. 4.4: The integrated vn(Centrality%) as a function of Au+Au collision
centrality for charged particles with 0.2 < pT < 4 GeV/c. The shaded bands
represent the systematic uncertainty.
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4.1.2 The rapidity-even dipolar flow veven
1

In the absence of fluctuations, the directed flow v1 develops along the
direction of the impact parameter [92] which is an odd function, vodd1 (η) =
−vodd1 (−η), of pseudorapidity. However, initial-state fluctuations, acting in
concert with hydrodynamic-like expansion, gives an additional rapidity-even,
veven1 (η) = veven1 (−η), component [73, 80] resulting in the total:

v1(η) = veven1 (η) + vodd1 (η). (4.1)

The magnitude of vodd1 (η) can be made negligible via a symmetric pseudora-
pidity selection, to give a straightforward measurement of veven1 (η).
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Fig. 4.6: (a) The extracted values of veven1 vs. pT for Au+Au collisions at√
sNN = 200 GeV. (b) A representative set of the associated values of K

vs. 〈Nch〉−1 from the same fits. The shaded bands represent the systematic
uncertainty.

The rapidity-even v1is proportional to the fluctuations-driven dipole asym-
metry ε1 of the system [73, 80, 93]; veven1 ∝ ε1, where ε1 ≡

〈

|r3eiφ|
〉

/ 〈r3〉
and averaging is taken over the initial energy density after re-centering the
coordinate system, i.e.,

〈

|reiφ|
〉

= 0. Hydrodynamical model calculations
[74] indicate that the magnitude of veven1 is sensitive to η/s, albeit with less
sensitivity than for the higher order harmonics, n ≥ 2. It has not been ex-
perimentally established whether this sensitivity depends on the temperature
T, baryon chemical potential µB or both. Similarly it is has not been estab-
lished whether this sensitivity could reflect the influence of a possible critical
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end point (CEP) in the phase diagram for nuclear matter [94]. Therefore,
differential veven1 measurements that span a broad range of

√
s
NN

(T and µB),
could potentially provide (i) unique supplemental constraints to discern be-
tween different initial-state models, (ii) aid precision extraction of η/s and
study its possible dependence on T and µB, and (iii) give insight on the CEP.

As stated in section 3.2.2, for a given centrality selection, the left hand
side of Eq. (3.24) represents a N-by-M v11 matrix which we fit with the right
hand side using N + 1 parameters; N values of veven1 (pT) and one additional
parameter, K, which represent the momentum conservation effect [79, 95].
The extracted values of veven1 (pT) for different centrality selections (0-10%, 20-
30% and 40-50%) are shown in Fig. 4.6(a). They indicate the characteristic
pattern of a change from negative veven1 (pT) at low pT to positive veven1 (pT)
for pT > 1 GeV/c. They also show the expected increase of veven1 as collisions
become more peripheral, in line with the expected centrality dependence of
the dipole asymmetry ε1, where ε1 ≡ |(r3eiφ)|/r3 [80, 96]. Fig. 4.6(b) shows
the results for the associated momentum conservation coefficients, K; they
indicate the expected linear dependence on 〈Nch〉−1.

The resulting extracted values of veven1 (pT) for 0-10% central Au+Au col-
lisions are shown for the full span of BES-I energies in Fig. 4.7. These values
indicate the characteristic pattern of a change from negative veven1 (pT) at
low pT, to positive veven1 (pT) for pT & 1 GeV/c, with a crossing point that
only very slowly shifts with

√
s
NN
. This predicted pattern for rapidity-even

dipolar flow [73, 80] is also indicated by the solid line in panel (a), which
shows the result of a hydrodynamic model calculation [74]. It stems from
the requirement that the net transverse momentum of the system is zero, i.e.,
〈pTv

even
1 (pT)〉 = 0, which implies that the hydrodynamic flow direction of low-

pT particles is opposite to those for high-pT particles Fig. 4.8. Crosschecks
made with a large sample of the data, confirmed that 〈pTv

even
1 (pT)〉 ∼ 0,

within systematic uncertainties. The crossing point is also expected to shift
with

√
s
NN

since the 〈pT〉 and 〈pT
2〉 values change with

√
s
NN

[79, 95]. For
these data, there is little, if any, shift due to the weak dependence of the
〈pT〉 on √

s
NN

for the indicated centrality selection. It is noteworthy that the
low statistical significance of the data for

