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Abstract of the Dissertation

Measurements of event-by-event fluctuation of anisotropic flow in

pp, p+Pb and Pb+Pb collisions with the ATLAS detector

by

Peng Huo

Doctor of Philosophy

in

Chemistry

Stony Brook University

2018

Heavy ion collisions create a deconfined state of quarks and gluons, which

behaves as the most perfect fluid in nature and is well described in terms of

nearly inviscid hydrodynamics. Collective motion of the nuclear matter is

observed to be anisotropic in momentum space, which is intepreted as the

response to the lumpy density profile at the initial stage. This anistropic

collective behavior is characterized by a set of flow harmonics vn = vneinΦn

corresponding to different patterns.

In the past, extensive flow studies assume the system is boost invariant

and focus on the mid-rapidity, while the expansion of the nuclear matter is

actually three dimensional. Recently, evidences indicate the correlation be-

tween flow harmonics vneinΦn from two separated pseudorapidity (η) interval
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weakens as the pseudorapidity separation broadens. This phenomenal is re-

ferred to as “decorrelation” and is studied in this thesis work at ATLAS in

Pb+Pb collisions at 2.76 TeV and 5.02 TeV. The Vn decorrelation is found

to have comparable contributions from the flow magnitude (vn) and the flow

phase (Φn). Mixed-type decorrelations, e.g. VnVm, VnVmVk are also mea-

sured. In case of V2 and V3, their decorrelation is found to be independent

of each other, while the decorrelation of V4 and V5 are found to be driven by

nonlinear contribution from V 2
2 and V2V3, respectively.

Collective effects are also found in these small systems, pp and p+Pb,

which were treated as control experiments to the Pb+Pb collisions. Corre-

lations of two flow harmonics vn and vm are measured via three- and four-

particle cumulants in 13 TeV pp, 5.02 TeV p+Pb, and 2.76 TeV peripheral

Pb+Pb collisions with the ATLAS detector. These results show a negative

correlation between v2 and v3 and a positive correlation between v2 and v4

for all collision systems and over the full multiplicity range. However, the

magnitudes of the correlations are found to depend strongly on the event

multiplicity, the choice of the transverse momentum range and the collision

systems. The relative correlation strength, obtained by normalization of the

cumulants with the ⟨v2
n⟩ from a two-particle correlation analysis, is similar

in the three collision systems and depends weakly on the event multiplicity

and transverse momentum. These results based on the subevent methods

provide strong evidence for a similar long-range multi-particle collectivity in

pp, p+Pb and peripheral Pb+Pb collisions.

iv



Table of Contents

Contents

1 Introduction 1

1.1 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . 1

1.2 Quark-gluon plasma . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Heavy-ion collisions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 QGP signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Collective phenomena in heavy-ion collisions (H.I.C.) 12

2.1 Collective Phenomena in H.I.C . . . . . . . . . . . . . . . . . . 12

2.2 Harmonic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Flow paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Hydrodynamic framework . . . . . . . . . . . . . . . . . 17

2.3.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Medium response . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 flow and non-flow . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Two-particle azimuthal correlation . . . . . . . . . . . . 23

2.4.3 Multi-particle correlation . . . . . . . . . . . . . . . . . . 25

2.5 Flow in small system . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Topic in this thesis work . . . . . . . . . . . . . . . . . . . . . . 35

3 The ATLAS detector 37

3.1 Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 ATLAS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Inner detector . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Forward Calorimeter . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Minimum Bias Trigger Scintillator . . . . . . . . . . . . 48

3.4 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



4 Measurements of longitudinal flow fluctuations in Pb+Pb 51

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 A simple interpretation of the observables . . . . . . . . . . . . 57

4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.1 rn∣n;1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.2 Rn∣n;2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.3 rn∣n;k (k > 1) . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Mixed-harmonics correlation . . . . . . . . . . . . . . . . . . . . 80

4.8 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Measurements of (a)symmetric cumulants correlations in pp,

p+Pb and Pb+Pb 88

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Comparison between standard and subevent methods . . . . . 100

5.4.1 sc2,3{4} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 sc2,4{4} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.3 ac2{3} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Comparison between collision systems . . . . . . . . . . . . . . 107

5.5.1 sc2,3{4}, sc2,4{4} and ac2{3} . . . . . . . . . . . . . . . . 107

5.5.2 nsc2,3{4}, nsc2,4{4} and nac2{3} . . . . . . . . . . . . . 107

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Measurements of two-particle correlations in pp, p+Pb

and Pb+Pb 112

6.1 2D Two-particle correlations . . . . . . . . . . . . . . . . . . . . 112

6.2 1D Two-particle correlations . . . . . . . . . . . . . . . . . . . . 114

vi



6.3 Template fitting method . . . . . . . . . . . . . . . . . . . . . . 118

6.4 One-step correction after template fit . . . . . . . . . . . . . . . 120

6.5 Systematic error . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Conclusions 128

vii



List of Figures

List of Figures

1 Schematic phase-diagram of QCD matter . . . . . . . . . . . . 4

2 Schematic of the coordinate system for heavy ion collisions . . 6

3 The schematic of the mapping of the experimental observables

to centrality variable and to Glauber quantities [8]. . . . . . . 8

4 Schematic of space-time evolution of a heavy ion collision. . . 9

5 Schematic of an non-central heavy ion collision. . . . . . . . . 13

6 Anistropy in initial geometry of the density profile. . . . . . . 14

7 Schematic of coordinate system in momentum space. . . . . . 15

8 Schematic of the first few n−th order anisotropy in transverse

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

9 vn(pT) and integrated vn as a function of centrality in Pb+Pb

collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

10 Schematic of Color Glass Condensate and Glasma . . . . . . . 20

11 Initial energy density (arbitrary units) in the transverse plane

from IP-Glasma (a), and MC-Glaube (b) models [19]. . . . . . 21

12 example of two particle correlation function in 2D and 1D . . 26

13 Cumulants v{2k}(pT) in Pb+Pb . . . . . . . . . . . . . . . . . 29

14 Symmetric cumulant scn,m{4} and normalized nscn,m{4} in

Pb+Pb collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

15 2D two-particle correlation function in high-multiplicity pp,

p+Pb and Pb+Pb collisions at LHC from ATLAS . . . . . . . 32

16 v2(pT) and v3(pT) compared between p+Pb and Pb+Pb with

similar multiplicity. . . . . . . . . . . . . . . . . . . . . . . . . . 33

17 Comparison between v2(pT) in p+Pb collisions with hydrody-

namic model and Glauer model. . . . . . . . . . . . . . . . . . . 34

18 v2(pT) for Ks
0 and Λ particles in pp, p+Pb and Pb+Pb(top).