√
s
NN
<19.6 GeV, precluded similar

centrality dependent plots for these beam energies.
The centrality dependencies of the pT-weighted |veven1 | and K are shown in

Figs. 4.9 and 4.10 for several
√
s
NN

values as indicated, and for 0.4<pT<0.7
GeV/c; this pT range was selected to minimize the associated statistical
uncertainties and a possible influence from a change in the crossing point
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Fig. 4.7: Extracted values of veven1 vs. pT for 0-10% central Au+Au collisions
for several values of

√
s
NN

as indicated. The curve in panel (a) shows the
result from a viscous hydrodynamically based predictions [74]. The shaded
bands indicate the systematic uncertainties.

with
√
s
NN
. For each value of

√
s
NN
, Fig. 4.10 indicates a linear dependence

of K on 〈Nch〉−1 with slopes that decrease with increasing
√
s
NN
. This is to

be expected since K ∝ 1/(〈Nch〉〈pT
2〉) and the values for 〈pT

2〉 increase with√
s
NN

for most of the centrality range. The increase in the magnitude of
|veven1 | as collisions become more peripheral (Fig. 4.9), is expected since veven1

is driven by fluctuations which become more important for smaller systems,
i.e., for more peripheral collisions.

Figure 4.9 also hints at both a sizable decrease in the magnitude of |veven1 |
and a possible weakening of its centrality dependence, as the beam energy is
reduced. These patterns and the ones shown in Fig. 4.7 cannot be explained
solely by the small change in the Glauber model eccentricity values at a given
centrality which result from a change in the beam energy. Thus, they provide
a new set of supplemental constraints for the extraction of η

s
(T).
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The constraining power of veven1 is further illustrated in Fig. 4.11 where a
comparison of the excitation functions for veven1 and v3 is shown for 0.4<pT<0.7
GeV/c; the veven1 data are reflected about zero to facilitate a comparison of
the magnitudes. The v3 data, which are obtained from the present analysis,
are in good agreement with the data reported in Ref. [97] for the same cen-
trality and pT cuts. The comparison indicates strikingly similar magnitudes
and trends for |veven1 | and v3, suggesting a much larger viscous attenuation
of v3. Note that while ε1 and ε3 are both fluctuation-driven, ε3 ∼ 2ε1 for
0-10% central Au+Au collisions [80, 96] over the

√
s
NN

range of interest.
A similar pattern was observed for comparisons made at higher pT, albeit
with lower statistical significance. These excitation functions are expected
to provide important experimental input to ongoing theoretical attempts to
pin down initial state models and make precision extractions of the specific
shear viscosity.
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4.2 Collision System Dependence of vn

Recent measurements at both the RHIC and the Large Hadron Col-
lider (LHC), have indicated sizable v2 and v3 values in high multiplicity
p+p [98, 99], d+Au [100, 101] and p+Pb collisions [102–104], reminiscent
of those observed in peripheral A+A collisions. These measurements have
generated considerable debate on whether the final-state collective effects,
which dominate the mechanism for anisotropic flow in A+A collisions also
drive the anisotropy measured in high-multiplicity p+p and p+A (d+A)
collisions [105–107]. The related question of whether the properties of the
medium produced in the small p+p, p+A and d+A systems are similar to
those produced in the larger A+A systems is also not fully settled.

Before going any farther in this discussion more insight about the anisotropic
flow contribution to the measured anisotropy for U+U collisions at

√
sNN =

193 GeV, Au+Au, Cu+Cu, Cu+Au, and d+Au collisions at
√
sNN = 200 GeV

could be revealed via studying the two-particle ∆φ correlation functions (Cr)
with |∆η| > 0.7. Also further checks for the dominance of flow correlations in
the studied systems was obtained by measuring the second-order four-particle
cumulant c2{4} [31–34]:

c2{4} = 〈〈4〉〉 − 2〈〈2〉〉2, (4.2)

where 〈〈〉〉 represents the averaging first over particles in an event and then
over all events within a given event class. The three sub-event method [34]
was used for these evaluations with sub-events for η1 < −0.35, |η2| < 0.35
and η3 > 0.35.

Figures 4.12, 4.13 and 4.14 show the correlation functions obtained for
U+U, Au+Au, Cu+Au, Cu+Cu, and d+Au collisions for different 〈Nch〉
value. They indicate patently similar correlation patterns with a visible en-
hancement of near-side (∆φ ∼ 0) pairs, reminiscent of the so-called ”ridge”
observed in high multiplicity p+p [98, 99], d+Au [100, 101] and p+Pb colli-
sions [102, 104].

The extracted values for c2{4} vs. 〈Nch〉, using the three-subevent method
shown in Fig. 4.15, indicate negative values which confirm the absence of
significant non-flow contributions, and the dominance of flow correlations to
Cr [82].

In this section we present and compare a comprehensive set of veven1 ,
v2 and v3 measurements for U+U (

√
sNN = 193 GeV), Au+Au, Cu+Cu,
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Cu+Au, and d+Au collisions at
√
sNN = 200 GeV, which should prove in-

valuable in ongoing efforts to constrain theoretical models and obtain a robust
extraction of η

s
(T ). In turn, we also use these measurements to perform scal-

ing tests within the acoustic model framework [108–110] which give insight
on (i) the anisotropic flow contribution to the measured anisotropy for each
system, and (ii) the relative influence of final-state viscous attenuation in the
medium created in A+A, and d+A collisions at comparable 〈Nch〉.
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Fig. 4.12: Two-particle correlation functions for pT -integrated track pairs
with 0.7 < |∆η| < 2.0. Results are shown for U+U (a) collisions (

√
sNN =

193 GeV) and Au+Au (b), Cu+Au (c), and Cu+Cu (d) collisions (
√
sNN =

200 GeV) for 〈Nch〉 = 140. The solid curves, show the result of a Fourier fit
to the data.
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Fig. 4.13: Two-particle correlation functions for pT-integrated track pairs
with 0.7 < |∆η| < 2.0. Results are shown for U+U (a) collisions (

√
sNN =

193 GeV) and Au+Au (b), Cu+Au (c), and Cu+Cu (d) collisions (
√
sNN =

200 GeV) for 〈Nch〉 = 70. The solid curves, show the result of a Fourier fit
to the data.
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Fig. 4.14: Two-particle correlation functions for pT-integrated track pairs
with 0.7 < |∆η| < 2.0. Results are shown for U+U (a) collisions (
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4.2.1 An acoustic model for the viscous attenuation of
flow

As discussed earlier anisotropic flow measurements are sensitive to ini-
tial conditions, the equation of state (EOS) and the transport properties of
the medium. Accordingly, studding the anisotropic flow for collision systems
(U+U, Cu+Au, Cu+Cu, and d+Au) at

√
sNN ∼ 200 GeV will help to un-

derstand the effect of the initial conditions on the bulk observables of the
QGP. Also will give an important insight abut η/s temperature dependence.

Theoretical investigations show that vn ∝ εn for elliptic- and triangular
flow (n = 2 and 3) [83–88], with proportionality constant that depends on
the system size and the specific shear viscosity η

s
(T ), of the created medium.

This proportionality constant also known as viscous attenuation which can
be understood within an acoustic model framework, akin to that for viscous
relativistic hydrodynamics [108–110]:

δTµν(n, t) = exp
(

−βk2
)

δTµν(0), (4.3)

β ∝ η

s

1

R2

t

T
(4.4)

where the energy-momentum tensor Tµν incorporates the dispersion rela-
tion for sound propagation [111]. The viscous coefficient β(T) ∝ η

s
, t ∝ R

is the expansion time, T is the temperature, k = n/R is the wave number
(i.e. 2πR = nλ for n ≥ 1) and R is a characteristic geometric radius of the
created medium.

Equation 4.3 suggests that for a given centrality, the viscous corrections
to the flow harmonics vn grow exponentially as n2:

vn
εn

∝ exp

(

−n2β ′ 1

RT

)

, (4.5)

β ′ ∝ η

s
. (4.6)

This leads to:

ln

(

vn
εn

)

∝ −n2β ′ 1

RT
, (4.7)
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From entropy considerations, the dimensionless size RT, can be expressed
in terms of the mean charged particle multiplicity density 〈Nch〉 for a given
centrality selection; (RT)3 ∝ dNch/dη [112]. Therefore:

ln

(

vn
εn

)

∝ −n2β ′〈Nch〉−1/3. (4.8)

Consequently, Eq. 4.8 provides a transparent and consistent approach to
test and compare the predicted dependence of vn on εn, RT and η

s
in a given

collision system – small or large [113, 114].
Equation 4.8 suggests that at a given multiplicity, the magnitude of vn

for different systems, will be controlled by ǫn and η/s. For different collision
systems the geometrical-driven eccentricity ǫ2, is found to be largely depen-
dent on the colliding systems. However the fluctuations-driven eccentricities
ε1 and ǫ3, are found to be very similar for different collision systems [115].
In the following, the measurements for veven1 and v3 are discussed separately
from those for v2 to highlight this distinction.