Multi-particle cummulants v2{k} in three systems(bottom). 35

viii



19 The CERN accelerator complex . . . . . . . . . . . . . . . . . . 38

20 Main subsystems of the ATLAS detector . . . . . . . . . . . . 40

21 Scheme of the ATLAS inner detector barrel being crossed by

one high-energy particle, labeled and with dimensions. . . . . 42

22 Quarter-section of the ATLAS inner detector showing the ma-

jor detector elements along with their dimensions. . . . . . . 43

23 Overview of the ATLAS calorimetry. . . . . . . . . . . . . . . . 45

24 Schematic diagram showing the three FCal modules located

in the end-cap cryostat. . . . . . . . . . . . . . . . . . . . . . . . 46

25 Left Panel:Arrangement of ZDC modules on the side with po-

sition sensing EM module. Right Panel: Configuration of the

EM module with position sensing rods . . . . . . . . . . . . . . 47

26 Layout of one of the two MBTS disks in RunI . . . . . . . . . 49

27 Schematic layout of the ATLAS trigger and data acquisition

system in Run-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

28 Longitudinal flow fluctuation (a) asymmetry of flow amplitude

vn (b) rotation of event plane Φn at different pseudorapidities

range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

29 Schematic illustration of procedure for constructing the corre-

lator rn∣n;k(η). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

30 Schematic illustration of procedure for constructing the corre-

lator Rn,n∣n,n(η). . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

31 The r2∣2;1(η) measured for several ηref ranges in Pb+Pb. . . . 63

32 The r3∣3;1(η) measured for several ηref ranges in Pb+Pb. . . . 64

33 The r2∣2;1(η) measured in several pT ranges. . . . . . . . . . . . 65

34 The r3∣3;1(η) measured in several pT ranges. . . . . . . . . . . . 66

35 The r2∣2;1(η) compared between the two collision energies. . . 69

36 The r3∣3;1(η) compared between the two collision energies. . . 70

37 The r4∣4;1(η) compared between the two collision energies. . . 70

38 The R2∣2;2(η) compared between the two collision energies. . . 72

39 The R3∣3;2(η) compared between the two collision energies. . . 73

ix



40 Centrality dependence of F r
2;1, F r

3;1 and F r
4;1 for Pb+Pb at

2.76 TeV and 5.02 TeV. . . . . . . . . . . . . . . . . . . . . . . 74

41 Centrality dependence of F r
2;2, F r

3;2 and F r
4;2 for Pb+Pb at

2.76 TeV and 5.02 TeV. . . . . . . . . . . . . . . . . . . . . . . 74

42 Centrality dependence of ratio of F r
n;1 values and FR

n;2 values

at 2.76 TeV and 5.02 TeV. . . . . . . . . . . . . . . . . . . . . . 75

43 Centrality dependence of ratio of F̂ r
n;1 ≡ F

r
n;1ybeam values and

F̂R
n;2 ≡ F

R
n;2ybeam values at 2.76 TeV and 5.02 TeV. . . . . . . . 76

44 The r2∣2;k for k = 1–3 compared with rk
2∣2;1

for k = 2–3 in various

centrality intervals for Pb+Pb collisions at 5.02 TeV. . . . . . 77

45 The r3∣3;k for k = 1–3 compared with rk
3∣3;1

for k = 2–3 in various

centrality intervals for Pb+Pb collisions at 5.02 TeV. . . . . . 78

46 The values of F r
n;k/k for k = 1,2 and 3 for n = 2 and n = 3,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

47 The r2∣2;2(η) and R2∣2;2(η) in various centrality intervals for

Pb+Pb collisions at 5.02 TeV. . . . . . . . . . . . . . . . . . . . 80

48 The r3∣3;2(η) and R3∣3;2(η) in various centrality intervals for

Pb+Pb collisions at 5.02 TeV. . . . . . . . . . . . . . . . . . . . 81

49 The estimated event-plane twist component F twi
n;2 and FB asym-

metry component F asy
n;2 as a function of Npart for n = 2 and 3

for Pb+Pb collisions at 5.02 TeV. . . . . . . . . . . . . . . . . 82

50 The r2,3∣2,3 (circles) and r2∣2;1r3∣3;1 (squares) as a function of η

for several centrality intervals. . . . . . . . . . . . . . . . . . . 83

51 Comparison of r2∣2;2, r2,2∣4 and r4∣4;1 for several centrality in-

tervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

52 Comparison of r2,3∣2,3, r2,3∣5 and r5∣5;1 for several centrality in-

tervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

53 Comparison of the slopes of the correlators as a function of

Npart for three groups of correlators: r2,3∣2,3 and r2∣2;1r3∣3;1,

r2∣2;2, r2,2∣4 and r4∣4;1, r2,3∣2,3, r2,3∣5 and r5∣5;1. . . . . . . . . . . 86

54 Schematic view of the η coverage of the Inner Detector. . . . 91

x



55 Schematic view of the partition of Inner Detector in two-

subevent method. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

56 Schematic view of the partition of Inner Detector in three-

subevent method. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

57 Schematic view of the partition of Inner Detector in four-

subevent method. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

58 Distributions of the reference particle multiplicity for particles

with 0.3 < pT < 3 GeV from pp, p+Pb and low-multiplicity

Pb+Pb collisions . . . . . . . . . . . . . . . . . . . . . . . . . . 97

59 The symmetric cumulant sc2,3{4} as a function of ⟨Nch⟩ in pp,

p+Pb and Pb+Pb. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

60 The symmetric cumulant sc2,4{4} as a function of ⟨Nch⟩ in pp,

p+Pb and Pb+Pb. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

61 The symmetric cumulant ac2{3} as a function of ⟨Nch⟩ in pp,

p+Pb and Pb+Pb. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

62 The ⟨Nch⟩ dependence of sc2,3{4}, sc2,4{4} and ac2{3} for pp,

p+Pb and Pb+Pb on the same plot. . . . . . . . . . . . . . . . 108

63 The ⟨Nch⟩ dependence of nsc2,3{4}, nsc2,4{4} and nac2{3} for

pp, p+Pb and Pb+Pb on the same plot. . . . . . . . . . . . . . 109

64 An example of signal distribution, mixed-event distribution

and correlation function from p+Pb collision. . . . . . . . . . . 114

65 The landscape of 1D correlation function in Y (∆φ), integrated

over 2 < ∣∆η∣ < 5 in 5.02TeV p+Pb. . . . . . . . . . . . . . . . . 116

66 The landscape of 1D correlation function in Y (∆φ), integrated

over 2 < ∣∆η∣ < 5 in 13TeV pp. . . . . . . . . . . . . . . . . . . . 117

67 An example of template fit to the Y (∆φ) in 13 TeV pp colli-

sions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

68 ZYAM procedue to get Gperi using a second order polynomila

fit. Left: p+Pb at 5.02TeV, Right: pp at 13TeV. . . . . . . . 121

69 The values of vn{2, tmp}2 from template fit and vn{2}2 with

different choice of peripheral bins in p+Pb. . . . . . . . . . . . 122

xi



70 [The values of vn{2, tmp}2 from template fit and vn{2}2 with

different choice of peripheral bins in pp. . . . . . . . . . . . . . 124

71 vn from two particle correlation with 0.3 < pT < 3 GeV in pp

in pp, p+Pb and Pb+Pb. . . . . . . . . . . . . . . . . . . . . . 126

72 vn from two particle correlation with 0.5 < pT < 5 GeV in pp

in pp, p+Pb and Pb+Pb. . . . . . . . . . . . . . . . . . . . . . 127

xii



List of Tables

List of Tables

1 The correction to remove duplicated particle multiple. Here

ωk =
∑iw

k+1
i

(∑iwi)
k+1 and qkn =

∑iw
k
i e
inφi

∑iw
k
i

and wi is the particle weight

and φi is the azimuthal angle of particle. . . . . . . . . . . . . . 62

2 The list of observables measured in flow decorrelation analysis. 63

3 Systematic uncertainties in percent for 1 − r2∣2;k and 1 − r3∣3;k

at η = 1.2 in selected centrality intervals. . . . . . . . . . . . . . 67

4 Systematic uncertainties in percent for 1 − R2∣2;2, 1 − R3∣3;2,

1 − r4∣4;1 and 1 − r5∣5;1 at η = 1.2 in selected centrality intervals. 68

5 Systematic uncertainties in percent for 1− r2,3∣2,3, 1− r2,2∣4 and

1 − r2,3∣5 at η = 1.2 in selected centrality intervals. . . . . . . . 68

6 Results of the fits to the ratio of F r
n;1, FR

n;2, F̂ r
n;1 ≡ F r

n;1ybeam

and F̂R
n;2 ≡ F

R
n;2ybeam values at 2.76 TeV and 5.02 TeV. . . . . . 76

7 The list of datasets used in symmetric cumulant analysis. . . 96

xiii



1 Introduction

In this section, we will briefly discuss the object of the study in this thesis.

In Section 1.1, we will discuss the Quantum Chromodynamics, which deals

with elementary particles (quarks) interacting via the strong force and with

the elementary particles (gluons) which are the strong force carriers. In Sec-

tion 1.2 we will discuss the object of this study, quark-gluon plasma (QGP),

which is a new state of matter consisting of deconfined quarks and gluons.

In Sections 1.3 and 1.4, we will discuss how QGP can be created in ultra-

relativistic heavy-ion collisions and what evidences indicate the formation of

QGP.

1.1 Quantum Chromodynamics

One long pursuit in particle physics is to answer the question what are the ba-

sic constituents of matter and how do they interact with each other. Quarks

and gluons, collectively called partons, are the most fundamental constituents

for nuclear matter. Quarks are “glued” by gluons to form composite particles

called hadrons, the most stable of which are protons and neutrons. Quarks

possess a property called color charge. There are three types color charge:

arbitrarily labeled red, green and blue, and the corresponding negative units

(“anti-red”,“anti-green”,“anti-blue” ). Each quark carries a color, while ev-

ery antiquark carries an anti-color. Gluon is bi-colored, i.e. they carry one

positive and one negative unit of color. The system of attraction and repul-

sion between quarks is called strong interaction, which is mediated by ex-

changing gluons. The theory that describes strong interactions is Quantum

chromodynamics (QCD), which is a non-abelian gauge theory with symmetry

group SU(3). Quantum Chromodynamics has two peculiar properties:

• Asymptotic freedom. Strong interaction strength becomes asymptoti-

cally weaker at large energies (or equivalently at short distances). This

property is related to competition between screening and anti-screening

of color charges. Vacuum fluctuations produced a cloud of virtual
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quark-antiquark pairs around a quark. In the vicinity of the quark,

the vacuum becomes polarized: virtual antiquarks of opposing charge

are attracted to it, and virtual quarks of like charge are repelled. This

polarization tends to screen the effective color charge of the quark seen

by other quarks and the interaction strength becomes weaker with dis-

tance. On the contrary, cloud of virtual gluons are also polarized and

tend to augment and change the effective color of the quark due to

the fact a gluon is bi-colored. This is sometimes called anti-screening.

For standard QCD with three colors, as long as there are no more

than 16 flavors of quark (not counting the antiquarks separately), anti-

screening prevails and the the strong interaction is asymptotically free.

This phenomenon is a unique feature of non-abelian gauge theory.

• Color confinement. This phenomenon is closely related to asymptotic

freedom, which states that no single quark exist in isolated state. For

example, as the quark and antiquark in a pair are separated, the gluon

field between a pair of color charges forms a narrow flux tube (or string)

between them. Because of the behavior of the gluon field, the strong

force between the particles is constant regardless of their separation.