4.2.2 The odd flow harmonics veven
1

and v3

Different sets of correlation functions were generated as a function of pT

and 〈Nch〉 to allow a comparison of veven1 and v3 (for each collision system)

for different dimensionless sizes (RT ∝ 〈N1/3
ch 〉) and eccentricities.

The extracted values of veven1 (pT ), for the collision systems are compared
in Fig. 4.16 for different values of 〈Nch〉. Figures 4.16(a), 4.16(b) and 4.16(c)
indicate similar veven1 (pT ) magnitudes for the systems specified at each 〈Nch〉,
as well as the characteristic pattern of a change from negative veven1 (pT ) at
low-pT , to positive veven1 (pT ) for pT≥1 GeV. This pattern confirms the pre-
dicted trends for rapidity-even dipolar flow [74, 80, 95] and further indicates
that for the selected values of 〈Nch〉, veven1 (pT ) is essentially independent of
collision system.

The extracted values of v3(pT), for the different collision systems are
compared in Fig. 4.17 for different values of 〈Nch〉. Figures 4.17(a), 4.17(b)
and 4.17(c), show similar system-independent patterns for v3(pT), but with
magnitudes and trends that differ from those for veven1 (pT).

The system independence of veven1 (pT) and v3(pT) for the indicated 〈Nch〉
values suggests that the fluctuation-driven initial-state eccentricities ε1 and
ε3, and the viscous attenuation (cf. Eq. 4.8) are similar for the indicated
collision systems.
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Fig. 4.16: The extracted veven1 vs. pT for several 〈Nch〉 selections. Results
are compared for U+U, Au+Au, Cu+Au and Cu+Cu for 〈Nch〉 = 140, and
〈Nch〉 = 70 and for U+U, Au+Au, Cu+Au, Cu+Cu and d+Au for 〈Nch〉 =
21± 3.

The 〈Nch〉 dependence of veven1 is compared for all five collision systems in
Fig. 4.18. For 〈Nch〉 > 170, the veven1 values decrease with increasing values of
〈Nch〉, consistent with the expected decrease of ε1 as collisions become more
central. The corresponding values of K are plotted vs. 〈Nch〉−1 for all five
collision systems in Fig. 4.19; they show the expected linear behavior with
〈Nch〉−1 with comparable slopes that are related to 〈p2T 〉. Both Figs. 4.18
and4.19 confirm that veven1 and K are collision system independent.

The 〈Nch〉 dependence of v3 is compared for all five collision systems in
Fig. 4.20. For 〈Nch〉 > 170 v3 values decrease with increasing values of 〈Nch〉,
consistent with the expected decrease of ε3 as collisions become more central.
Figure 4.20 shows that v3 is collision system independent.

Figures 4.18 and 4.20 indicate system-independent magnitudes and trends
for veven1 and v3 analogous to the pT -dependent results shown in Figs. 4.16 and
4.17. These results support our earlier interpretation that the fluctuation-
driven values of ε1 and ε3 have a weak system dependence, and

〈

η
s
(T )
〉

for
the matter created in the respective collision systems are comparable.
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Fig. 4.17: The extracted v3 vs. pT for several 〈Nch〉 selections. Results
are compared for U+U, Au+Au, Cu+Au and Cu+Cu for 〈Nch〉 = 140, and
〈Nch〉 = 70 and for U+U, Au+Au, Cu+Au, Cu+Cu and d+Au for 〈Nch〉 =
21± 3.
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Fig. 4.18: Comparison of the 〈Nch〉 dependence of veven1 for all collision sys-
tems for the pT selections 0.2 < pT (GeV/c) < 4. The 〈Nch〉 values for d+Au
correspond to ∼ 0-20% central collisions.
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Fig. 4.19: Comparison of the 〈Nch〉−1 dependence of the extracted values of
K for all collision systems. The dashed line represent the straight line fit.

0

0.01

0.02

0.03

0 200 400 600

}
~

̂ Nch ̂

Au+Au

���
Cu+Au

Cu+Cu

d+Au
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4.2.3 The even flow harmonic v2

Diverse sets of correlation functions were generated as a function of pT

and 〈Nch〉 to allow a study of v2 (for each collision system) for different

dimensionless sizes (RT ∝ 〈N1/3
ch 〉) and eccentricities.
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Fig. 4.21: The extracted v2 vs. pT for several 〈Nch〉 selections. Results
are compared for U+U, Au+Au, Cu+Au and Cu+Cu for 〈Nch〉 = 140, and
〈Nch〉 = 70 and for U+U, Au+Au, Cu+Au, Cu+Cu and d+Au for 〈Nch〉 =
21± 3.

The v2(pT) values shown in Figs. 4.21(a), (b) and (c) contrasts with
those for veven1 (pT) and v3(pT). That is, the trends for a given 〈Nch〉 are
independent of the collision system, but the magnitudes are not system-
independent, albeit with differences that grow with 〈Nch〉.

The system dependent differences, apparent for 〈Nch〉 = 140 and 70
(Figs. 4.21(a) and 4.21(b)), can be attributed to the system-dependent ε2
values for each 〈Nch〉. For 〈Nch〉 ∼ 21 (Fig. 4.21(c)), a residual system-
dependent long-range di-jet-induced non-flow contribution could add to the
observed differences.

The 〈Nch〉 dependence of v2 is compared for all five collision systems in
Fig. 4.22. For 〈Nch〉 > 170, the v2 values show a decrease with increasing val-
ues of 〈Nch〉, consistent with the expected decrease of ε2 as collisions become
more central. The apparent decrease in the values of v2 for 〈Nch〉 < 170,
corroborate the dominant role of size-driven viscous attenuation of the flow
harmonics for these multiplicities. Note that ε2 increases for 〈Nch〉 < 170.
The v2 comparisons shown in Fig. 4.22, accentuate the system-dependent
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Fig. 4.22: Comparison of the 〈Nch〉 dependence of v2 for all collision systems
for the pT selections 0.2 < pT (GeV/c) < 4. The 〈Nch〉 values for d+Au
correspond to ∼ 0-20% central collisions.

patterns observed in Figs. 4.22(a), 4.22(b) and 4.22(c). Here, the sizable
uncertainties for the d+Au data points, reflect the systematic uncertainty
estimates for residual non-flow contributions which are smaller for these pT -
integrated measurements.

4.2.4 Data scaling features

The striking system-dependent patterns shown in Figs. 4.22 and 4.21 can
be attributed to the strong dependence of ε2 on system size for a fixed value of
〈Nch〉. Using the Monte Carlo Glauber (MC-Glauber) calculations [114, 116]
we can compute εn as a function of collision centrality or 〈Nch〉, and use them
to scale out the effects of geometry.

Figures 4.21 (a) and (b) confirm the influence of the system-dependent ε2
values for a given 〈Nch〉. That is, they show data collapse onto a single curve
for v2/ε2 vs. pT as would be expected if the viscous attenuation for U+U,
Au+Au, Cu+Au and Cu+Cu systems are similar (cf. Eq. 4.8). Figure 4.21
(c) shows that d+Au is following the same features of the larger systems.

This shape dependence, which weakens for low 〈Nch〉, is confirmed via the
plot of v2/ε2 vs. 〈Nch〉−1/3 shown in Figs. 4.24 and 4.25. Note that a linear
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dependence of ln(vn/εn) vs. 〈Nch〉−1/3 implies a slope parameter β
′ ∝

〈

η
s
(T )
〉

within the acoustic model framework (c.f. Eq. 4.8). The inset in Fig. 4.25
indicates a marked similarity between the slopes of the eccentricity-scaled
v2 for U+U, Au+Au, Cu+Au and Cu+Cu collisions. The eccentricity-scaled
results for d+Au also follow the data trend for these heavier collision species.
These observations suggest that

〈

η
s
(T )
〉

for the medium created in these
systems is comparable.
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Chapter 5

Beam Energy and Collision
System Dependence of Flow
Fluctuations

The initial-state fluctuations (i.e. fluctuations of the impact parameter
within a sample of events [118], as well as the fluctuations of participant
positions [119–121]) influence the magnitude of the flow coefficients. Con-
sequently, precision extraction of the specific shear viscosity of the QGP
requires reliable constraints for the initial-state models employed in such ex-
tractions. Such constraints can be obtained via the two- and multi-particle
flow harmonics measurements [33, 34].