Therefore, the gluon binding potential is proportional to the distance.

At some point, rather than extending the tube further, it becomes

energetically favorable to produce a new quark-antiquark pair which

combine with the existing quarks and antiquarks to form two new pairs

(hadrons). This string breaking mechanism prevents produce isolated

quark(antiquark) in nature. Hadrons are categorized into two families:

baryons, made of three quarks; and mesons, made of one quark and

one antiquark. Protons and neutrons are examples of baryons.

1.2 Quark-gluon plasma

Deconfined state of quarks is expected at extremely high temperature and/or

high nuclear density. As the density increases, each quark will find more

2



quarks in its vicinity. This lead to screening of the color charge and less

binding energy between them. At a sufficient high nuclear density, the bind-

ing energy drops to zero and quarks can move freely over an extended range

beyond the size of a hadron. This deconfinement mechanism is similar to

Debye screening effect in plasma, where the electric charges are screened due

to the presence of other mobile charges. As the temperature increases, the

energy density also increases and produces numerous virtual quark-antiquark

pairs from vacuum, which also leads to the screening effect. This deconfined

state is firstly called as quark -gluon plasma (QGP) by Edward Shuryak in

1978 [1].

Figure 1 is a sketch of the possible QCD phase diagram, including con-

jectures which are not fully established. The vertical axis is temperature T ,

which is related to energy density ε, and the horizontal axis is baryon chem-

ical potential µB, which reflects the net baryon (number of quarks offset by

the number of anti-quarks) density. The vacuum is at the origin of the axes

and the ordinary nuclear matter is at T = 0 MeV and µB = 900 MeV (the

mass of a nucleon).

In the lower left region, quarks and gluons are confined in the hadron

state, while if keeping µB constant and increase the temperature, the quark-

gluon plasma state is reached. The strength of the color force means that

quark-gluon plasma behaves as a near-ideal Fermi liquid, while hadrons are

color neutral and weakly interacted behaving like gas. From lattice QCD

calculations [2–4], the phase transition is predicted to appear as smooth

crossover at finite µB. For example, Lattice QCD calculations at µB = 0

indicate that the transition occurs around temperatures of ∼ 170 MeV [5].

On the other hand, at high µB, a first order phase transition is predicted. It

is believed that the two different phase transitions are separated by a QCD

critical point [6]. Apart from hadrons and QGP phase, a color superconduc-

tor phase is conjectured at the lower right corner. This low T and high µB

state is conjectured to exist in the core of neutron stars, which is formed by

the gravitational collapse of large stars. The structure of the phase diagram
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Figure 1: Schematic phase-diagram of QCD matter. Solid lines indicate

phase boundaries between the different phases. The solid circle indicates

the critical point for the hadron-gas to QGP phase transition. Note that

the existence of a critical point is conjectured, its existence has not been

established.

is of great interest since it is determined by the QCD.

1.3 Heavy-ion collisions

Ultra-relativistic heavy-ion collisions are proposed as one method to create

quark-gluon plasma in laboratory [7]. Two nuclei are accelerated to near the

speed of light and guided to collide head on. Tremendous energy is released

into the tiny collision region and a phase transition is expected to transform

the normal hadronic matter into QGP. One parameter of the collision is the

center-of-mass energy (
√
sNN) per nucleon pair, which controls the energy

density and temperature.

Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider(LHC)
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are the two main facilities, both of which can accelerate and collide a good va-

riety of particle species. At LHC, proton+proton (pp), proton+lead (p+Pb),

lead+lead (Pb+Pb) and xenon-xenon (Xe+Xe) systems are boosted to center-

of-mass energy range from 2.76 trillion electron volts (TeV) to 13 TeV.

At RHIC, gold-gold (Au+Au), pp, copper+copper (Cu+Cu), deuteron+Au

(d+Au), etc. can be boosted to a wide energy range from 7.7 GeV to 500

GeV. In this thesis, we will use “A+A” to denote these heavy nuclei collision,

e.g. Au+Au, Pb+Pb, while when we use the term “small systems”, we are

referring to collisions involving at least one light nucleus, e.g pp, p+Pb, etc.

When center-of-mass energy is more than 100 GeV, the baryons inside

nuclei tend to recede away from the center of mass without being completely

stopped, leaving behind a nuclear matter with high temperature (energy) and

low baryon density. As shown on Figure 1, LHC approaches QGP phase at

high temperature low baryon density region, which is close to what universe

is believed to be shortly after the big bang. When center-of-mass energy

is around tens of GeV, the collision tend to stop each nucleon, forming a

nuclear matter of both high temperature and high baryon density. RHIC

could perform a beam energy scan over a wide µB region on the QCD phase

diagram, serve to map out the critical point and phase boundaries.

The fireball created in the heavy ion collision is encoded with a non-

trivial initial geometry of the interaction region, which is preserved through

the space-time evolution of the system and eventually reflected in the final

particle distributions. A brief description of the initial geometry and space-

time evolution will be discussed below.

Geometry of the collision

Here, we are taking about the initial geometry of the collision at the crossing

time of two nuclei.

The geometry is rather simple in longitudinal direction (see fig. 2(a)). In

the z-axis (along the moving direction of particle beam), the nuclei are trav-

eling at 99.9999991% times the speed of light when the center of mass energy
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Figure 2: (a): Schematic of the coordinate system. (b): Schematic of a

non-central nucleus-nucleus collision viewed in transverse plane.

is 7 TeV. And each nucleus looks like a pancake due to Lorentz contraction

(γ ∼ 7000).

The geometry in transverse plane (x−y plane) is non-trivial (see fig. 2(b)).

It is convenient to use cylindrical coordinates (r, φ), with φ being the az-

imuthal angle. Impact parameter vector (b) is defined as the line interval

between the center of two nuclei. Together with z-axis, a unique plane,

called reaction plane (RP) is defined for each event. The event plane angle

ΨR fluctuates randomly from event to event. In non-central collisions, if the

nucleon density within the nuclei is continuous, the initial nuclear overlap re-

gion is spatially asymmetric with an “almond-like” shape. Only nucleons in

this overlap region interact in the collisions, which are called participants or

wounded nucleons, while the undeflected nucleons are called spectators. The

number of participants is denoted as Npart [8]. In real case, fluctuations of

the nucleon wave function generate a rather lumpy density profile event-by-

event, which contains rich patterns of deformation besides an almond shape.

This will be elaborated later in Section 2.3.2.

Besides the shape, the volume of the interaction region is also very impor-

tant to characterize an heavy ion collision. The volume reflects the amount
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of energy deposited in the collision, which in turn is related to the num-

ber of produced particles, which is referred to as multiplicity. Intuitively,

the volume is characterized by a concept centrality [9, 10], defined as a per-

centage. Conventionally, 0% refers to a collision with fully overlap of two

nuclei (b = 0), which has a large Npart and large multiplicity. And 100%

centrality means the two nuclei touch each other tangentially and b roughly

equals to the sum of the radii of the colliding nuclei, along with less parti-

cles being produced. Collisions are often categorized as central, mid-central

and peripheral; they have small, mediocre and large centrality values corre-

spondingly. In practice, b, Npart and multiplicity can be used to determine

centrality equivalently. In Monte Carlo Glauber model [8], multiplicity is a

function proportional to Npart and number of binary nucleon nucleon colli-

sions (Nbin) the participants undergo. So there is a straightforward mapping

of the experimental observables to centrality and to the Glauber quantities,

as illustrated in Figure 3.

Evolution of Heavy Ion Collisions

The fireball created after the heavy ion collisions evolves dynamically with a

characteristic size ∼ 10 fm and a fleeting characteristic time ∼ 10 fm/c [11].

What is seen by the detector is only the final particles. The standard model

of heavy ion collisions divide the whole evolution into several stages, which

are illustrated in Figure 4 and can be roughly categorized as the following:

• Initial state: The initial geometry of density profile is determined at this

stage. Currently, there are two prevailing models, Glauber and Color

Color Condensate (CGC), which handle initial density deposition with

different approaches. The collision happens through multiple parton-

parton scatterings. The time scales of the scatterings is related to

the inverse of the momentum transferred Q. Thus a hard scattering,

which produced high transverse momentum pT particles, happens in

the very very early time, followed by the production of low pT particles

by the time ∼ 0.2 fm/c. If the produce partons weakly interact, they
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Figure 3: The schematic of the mapping of the experimental observables to

centrality variable and to Glauber quantities [8].

will evolve independently into hadrons, as in the case of pp. However,

the multiple parton scattering lead to fast establishment of a locally

thermalized nuclear matter. The data suggests that the thermalization

is reached by ∼ 1 fm/c and QGP is formed at that time [7].