As discussed before, the ratio vn{4}/vn{2} can be used to estimate the
strength of the fluctuations as a fraction of the measured flow harmonics.
Thus a value for the ratio vn{4}/vn{2} ∼ 1 indicates little, if any, fluctuations
whereas a value less than one indicates large fluctuations.

(vn{4}
vn{2}

)4

= 1− σ2(v2n)

〈v22〉2
(5.1)

Therefore extensive experimental measurements of vn{2}, vn{4} and vn{4}/vn{2}
can help establish whether flow fluctuations are dominated by initial- or final-
state effects or both. Accordingly a comprehensive set of fluctuations mea-
surements that span a broad range of

√
sNN (T, µB and η/s) and different

collision system at a given beam energy could potentially provide, (i) unique
supplemental restraints to discern between different initial-state models and
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Fig. 5.1: The integrated Two-, four- and six-particle elliptic flow, v2{k},
k = 2, 4 and 6 (pannel a) and their ratios (panels b and c) vs. central-
ity for Au+Au collisions at

√
sNN = 200 GeV. The bands represent model

calculations presented in Ref [117].
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(ii) reduce the fluctuations impact on the uncertainties correlated with the
η/s extraction.

Illustrative examples of the integrated two-, four- and six-particle elliptic
flow and their ratios vs. centrality, are presented in Fig.(5.1) (a, b and c).
In panel (a), we show the characteristic centrality dependence of two-, four-
and six-particle elliptic flow, as well as the good agreement between v2{4}
and v2{6}. The ratio v2{4}/v2{2} which serves as a metric for elliptic flow
fluctuations (panel (b)), show the expected decrease in the magnitude of the
fluctuations from central to peripheral collisions, consistent with the patterns
expected when initial-state eccentricity fluctuations dominate. The elliptic
flow fluctuations obtained from hydrodynamic calculations [117] (grey band)
over-predict the measured magnitude, while the eccentricity fluctuations ap-
pear to under-predict the measured magnitude. The latter is to be expected
if eccentricity fluctuations are not the only source of the flow fluctuations.

In the following, more detailed measurements for the BES and different
collision systems are presented and discussed.

5.1 Beam Energy Dependence of Flow Fluc-

tuations

As introduced earlier, the dependence of the elliptic flow and its fluctua-
tions on system dynamics (i.e. η/s(µB, T)) can be revealed via comparisons
of the measurements for Au+Au at

√
sNN = 7.7 − 200 GeV. The two-,

four and six-particle integrated elliptic flow and their ratios vs. centrality,
for Au+Au at

√
sNN = 7.7 − 200 GeV are presented in Fig.(5.2). They

show an increase with beam energy. However, the elliptic flow fluctuations,
(v2{4}/v2{2}) shown in Fig.(5.2) (d) show little, if any, dependence on the
beam energy. By contrast, they show the expected decrease in the magni-
tude of the fluctuations from central to peripheral collisions, consistent with
patterns expected when initial-state eccentricity fluctuations dominate. Fig-
ure.(5.2) (e) shows good agreement between four- and six-particle elliptic
flow in accordance with the expectation for anisotropic flow. Accordingly,
the elliptic flow fluctuation measurements for Au+Au at BES energies does
not appear to depend on the system dynamics.

Event-shape selection [122] gives access to more detailed differential mea-
surements of the fluctuations because it allows more constraints to be placed
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Fig. 5.2: The integrated Two-, four- and six-particle elliptic flow v2{k},
k = 2, 4 and 6 (panels (a) and (b)), and their ratios (panel (c) as a function
of centrality for Au+Au collisions at

√
sNN = 7.7− 200 GeV.

on the initial-state fluctuations [123] by partitioning the respective centrality
classes into different shape selections. Such measurements can even help to
disentangle the hydrodynamic response from the initial-state effects.

Event-shape selections were made via selections on the magnitude of the
second-order reduced flow vector q2 [118, 124], defined as:

q2 =
|Q2|√
M

, (5.2)

where Q2 is the magnitude of the second-order harmonic flow vector cal-
culated from the azimuthal distribution of particles within |η| < 0.35, and
M is the charged hadron multiplicity of the same sub-event. Note that the
associated flow measurements are preformed for |η| > 0.35.