• QGP phase: Further fast parton scatterings build up pressure at macro-

scopic level. Outside the QGP is vacuum, thus the fireball expands out-

ward and cools down. However, these pressure gradients are anisotropic,

due to the elliptic nature of the average overlap geometry between the

colliding nuclei as well as fluctuations in the initial energy distribution,

resulting in anisotropic expansion rate of the fluid. This stage of the
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Figure 4: The schematic of the time evolution of a relativistic heavy ion

collision. The horizontal axis represents the beam direction and the vertical

axis is the proper time.

collision has been shown to be very well described by relativistic hy-

drodynamics with a very small shear-viscosity to entropy-density ratio

η/s.

• Hadronization: The expanding fireball eventually becomes cool and

dilute. At a point the interactions among partons are sufficiently strong

to confine the partons into hadrons. A mechanism called recombination

or coalescence is employed to describe this process. Energetic partons

might hadronize via fragmentation, a different scheme that explains

the formation of hadron jets. Note the fragmentation functions are

modified by existence of QGP medium compared to the case in vacuum.

• Hadron gas: This stage might exist for a short time. Hadrons are

weakly coupled and still exhibit collective behavior. The whole system

is still in equilibrium. Due to the relatively weak interactions among

hadrons, the system resembles a dilute gas and is best described by

transport models such as the Ultra-relativistic Quantum Molecular Dy-

namics model (UrQMD). Recent studies seem to suggest that the life-
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time of this stage is so small that its influence to anisotropy of particle

momentum distribution is very limited.

• Freeze-out: As the system further expands and continues to cool down.

Interactions among hadrons become even weaker and the typical mean

free path of hadrons becomes comparable to the size of the system.

There is no hadron interaction and particles free stream to detector.

This stage is called kinetic freeze-out.

1.4 QGP signature

QGP is not directly seen by the detector due to its short lifetime, but it leaves

many fingerprints. On one hand, QGP provides the medium background and

some physics processes could be modified via interaction with the medium.

Thus one expect quite different behavior compared to the vacuum. On the

other hand, QGP has many signatures directly related to itself, e.g. photon

and muon rates, sizable collective flow etc. Here we only introduce few of

these evidences.

Quarkonium suppression: In particle physics, quarkonium designates a

meson whose constituents are a heavy quark and its own antiquark. Υ par-

ticle, a quarkonium consisting of a bottom and an anti-bottom quark, exists

in three states known as 1S, 2S and 3S, in decreasing order of how tightly

the quarks are bound. Because they are more loosely bound, the 2S and

3S states will melt more readily in the QGP. CMS observed a dramatic dif-

ference in the number of Υ(2S) and Υ(3S) produced in the heavy-ion and

proton collisions, as expected in case their production is suppressed by the

QGP [12]. The relative production of the excited states of the Υ particle

in heavy-ion collisions is only about 30% that of the comparative rates from

proton collisions.

jet quenching : In a hard scattering, final partons gain large transverse

energy pT and have a large virtuality, which are reduced by radiating gluons

or splitting into quark antiquark pairs. Consequently, the outgoing parton
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fragments into a collimated stream of hadrons, referred as a jet. If a QGP

is formed, the hard scattering parton will interact with the medium and loss

energy, thus the energy of those partons and their fragmentation functions

are modified compared to the case in vacuum. As expected, the jet yield is

suppressed compared to expectation from proton-proton collisions , which is

called jet quenching. The ratio of the measured to expected yield is denoted

byRAA. In central heavy ion collisions jetRAA values close to 0.5 are observed

implying that the jets are heavily quenched in the produced medium [13].

strangeness enhancements : Once formed, QGP transfers heat internally

by radiation just like any hot object. However there is enough energy avail-

able that gluons collide and produce an excess of the heavy strange quarks.

Whereas, if the QGP didn’t exist and there was a pure collision, the same

energy would be converted into a non-equilibrium mixture containing even

heavier quarks such as charm quarks or bottom quarks. Enhancement of

strange baryon production relative to pp collisions have been observed in the

experimental data [14].
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2 Collective phenomena in heavy-ion colli-

sions (H.I.C.)

The study of collective phenomena of a strongly correlated, interacting many-

body system has been an important topic in many fields of physics, from the

very large scale (the cosmos) to the very small scale (elementary particles).

They form the “complexity frontier” in physics, which address the question

how patterns of large-scale behavior emerge from the complex interactions

of the small constituent parts. One of the key question in these study is to

find out the fundamental laws that describe these collective behaviors.

2.1 Collective Phenomena in H.I.C

Early studies on RHIC’s heavy ion collisions indicates the produced QGP

matter appears to be more like a liquid rather than the expected gas. These

studies indicate that the primordial particles produced in the collisions tend

to move collectively in response to variations of pressure across the volume

formed by the colliding nuclei. This phenomenon is referred to as flow [15],

in analogous to the properties of fluid motion.

This azimuthal anisotropy of flow is of great importance. In a non-central

collision (see fig. 5(left)), the the overlap region has an “almond-like” shape,

where nuclear matter distribution is assumed to be continuous. The aver-

age pressure gradient between the center of the overlap region and the sur-

rounding vacuum is larger in reaction plane (horizontal) than out of plane

(vertical) direction because the system is thinner in that direction. Then

anisotropically flowing medium emits particles boosted in the flow direction

and therefore the observed particles have a momentum anisotropy approxi-

mately proportional to the initial elliptic deformation (see fig. 5(right)).

Later on, it was realized that on the event-by-event basis, the initial

geometry is not smooth but fluctuates around the averaged elliptic shape

due to random positions of wounded nucleons (see fig. 6). This detailed

deformation is characterized by a mode decomposition method with respect
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Figure 5: Left: View of a non-central collision. Right: The initial spatial

anisotropy translates via pressure gradients into a momentum anisotropy of

the produced particles.

to the azimuthal asymmetry of initial density profile. If one takes the complex

expression z = x + iy = reiφ for the transverse coordinates, a set of (complex)

dimensionless harmonic coefficients eccentricity are defined [16, 17]

ε1 ≡ ε1e
iφ1 = −

⟨z2z∗⟩

⟨∣z∣3⟩
= −

⟨r3eiφ⟩

⟨r3⟩
(1)

εn ≡ εne
iφn = −

⟨zn⟩

⟨∣z∣n⟩
= −

⟨rneinφ⟩

⟨rn⟩
(n > 1) (2)

where (r, φ) is relative to center-of-mass and ⟨⋯⟩ denotes an average over all

the participating nucleons. By definition, the magnitude εn is bounded by

unity. Additionally, one can also use cumulants since the average Glauber

distribution is roughly Gaussian and the cumulants are translationally in-

variant [16]. Due to fluctuations, even when two nuclei are fully overlapped,

deformations of any order could exist, which in turn generate momentum

anisotropies.

2.2 Harmonic flow

Anisotropies in particles’ momentum (p) distribution is a key observable since

it is related to the initial spatial anisotropies as well as the medium prop-

erties of QGP. We first define a new coordinate system in momentum space
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Figure 6: Distribution of nucleons showing an initial geometry with many

components from Monte Carlo Glauber.

(pT, y/η, φ), which is related to the Cartesian coordinate system (px, py, pz)

by (see fig. 7).

px = pT cosφ (3)

py = pT sinφ

pz =
√

p2
T +m

2 sinh y

where the rapidity (y) is

y =
1

2
ln
E + pz
E − pz

(4)

the pseudorapidity (η) is

η =
1

2
ln

∣p∣ + pz
∣p∣ − pz

= − ln tan(
θ

2
) (5)

here θ is the polar angle between p and beam axis (z). When the mass of

the particle is negligible (or the particle moves at near the speed of light),

pseudorapidity is equivalent to rapidity. For example, the invariant mass

of a pion–the most abundant species of detected hadrons–mπ = 140 MeV is

small compared to the typically measured transverse momentum 1 GeV,

therefore we have ηπ ≈ yπ. In hadron collider physics, the pseudorapidity is
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preferred over the polar angle φ because, loosely speaking, particle production

is constant as a function of pseudorapidity.

Figure 7: Schematic of coordinate system in momentum space.

Then the momentum distribution of detected particles is characterized

by Fourier expansion:

E
d3N

d3p
=

1

2π

d2N

pTdpTdη
(1 +

∞

∑
n=1

2vn(pT, η) cos[n(φ −Φn)]) (6)

These Fourier coefficient vn are referred to as harmonic flow [15]. Usually

the first few harmonics are important: directed flow(v1), elliptic flow(v2),

triangular flow(v3), quadrangular flow (v4) and pentagonal flow (v5) (see

fig. 8). The nth order flow is described as the response to the nth eccentricity

vn ∝ εn (n ≤ 3) in hydrodynamics. Here, the vn coefficients are functions of

η and pT, and as such they are often referred to as differential flow.

The phase Φn, referred to as event plane angle, reflects the orientation

of the nth order flow, which has n-fold symmetry, i.e. the distribution is

rotational invariant under a phase shift Φn → Φn + 2π/n.