Figure 5.3 (a) shows that the q2 distribution for 40 − 50% Au+Au col-
lisions at

√
sNN = 200 GeV is relatively broad and can accomodate several

selections as indicated by the bands. Fig. (5.3) (b) illustrates the efficacy of
these selections. That is, it shows a clear increase of the extracted values of
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Fig. 5.4: Comparison of (a) v2{2}, (b) v2{4} and (c) v2{4}/v2{2} as a
function of centrality for several q2 selections for Au+Au collisions at

√
sNN

= 200 GeV.

v2{2} for |η| > 0.35 with q2.
The results for shape selection in Au+Au collisions at

√
sNN = 39, 54 and

200 GeV are summarized as a function of centrality in Figs. 5.4, 5.5 and 5.6.
Panels (a) and (b) indicate sizable increases for both v2{2} and v2{4} with
q2 selection. Note however, that the event-shape selections are less effective
for the lower beam energies (cf. Figs.5.5 and 5.6) due to smaller event plane
resolutions at these beam energies. Figs. 5.4 - 5.6 (c) show a modest decreas-
ing trend in the magnitude of the fluctuations with q2 selection. Nonetheless,
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function of centrality for several q2 selections for Au+Au collisions at
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Fig. 5.6: Comparison of (a) v2{2}, (b) v2{4} and (c) v2{4}/v2{2} as a
function of centrality for several q2 selections for Au+Au collisions at

√
sNN

= 39 GeV.

the measurements indicate that the elliptic flow fluctuations are sensitive to
the event-shape selection and thus provide an additional set of constraints
for models.

Additional important insights on flow fluctuations can be obtained by
studying the flow fluctuations of identified particles. Figs. 5.7, 5.8 and 5.9
show the two- and four-particle elliptic flow and their ratios vs. centrality
for identified particles in Au+Au collisions at

√
sNN = 200, 54 and 39 GeV

respectively. The mass ordering effect on the magnitude of two- and four-
particle elliptic flow can be seen in panels (a, b and c). This mass ordering
effect, which cancels out for the ratio v2{4}/v2{2}, presented in panel (d),
shows the expected decrease in the magnitude from central to peripheral col-
lisions, consistent with the patterns expected when initial-state eccentricity
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Fig. 5.7: The integrated v2{2}, v2{4}, and v2{4}/v2{2} of identified hadrons
as a function of centrality for Au+Au collisions at

√
sNN = 200 GeV; are

shown.

fluctuations dominate.
Further insights about the dynamical final-state fluctuations can be gained

via an examination of the projection of the flow fluctuation onto a final state
variable such as pT . Fig. 5.10 shows the two- and four-particle elliptic flow
coefficients and their ratio vs. pT, for Au+Au collisions at different beam
energies. The elliptic flow fluctuations (v2{4}/v2{2}), show a rather weak pT

dependence with large uncertainty for the lower beam energies. The differ-
ential measurements shown in Fig. 5.10, further suggests that the influence
of the dynamical final-state fluctuations are much less than those for the
initial-state-driven fluctuations.
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hadrons as a function of centrality for Au+Au collisions at
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are shown.
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Fig. 5.9: The integrated v2{2}, v2{4}, and v2{4}/v2{2} of identified
hadrons as a function of centrality for Au+Au collisions at

√
sNN = 39 GeV;

are shown.
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5.2 Collision System Dependence of Flow Fluc-

tuations
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Fig. 5.11: The integrated v2{2}, v2{4}, v2{6} and their ratios as a function
of centrality for U+U collisions at

√
sNN = 193 GeV, Au+Au, Cu+Au, and

Cu+Cu collisions at
√
sNN = 200 GeV; are shown.

The BES measurements presented earlier, suggest that for a given beam
energy, little if any change in η/s is to be expected for different collision
systems. Therefore, fluctuations measurements for different collision systems
can give important constraints for initial-state models. In this section new
measurements for pT -integrated and differential v2{2}, v2{4}, v2{6} and their
ratios, are presented for for U+U collisions at

√
sNN = 193 GeV, and Au+Au,

Cu+Au and Cu+Cu collisions at
√
sNN = 200 GeV.

The integrated v2{2}, v2{4}, v2{6} and their ratios, for diffrent collision
systems, are shown in Fig.(5.11). They indicate the expected system de-
pendent trends of v2{2}, v2{4}, v2{6}, with more pronounced differences for
Cu+Au and Cu+Cu, in line with the expected trends for initial-state eccen-
tricity fluctations [115]. Interestingly, the elliptic flow fluctuations shown in
Fig.(5.11) (d), indicate similar fluctuations for the larger systems (Au+Au
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Fig. 5.12: The integrated v2{2}, v2{4}, and v2{4}/v2{4} as a function of
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Fig. 5.13: The integrated identified hadrons v2{2}, v2{4}, and v2{4}/v2{4}
as a function of centrality for U+U collisions at

√
sNN = 193 GeV; are shown.
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Fig. 5.15: The pT differential v2{2}, v2{4}, and v2{4}/v2{4} for different
collision systems at

√
sNN ∼ 200 GeV are shown.

and U+U). This is to be expected, especially in more central collisions where
the eccentricity is small. As highlighted before, these measurements indicate
good agreement between the four- and six-particle elliptic flow (Fig.(5.11)
(e)) as would be expected from a Gaussian distribution of the flow fluctua-
tions.

The results for event shape selection for different collision systems, are
summarized as a function of centrality in Fig. 5.12. Both v2{2} and v2{4}
indicate sizable increases with the q2% selection. By contrast, v2{4}/v2{2}
shows a more modest decreasing trend in the magnitude of the fluctuations
with q2 selection. Nonetheless, the measurements indicate that the elliptic
flow fluctuations are sensitive to the event-shape selection and thus provide
an additional set of constraints for models.

Figures 5.13 and 5.14 show the two- and four-particle elliptic flow and
their ratios, vs. centrality for identified particles in U+U (

√
sNN = 193 GeV)

and Cu+Au collisions (
√
sNN = 200 GeV) respectively. The mass ordering

effect on the magnitude of two- and four-particle elliptic flow can be seen
in panels (a, b and c). This effect, which cancels for the ratio v2{4}/v2{2},
shows the expected decrease in the magnitude from central to peripheral
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collisions, consistent with patterns expected when initial-state eccentricity
fluctuations dominate.

The dynamical final-state fluctuations effect is introduced in Fig 5.15; it
shows the two- and four-particle elliptic flow and their ratio vs. pT for U+U
(
√
sNN = 193 GeV), Au+Au and Cu+Au collisions (

√
sNN = 200 GeV). The

implied elliptic flow fluctuations (v2{4}/v2{2}), show a weak pT dependence
with large uncertainty for Cu+Au.

91



Chapter 6

Conclusion

In this work, we have used the two-particle correlation method as well as
multi-particle cumulant method to carry out a comprehensive set of STAR
anisotropic flow measurements for Au+Au collisions spanning the beam en-
ergy range

√
s
NN

= 7.7 − 200 GeV, U+U at
√
sNN = 193 GeV and Cu+Au,

Cu+Cu and d+Au collisions at
√
sNN = 200 GeV. The presented measure-

ments show characteristic dependencies on centrality,
√
sNN, η, pT and col-

lision system, consistent with the development of hydrodynamic-like flow in
Quark-Gluon Plasma (QGP) created in these collisions. The rapidity-even
dipolar flow (veven1 ) measurements underscore the importance of momentum
conservation and the role of geometric fluctuations generated in the initial
stages of the collisions. The vn=2−5 measurements accentuate the influence
of the specific shear viscosity (η

s
), initial-state eccentricity (εn) and dimen-

sionless size (RT), on the magnitude of vn and its viscous attenuation in
the QGP. The measurements for elliptic flow fluctuations indicate sizeable
fluctuations in central collisions, a modest dependence on event-shape and
system size, and a rather weak dependence on pT , beam energy and particle
species. Accordingly the elliptic flow fluctuations measurements are dom-
inated by the initial-state eccentricity fluctuations. The detailed vn≤5 and
fluctuations measurements presented, give new insight into the patterns of
viscous attenuation and η

s
for the matter created in the systems studied. The

unique set of measurements spanning different systems and the BES ener-
gies, are essential to ongoing theoretical efforts to extract both the µB and
T dependence of the specific shear viscosity η

s
, of the quark-gluon plasma.
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