The differential flow (vn(pT, η) ) integrated over a broad η and pT window,

are often referred to as integrated flow

dN

dφ
=
N

2π
(1 +

∞

∑
n=1

2vn cos[n(φ −Φn)]) (7)

Given the above Fourier expansion, using the orthogonality properties of

trigonometric functions, one can show that

vn = ⟨cos[n(φ −Φn)]⟩ (8)
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Figure 8: Schematic of the first few n−th order anisotropy in transverse

plane. Reproduced from [18]

where the brackets denote average over all the particles in one event. Usually,

it’s convenient pack the vn and Φn together in the complex format Vn =

vneinΦn or as a vector v⃗n = (vn cos(nΦn), vn sin(nΦn)). Similarly, one can

show

Vn = vne
inΦn = ⟨einφ⟩ (9)

Figure 9 shows an example of the differential flow as a function of pT

in one centrality interval (left) and integrated flow over pT > 0.2GeV as a

function of centrality (right) in Pb+Pb. Also hydrodynamic calculations

(solid curves) are drawn with the data [19]. Excellent agreement is reached

with a low viscosity η/s = 0.2 at LHC energy for flow with order n = 2 − 5.

The main interest of anisotropic flow is due to its sensitivity to the early

time dynamics [20]. The anisotropy in particle momentum space origins from

the initial spatial anisotropy. Since the spatial anisotropies decrease rapidly

with time, the anisotropic flow can develop only in the first fm/c. Secondly,

the anisotropic flow provides information to the transport properties of the

medium, such as η/s. Lastly, almost 99% of total particle yields are soft (low

pT) particles. And collective evolution is a main source for these soft particle

production.

2.3 Flow paradigm

Based on extensive studies over the past couple of decades, the community

has converged to the flow paradigm in heavy ion (A+A) collision systems,
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Figure 9: Left:The vn(pT) values from Pb+Pb collisions at LHC by AT-

LAS (solid points) compared to values from hydrodynamic calculations (solid

curves). Right:The integrated vn over pT > 0.2GeV as a function of central-

ity from Pb+Pb collisions at LHC by ALICE with hydrodynamic calcula-

tions [19].

where deformations in the lumpy initial energy density profile are fully trans-

posed to the collective anisotropy flow via strong final-state interactions. The

dynamics of the QGP evolution are described by nearly ideal hydrodynam-

ics. There are three main ingredients in this flow paradigm: hydrodynamic

modeling, geometrical properties of the initial state and medium response.

2.3.1 Hydrodynamic framework

Ideally, the collective behavior of quark-gluon plasma can be described from

first principle using quantum chromodynamics (QCD). The QCD Lagrangian

density is

L = ψ̄i(iγµD
µ
ij −mδij)ψj −

1

4
FµναF

µνα (10)

where ψi is a quark field, γµ are Dirac matrices, Dµ is a covariant deriva-

tive, m is a quark mass, δ is Kronecker delta symbol and F µνα is the field

strength of the gluons. However albeit simple looking of the Lagrangian ,

the non-linear interaction of gluons, and the dynamical many body system

and color confinement makes direct prediction impossible. Alternatively, the
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hydrodynamic model provides a phenomenological theory to build the bridge

between theory and data. Hydrodynamic models can describe the data with

just few thermodynamic variables, thus provides an intuitive and transparent

picture without need to know the details of the interaction on the microscopic

level. The hydrodynamic model is applicable when the mean free path of the

system is smaller than the size of the system, λm.f.p ≪ L and the system is

required to be in approximate local thermal equilibrium.

The equations of motion in hydrodynamic model are just a set of conser-

vation laws related to the equation of state, viscosity and heat conductivity

of the fluid. In ideal (zero viscosity) hydrodynamics, local conservation laws

for the energy-momentum tensor and conserved charges are

∂µT
µν = 0, ∂µN

µ
j = 0 (11)

where T µν is energy-momentum tensor defined as a function of energy density

e, pressure P and flow four-velocity uµ and Nµ
j is the jth conserved current.

Also the system satisfy the constraint from the second law of thermodynamics

∂µS
µ = 0 (12)

where Sµ is the entropy current.

In reality, the system is not ideal and there will be deviations from local

thermal equilibrium. The expressions for particle current, energy-momentum

tensor and the entropy current will be modified from their equilibrium form,

including more terms. Details of equations of motion can be find in Ref. [18].

Once the system becomes so dilute that hydrodynamics is not applicable,

the fluid cells are transformed into hadrons through the Cooper and Frye

formalism, in which hadrons are generated from a fluid on a 3D hyper-surface

Σ determined by the freeze out conditions. The momentum distribution of

hadrons from Cooper-Frye formalism is given as

E
dNi

d3p
= ∫

Σ
dσ ⋅ pf(uµ, T, µ) (13)

where f(uµ, T, µ) is the phase-space distribution function. Contrast to this

sudden freeze-out scenario, an alternative hybrid approach takes into account
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the subsequent hadron interaction using a transport model until a kinetic

freeze-out is reached.

2.3.2 Initial conditions

Extracting medium properties from hydrodynamic calculations requires a

good quantitative constraint on the initial conditions. While there are dif-

ferent approaches to build the model, they must satisfy two main essential

requirements: (a) a good description of initial state geometry and fluctua-

tions, (b) an ab initio mechanism of multi-particle production.

The simplest model is Monte Carlo Glauber [8]. Nucleons in each nucleus

are treated as round balls and distributed with the Woods-Saxon functional

form. The nucleus-nucleus collision is treated as the superposition of multi-

ple nucleon-nucleon collisions, which are determined by the energy dependent

inelastic cross section. The energy deposition of each nucleon-nucleon colli-

sion in the transverse plane is according to a two-dimensional Gaussian with

a width parameter typically chosen as 0.4 fm. Fluctuation of initial geom-

etry in each event stems from the random positions of a finite number of

nucleons sampled from distribution function. In A+A systems the nucleon-

level Galuber is sufficient enough to provide confidence in the overall heavy

ion standard model space-time evolution and extraction of matter proper-

ties such as η/s with precision. In small systems, e.g. pp, fluctuations are

extended by including the detailed substructure of the nucleon. One simple

approach is to decompose each nucleon into three valance quark, each with

a cloud of gluons around it, and that each valence quark cloud interact when

it comes within some fixed distance of another such cloud.

The Color Glass Condensate (CGC) is a QCD-based effective theory, de-

scribes the physics of the nonlinear gluonic interactions at high energy. The

CGC model provides a consistent first-principles framework to understand

the initial conditions of heavy ion collisions [21]. When heavy ions are ac-

celerated to near light speed, gluon density is saturated and each nucleus

can be view as a “gluon wall” (see fig. 10(a)). This steady state of maximal
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gluon concentration is called color glass condensate. The gluons themselves

are disordered and do not change their positions rapidly because of time di-

lation, similar like glass in nature. Condensate means that the gluons have

a very high density. When the two nucleus collide, they pass through each

other and the gluons interact to form “flux tubes”. This is the initial state

of quark-gluon plasma (QGP), called a glasma [22], because it has properties

that lie between CGC and Quark Gluon Plasma (see fig. 10(b)).

The impact parameter dependent Glasma model (IP-Glasma) is based on

CGC, where the gluon fields are described by classical Yang-Mills equations

of motions [19]. Besides the fluctuations in distribution of nucleons, there are

fluctuations in the color charge distribution inside each nucleon, which lead

to “lumpy” gluon configurations. The scale of lumpiness is given on average

by the nuclear saturation scale Qs which corresponds to distance scale smaller

than the nucleon size. The initial energy deposition is computed in terms

of overlapping gluon fields. As for small collision systems, the IP-Glasma

model can be extended under the ansatz that the proton has a substructure

with three gluon hot spots and then constraining their distribution with one

additional free parameter fixed to match HERA e + p data.

Figure 10: Panel (a) A schematic illustration of gluon saturation as as heavy

ions are accelerated to near light speed. Panel (b) When the ions collide,

they pass through each other and the gluons interact to form “flux tubes”,

which is the initial state of quark-gluon plasma (QGP), called a glasma.

Figure 11 shows an example for the initial density profile simulated by

IP-Glasma on panel (a) and MC-Glauber on panel (b). The density profile
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from IP-Glasma is more finer and more spiky, implying stronger fluctuations

of anisotropy.

Figure 11: Initial energy density (arbitrary units) in the transverse plane

from IP-Glasma (a), and MC-Glaube (b) models [19].

2.3.3 Medium response

The hydrodynamic prediction of harmonic flow are expected to be a function

of the eccentricities

Vn = Vn(ε,α) (14)

where ε denotes a set of (complex) eccentricities (εn = εneinΦ∗
n) of different or-

ders and α represents the medium dynamic properties, e.g. η/s. However the

function format is not known a priori from first-principle calculation, there

is mounting evidence from numerical hydrodynamic simulation suggesting

V2 ≈ κ2ε2 (15)

V3 ≈ κ3ε3 (16)

V4 ≈ κ4ε4 + κ422ε
2
2 (17)

V5 ≈ κ5ε5 + κ523ε2ε3 (18)

V6 ≈ κ6ε6 + κ633ε
2
3 + κ624ε2ε4 + κ6222ε

3
2 (19)

where the dependence on medium dynamical properties is absorbed in κ(α) [16,

17]. The effect of fluid response is suppressed by viscosity in hydrodynamics.

And higher order harmonics get stronger suppression. Note, this expansion

21



is truncated by keeping only the leading contribution and the terms are also

constrained by the rotation invariance of n-th order event plane.

For the high order harmonic flow Vn, it is easy to write Vn = V L
n +V

NL
n for

(n > 3). The linear component is a response to eccentricity of the same order,

V L
n ∝ εn, while the nonlinear components gets contribution from mixture of

lower order eccentricities. and the linear and nonlinear component are usually

assumed to be uncorrelated on an event basis. Consequently, one expect this

event averaged correlation is zero [23]:

⟨V L
n (V NL

n )∗⟩ = 0 (20)

2.4 Experimental methods

In flow paradigm, particles are emitted independently from the azimuthal

distribution

f(φ) = 1 +
∞

∑
n=1

2vn cos[n(φ −Φn)] (21)

and they are all correlated to the same set of event planes Φn, which lead

to a global azimuthal correlation among all the flow-driven particles. Thus,

multi-particle azimuthal correlation encode information about flow harmon-

ics. Two-, four-, six- and eight-particle correlation will be discussed here.

2.4.1 flow and non-flow

Since each particle is emitted independently, the joint multivariate particle

density function (p.d.f.) of the azimuthal angles of m particles can factorize

into product of single particle density function

f(φ1, φ2,⋯, φm) = f(φ1)f(φ2)⋯f(φm) (22)

This factorization relationship is the the foundation for multi-particle corre-

lation. For a event with N particles produced, the m-particle correlation is
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defined as:

⟨m⟩n1,n2,⋯,nm
= ⟨ei(n1φ1+n2φ2+⋯+nmφm)⟩ (23)

= ⟨ein1φ1⟩ ⟨ein2φ2⟩⋯⟨einmφm⟩

= vn1e
in1Φn1vn2e

in2Φn2⋯vnme
inmΦnm

where ⟨⟩ denotes average over the set of all possible m-particle combinations

in one event.

A heavy-ion collision also have non-flow processes, e.g. jet fragmentation,

which produced few particles together in a correlated manner. Total momen-

tum conservation of the non-flow process leads to correlation among these

produced particles in momentum and in space. For these non-flow processes,

the p.d.f. of correlated particle cannot factorize. Since the detected particles

include both flow and non-flow particles, Equation (22) is modified as

f(φ1, φ2,⋯, φm) = f(φ1)f(φ2)⋯f(φm) + fc(φ1, φ2,⋯, φm) (24)

where the subscript c denotes the non-flow induced correlation and the m-

particle correlation contains contribution from non-flow

⟨m⟩n1,n2,⋯,nm
= vn1e

in1Φn1vn2e
in2Φn2⋯vnme

inmΦnm + nonflow (25)

2.4.2 Two-particle azimuthal correlation

Two-particle azimuthal correlation (2PC) measures pair distribution of two

particles as a function of the relative azimuthal difference ∆φ = φa − φb and

pseudorapidity difference ∆η = ηa − ηb. Here the particles a and b are com-

monly referred to as trigger and associated particle respectively. Measure-

ments in different collisions systems have revealed the ridge phenomenon [24–

28]: enhanced production of particle pairs at small azimuthal angle separa-

tion, ∆φ, extended over a wide range of pseudorapidity separation, ∆η. The

ridge reflects multi-parton dynamics early in the collision and has generated

significant interest in the high-energy physics community. In A+A collisions,

ridge is interpreted as evidence of collective flow (see eq. (28)).
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Figure 12(a) shows an example of the correlation function C(∆η,∆φ) ,

measured in 0-5% centrality in Pb+Pb collisions by ATLAS. The correlation

function gets contribution from both flow and non-flow and exhibits a very

rich structure in ∆η and ∆φ.

Firstly, a sharp peak arises, localized near (∆φ ∼ 0,∆η ∼ 0). This peak

is only significant within a small ∆η interval (short-range). Such a peak

is caused by particle correlations from single jet fragmentation, resonance

decay, and so forth. For example, particles from a single fragmenting jet are

in a cone, narrowed in (η, φ), inter-jet correlations are thus confined at small

∆φ and ∆η.

Secondly, ridge-like structures are observed at ∆φ ∼ 0 (near-side) and

∆φ ∼ π (away side). Since ridge is almost invariant along ∆η, C(∆φ,∆η) is

usually projected into a 1D function along ∆φ by averaging over ∣∆η∣ > 2.

C(∆φ) = ∫
d∣∆η∣C(∣∆η∣,∆φ)

∫ d∣∆η∣
(26)

where the cut ∣∆η∣ > 2 is sufficiently wide to avoid the near-side peak. It

is then conveniently to decompose the 1D correlation function into Fourier

series:

C(∆φ) ∝ 1 + 2
∞

∑
n=1

va,bn,n cos(n∆φ) (27)

Figure 12(b) shows the C(∆φ) along with the individual vn,n components and

their sum from Fourier fit components. The azimuthal structure can be quite

well described by including modulations up to order 6. In the flow paradigm,

using Equations (21) and (22), one can show these sinusoidal modulations

(cos(n∆φ)) arises solely from the flow-induced modulations on singe-particle
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distribution

C(∆φ) ∝ ∫
dNa(φ1)

dφ1

dN b(φ2)

dφ2

δ(φ1 − φ2 −∆φ)dφ1dφ2 (28)

∝ ∫ (1 +
∞

∑
n=1

2van cos[n(φ1 −Φn)]) × (1 +
∞

∑
n=1

2vbn cos[n(φ2 −Φn)])

× δ(φ1 − φ2 −∆φ)dφ1dφ2

= 1 + 2
∞

∑
n=1

vanv
b
n cos(n∆φ)

Thus the Fourier coefficients of two-particle correlations factorize into prod-

uct of single particle flow harmonics

va,bn,n = v
a
n × v

b
n (29)

Especially, when particle a and b are selected with the same criteria, e.g. pT,

vn,n = v2
n.

Lastly, the ∣∆η∣ > 2 cut cannot remove non-flow correlations extended

in ∆η completely. These non-flow correlations are usually at ∆φ ∼ π and

leads to a much broader peak on the away side. Their effects are found to

be negligible in central and mid-central A+A collisions. These correlations

are mostly caused by dijets (back-to-back jets), which are emitted back to

back in azimuth to conserve transverse momentum, but not constrained for

their longitudinal momenta. Therefore, the dijet correlations are around

∆φ ∼ π but unbounded in ∆η direction. In general, the dijet correlation has

its strength proportional to the inverse of the number of produced particles,

∼ 1/N , so its contribution decreases from peripheral to central collisions.

On the contrary, in small systems, these dijet correlations are found to be

significant, which will be introduced in Section 2.5 and detailed in Section 6.

2.4.3 Multi-particle correlation

The multi-particle cumulants are constructed from m-particle correlations.

They can probe the event-by-event fluctuation of a single flow harmonic vn,

as well as the correlated fluctuations between two flow harmonics, vn and
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Figure 12: Left:the two particle correlation function measured in 0-5% cen-

tral Pb+Pb collisions at the LHC using the ATLAS detector. The corre-

lation function is plotted over the range −π/2 < ∆φ < 3π/2; the periodicity

of the measurement requires C(∆η,3π/2) = C(∆η,−π/2). Right: The 1D

correlation function C(∆φ) for the region with ∣∆η∣ > 2.0, overlaid with con-

tributions from the individual v2
n(n < 6) components and their sum. The

smaller panel on the right show the deviation of the data points from the

Fourier sum.

vm. These event-by-event fluctuations are often represented by probability

density distributions p(vn) and p(vn, vm), respectively.

Probing p(vn): cumulants

Further insight into the ridge phenomenon is obtained via a multi-particle

correlation technique, known as cumulants, involving three or more parti-

cles [29–31]. Multi-particle cumulants utilize correlations among of 2,4,6, ...,m
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particles to subtract non-flow correlations among only m−2 particles sequen-

tially, where m = 2k is an even number.

For an event with N particles, we first define the single-event two-and

four-particle azimuthal correlations for the n-th order harmonic

⟨2⟩n ≡
1

PN,2
∑
i≠j

ein(φi−φj) = ⟨vne
inΦnvne

−inΦn⟩ = ⟨v2
n⟩ (30)

⟨4⟩n ≡
1

PN,4
∑

i≠j≠k≠l

ein(φi+φj−φk−φl) = ⟨v4
n⟩ (31)

where Pn,m = N !/(N −m)! and the sum runs over all combinations in which

all indices are taken different. Note in data analysis, each track is assigned

a weight to correct detector inefficiencies, the sum then becomes a weighted

sum. Generalization to six and eight particle correlations, ⟨6⟩n and ⟨8⟩n, can

be derived in similar manner.

The cumulants cn{m} are then defined as combinations of these correla-

tions averaged over many events [30]

cn{2} = ⟨⟨ein(φ1−φ2)⟩⟩ = ⟨⟨2⟩n⟩ (32)

cn{4} = ⟨⟨ein(φ1−φ2+φ3−φ4)⟩⟩ − ⟨⟨ein(φ1−φ2)⟩⟩ ⟨⟨ein(φ3−φ4)⟩⟩ (33)

− ⟨⟨ein(φ1−φ4)⟩⟩ ⟨⟨ein(φ3−φ2)⟩⟩

= ⟨⟨4⟩n⟩ − 2 ⟨⟨2⟩n⟩
2

cn{6} = ⟨⟨6⟩n⟩ − 9 ⟨⟨4⟩n⟩ ⟨⟨2⟩n⟩ + 12 ⟨⟨2⟩n⟩
3

(34)

cn{8} = ⟨⟨8⟩n⟩ − 16 ⟨⟨6⟩n⟩ ⟨⟨2⟩n⟩ + 18 ⟨⟨4⟩n⟩ (35)

+ 144 ⟨⟨4⟩n⟩ ⟨⟨2⟩n⟩
2
− 144 ⟨⟨2⟩n⟩

4

here the outer ⟨⟩ means average over events which have similar multiplicities.

If one assume, vn is a constant, the single particle flow coefficients vn{2k}

are then calculated from these cumulants, e.g

vn{2} ≡
√
cn{2}; vn{4} ≡ 4

√
−cn{4}; vn{6} ≡ 6

√
cn{6}/4; vn{8} ≡ 8

√
−cn{8}/33

(36)
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The multi-particle cumulants probe the event-by-event fluctuation of a

single flow harmonic vn. These event-by-event fluctuations are often rep-

resented by probability density distributions. The two components of flow

vector v⃗n = (vn,x, vn,y) = (vn cos(nΦn), vn sin(nΦn)) are generally assumed

to have independent Gaussian fluctuations respectively, as studies shown in

Monte-Carlo Glauber model. It is convenient to write the joint probability

distribution of (vn cos(nΦn), vn sin(nΦn)) in compact vector format

p(v⃗n) =
1

2πσvn
e−(v⃗n−v⃗

RP
n )

2
/(2σ2

vn) (37)

where v⃗RP
n represents the event averaged flow vector, which is associated with

the average geometry in the reaction plane and σvn reflects the width of the

fluctuation. After averaging over the azimuthal direction, the joint p.d.f. is

projected to radial direction (vn =
√
v2
n,x + v

2
n,y) and the distribution p(vn) is

found to follow a Bessel Gaussian(B-G) distribution

p(vn) =
vn
σ2
vn

e
−
v2n+(vRP

n )2
2σ2vn I0(

vRP
n vn
σ2
vn

) (38)

Under the B-G distribution, then these flow vn{2k} from cumulants have a

particularly simple form

vn{2k} =
√

(vRP
n )2 + 2σ2

vn ; k = 1 (39)

vn{2k} = vRP
n ; k > 1

These measurements have been particularly powerful since they allow ex-

traction of both the event averaged flow harmonics and the event-by-event

variance σ2. Figure 13 shows the v2{2k} from cumulants of different orders

as a function of pT measured in 40-45% Pb+Pb collisions at ATLAS [32].

The v2{2} are larger than the higher order cumulants through all pT ranges,

while the higher order cumulants are consistent which supports the B-G dis-

tribution assumption.
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Figure 13: The vn{2k} from 2 particle, 4 particle, 6 particle and 8 parti-

cle cumulants as a function of pT measured in 40-45% Pb+Pb collisions at

ATLAS [32].

Probing p(vn, vm): symmetric cumulants

Based on the cumulant framework, novel correlation between mixed orders

harmonics vn and vm is proposed. The observable is called symmetric cumu-

lant scn,m{4}, in which {4} denotes the observable is in fact a four-particle

correlator. scn,m{4} is defined as the four-particle cumulant format to sup-

press non-flow correlations

scn,m{4} = ⟨⟨ei(mφ1+nφ2−mφ3−nφ4)⟩⟩ − ⟨⟨eim(φ1−φ3)⟩⟩ ⟨⟨ein(φ2−φ4)⟩⟩ (40)

= ⟨v2
nv

2
m⟩ − ⟨v2

n⟩ ⟨v
2
m⟩

This symmetric cumulant is unaffected by the event plane Φn and Φm and

is zero if flow amplitude vn and vm are uncorrelated in each event. So it

directly probes the joint p.d.f. p(vn, vm).

Figure 14(a) shows sc4,2{4} and sc3,2{4} as a function of centrality in

Pb+Pb by ALICE [33]. sc4,2{4} is positive through all centralities, suggest-

ing a positive correlation between the event-by-event fluctuations of v2 and

v4, while sc3,2{4} is negative, suggesting a negative correlation between v2

and v3. In other words, these observations suggest that for an event, in

which v2 is larger than the average ⟨v2⟩ in this centrality, it is more possi-
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ble to find harmonics v4 larger than the ⟨v4⟩ and v3 smaller than ⟨v3⟩. The

data from ALICE is also compared to calculations from AMPT model and

hydrodynamic model with three different setup of η/s: constant value and

temperature dependent of η/s(T ) with different parametrization [34]. The

hydrodynamic model can qualitatively capture the the centrality dependence

of sc4,2{4} and sc3,2{4} but not quantitatively. While, the same model can

captures quantitatively the centrality dependence of the individual v2, v3, and

v4 harmonics with a precision better than 10% in the central and mid-central

collisions [34]. In the hydrodynamic model, scn,m{4} are also found to be

very sensitive to the transport coefficient, η/s. Therefore one can conclude

symmetric cumulant provide a better constrain on theoretical modeling than

the single flow harmonic vn. On the other hand, the transport model AMPT

generally predicts the sign of but not the magnitude of sc4,2{4} and sc3,2{4}.

A study based on AMPT also suggest these observables are sensitive to the

cross-section of partonic and hadronic interaction in the model.

Figure 14: Panel(a): comparison of the SC(4,2) and SC(3,2) to hydrodynamic

model from Ref. with constant and temperature dependent η/s and AMPT

model. Panel(b): results divided by ⟨vn⟩ ⟨vm⟩ obtained from two-particle

correlations. Figure taken from [33].

Figure 14(b) shows the same information with Figure 14(a), but scn,m{4}

are normalized by ⟨v2
n⟩ ⟨v

2
m⟩ from two-particle correlation method. The nor-
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malization procedure removes the influence from centrality dependence of vn

and vm. In the normalized situation, sc3,2{4} is find to be less sensitive to η/s,

which indicates it is more related to the initial conditions and less related to

medium properties. While the normalized sc4,2{4} is both sensitive to initial

conditions and medium properties since v4 get non-linear contribution of v2
2

during the cumulant expansion of the fluid.

2.5 Flow in small system

With the success of establishing the perfect QGP fluid paradigm in heavy

ion (A+A) collisions, a big question still under intense debate is: how small

can a QGP fluid system be in size? The small collision systems, such as

pp, p+Pb, were thought to be too small to provide volume and number of

particles sufficient for a QGP to form and equilibrate. However, recent stud-

ies found that collective effects in small systems are very similar to these

effects in A+A system. A key question is whether the these collective ef-

fects have the same origin with A+A systems where QGP fluid is formed

and anisotropic flow is the final-state hydrodynamic response to the initial

transverse collision geometry [35] or these collective effects reflect the initial

momentum correlation from gluon saturation effects, which are uncorrelated

with spatial anisotropy [36].

Here we give a brief summary of some experimental measurements in

small system in the rest of this section.

Ridge is everywhere

Two-particle correlation analysis in high multiplicity pp and p+Pb exhibits

a visible near side ridge, which is very similar to the peripheral Pb+Pb colli-

sions, as shown on Figure 15. There is a cos 2(∆φ)-like azimuthal structure

in the two-particle correlation functions, which is most notably in p+Pb and

Pb+Pb collisions. These pp system has a more pronounced dijet correlations

at away side than p+Pb and peripheral Pb+Pb. In Section 6, subtraction of
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these dijet correlation will be discussed in details.
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Figure 15: 2D two-particle correlation function in high-multiplicity pp, p+Pb

and Pb+Pb collisions at LHC from ATLAS

The ridges are studies in more details to provide more constrain to the-

oretical interpretation. Figure 16(left column) shows that, in p+Pb system,

shape of v2(pT) and v3(pT) is very similar to Pb+Pb collisions with same

multiplicity range [27]. Basar and Teaney [37] also argue that the vn(pT)

shape in the two collision systems are related to each other by a constant

scale factor of K = 1.25 accounting for the difference in their ⟨pT⟩. The

rescaled vn in p+Pb are shown in the right column of Figure 16. The magni-

tude (y axis) of v2 of Pb+Pb is also rescaled by 0.66 to approximately match

the magnitude of the corresponding p+Pb vn data, which is due to the dif-

ference of elliptic geometry between p+Pb and Pb+Pb collisions. After the

scaling, the v2(pT) shape from the two systems agree well with each other, in

particular in the low-pT region (pT < 2–4 GeV) where the statistical uncer-

tainties are small. For v3(pT) we also see a roughly good matching without

the need of scaling on flow magnitude since v3 is driven by fluctuation.

Qualitative agreement between calculation and experimental data has

been shown in pT differential v2 on Figure 17. However the viscous hydro-

dynamics interpretation may be questionable due to large pressure gradients

that are present for a significant fraction of the space-time evolution. On

the other hand, an alternative model can also reproduce the v2(pT) features

in p+Pb, which computes single and double inclusive gluon distributions in
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Figure 16: In the left column, shape of v2(pT) and v3(pT) for 5.02 TeV p+Pb

collisions compared to 2.76 TeV Pb+Pb with similar multiplicity . In the

right column, the same Pb+Pb data are rescaled horizontally by a constant

factor of 1.25, and the v2 is also down-scaled by an empirical factor of 0.66

to match the p+Pb data.
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classical Yang-Mills simulations, without the need of additional final state

interactions [38]. These momentum space anisotropies at early times are un-

correlated with the global spatial anisotropy, in contrast to anisotropies gen-

erated by collective flow. It is therefore important to explore if multi-particle

correlations at different transverse momentum scales can be understood in

part or whole in alternative approaches.
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Figure 17: The v2(pT) measured in high multiplicty p+Pb at ATLAS ans

CMS compared to hydrodynamic model calculation: prediction with MC-

Glauber MC Glauber initial condition, results from superSONIC with pre-

flow, and IP-Glasma+MUSIC calculation.

Multi-Particle Correlations

To understand if the ridge is truly a consequence of collective motion of the

nuclear matter, it is important to establish that the collective behavior exists

for all particles as a whole, and not just only among few particles. Multi-

particle cumulants are measured among two-, four- and eight-particles includ-

ing the all particles case, Lee-Yang Zero method by CMS collaboration [39].

Figure 18 shows the mass ordering of v2 from multi-particle cumulant mea-

surements v2{4}, v2{6}, v2{8} and v2{LY Z} in pp and p+Pb systems, which
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are very much similar to the peripheral Pb+Pb collisions.
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Figure 18: The v2 data measured in pp, pPb and PbPb collisions at the LHC

energies by CMS as a function of pT for charged particles, Ks
0 and Λ particles

at high multiplicities from two-particle correlations [39, 40] (top), and as a

function of multiplicity for charged particles averaged over 0.3 < pT < 3 GeV/c

from two- and multi-particle correlations [39] (bottom).

2.6 Topic in this thesis work

In the previous discussion, anisotropic flow is studied in integrated η range,

since the system is assumed to be boost-invariant near mid-rapidity (η ≈ 0).

However the energy deposition and evolution of the system is three dimen-

sional. Event-by-event fluctuations along η is also very important, which

provides information about how the initial density distributed in 3D and

helps to constrain the QGP transport properties as well as their temperature
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dependence. In Section 4, we will discuss a comprehensive study on flow

fluctuations in pseudorapidity in Pb+Pb.

Collective effects in small system need more evidences to clarify its ori-

gin. In Sections 5 and 6 we will discuss ATLAS measurement of symmetric

cumulants in pp and p+Pb using a slightly different verison of cumulant

framework, which is more robust from non-flow contamination. These mea-

surements should provide additional grounds for theoretical studies toward

a unified paradigm for the observed collective phenomena in pp, p+A and

A+A.
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3 The ATLAS detector

The analysis presented in this thesis is based on the data collected by the A

Toroidal LHC ApparatuS (ATLAS) detector at the Large Hadron Collider

(LHC).

3.1 Large Hadron Collider

A collider is a type of particle accelerator with two beams of particles ac-

celerated and directed against each other, so that the particles collide while

flying in opposite directions. For sufficiently high energy upon collisions, a

reaction occurs that transforms the particles into other particles. Detecting

these products gives insight into the physics involved.

The Large Hadron Collider (LHC) is the world’s largest and most pow-

erful particle collider. The collider has four crossing points, around which

are positioned seven detectors, one of which is ATLAS detector. The LHC

primarily collides proton beams (pp), but it can also use beams of heavy ions,

e.g. proton–lead (p+Pb) and lead–lead (Pb+Pb) and xenon-xenon (Xe+Xe).

Particles are boosted to the collision energy step by step at LHC. The

accelerator complex at CERN is a succession of machines with increasingly

higher energies. Each machine injects the beam into the next one, which

takes over to bring the beam to an even higher energy and so on. In the

LHC-the last element of this chain-each particle beam is accelerated to the

final collision energy. A schematic overview of CERN accelerator complex is

shown in Figure 19, where the particles are accelerated as following:

• Proton: An electric field is used to strip hydrogen atoms of their elec-

trons to yield protons. Linac2 accelerates the protons to the energy

of 50 MeV. The beam is then injected into the Proton Synchrotron

Booster (PSB), which accelerate the protons to 1.4 GeV, followed by

the Proton Synchrotron, which pushes the beam to 25GeV. Protons are

then sent to Super Proton Synchrotron (SPS) where they are acceler-

ated to 450 GeV. The proton beams are finally transferred to the LHC
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Figure 19: The CERN accelerator complex

(both in a clockwise and an anti-clockwise direction) where they are

accelerated to the final energy. Beams then circulate for many hours

inside the LHC beam pipes and collisions happens at each crossing

point.

• Heavy ions. For example, the lead vapor are firstly ionized to Pb54+

by several steps. The Pb54+ beam is accumulated and accelerated to

54 Mev/u (energy per nucleon) in the Low Energy Ion Ring (LEIR)

which then transfers them to the PS. The PS accelerates the beam to

5.9 Gev/u and sends it to the SPC after first passing it through a foil

where Pb54+ is fully stripped to Pb82+. The SPC accelerates the ion

beam to 177 Gev/u then sends it to the LHC where accelerate it to

2.56 TeV/u or other energy.
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3.2 ATLAS detector

The ATLAS (A Toroidal LHC ApparatuS) detector [41] is one of two large

general-purpose detectors at the Large Hadron Collider at CERN. The other

detector is CMS experiment. These two detectors are designed to achieve the

same scientific goals at the energy and intensity frontiers of particle physics.

While mainly designed to study pp collisions, its fine granularity and large

acceptance made it also an ideal detector to study p+Pb, Pb+Pb and Xe-Xe

collisions.

Currently ATLAS heavy ion programs have collected pp data at
√
sNN =2.76,

5.02 and 13 TeV; p+Pb data at
√
sNN =5.02 and 8.16 TeV; Pb+Pb data at

√
sNN = 2.76 and 5.02 TeV and Xe-Xe data at 5.44 TeV.

The detector is nominally symmetric in beam direction with a full cover-

age in azimuth. The four major components of the ATLAS detector is shown

on Figure 20: the Inner Detector, the Calorimeter, the Muon Spectrometer

and the Magnet System. Each of these is in turn made of small modules. The

detectors are functional complementary: the Inner Detector tracks charged

particles, the calorimeters measure the energy of easily stopped particles,

and the muon system provides measurements of highly penetrating muons.

The two magnet systems bend charged particles in the Inner Detector and

the Muon Spectrometer, allowing their momenta to be measured.

In the following, the ATLAS coordinate system will be used. The nominal

interaction point is defined as the origin of a right-handed coordinate system.

The beam direction defines the z-axis and the x− y plane is transverse to it.

The positive z direction is defined as pointing to the “A” side of the detector

and negative z direction points to the “C” side. The x-axis is defined to

be horizontal direction with positive x direction points to the center of the

LHC ring. The y-axis is the vertical direction with positive y direction points

upwards.
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Figure 20: Main subsystems of the ATLAS detector
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3.2.1 Inner detector

The ATLAS Inner Detector(ID) is a composite tracking system located in

the center of ATLAS detector. It is the first part of ATLAS to see the

decay products of the collisions. The ID is used to reconstruct tracks of each

charged particle via the space point positions. Once tracks are reconstructed,

they can provide the momentum information of each particle and can help

to determine the collision vertex as a whole. The ID occupies a cylindrical

volume around the detector center spanning ±3512mm in the z direction and

1150 mm in radius, providing full azimuthal coverage and ∣η∣ < 2.5. There

are three complementary sub-detectors (from innermost layer): the Pixel

Detector, the SemiConductor Tracker (SCT) and the Transition Radiation

Tracker (TRT). The Pixel and SCT detectors covers region ∣η∣ < 2.5, while

TRC covers ∣η∣ < 2. Relevant features are described briefly below; full details

can be found in [42]. Each of the three sub-detectors is divided into barrel

(detector layers parallel to the beam pipe) and an end-cap modules (detector

layers perpendicular to beam-pipe). Figure 21 shows a scheme of the ID

barrel being crossed by one high-energy particle, labeled and with dimensions.

Figure 22 shows the dimensions of the various sub-detectors and the typical

detector layers that 10 tracks at various η traverse.

The Pixel Detector

The detector is the first detector each flying track will penetrate through,

providing three space point measurements per track over the full acceptance.

The pixel detector contribute to determination of the impact parameter and

detection of short lived particles. The pixel detector is made up of three

concentric cylindrical detectors in the barrel region and three end-cap disks

each in the forward and backward regions. Typically three pixel layers are

crossed by each track. The detector a very high granularity, consisting of

1744 silicon pixel module , each having 47232 pixels, most of 50 × 400µm2

for a total of approximately 80.4 million readout channels. This extremely

fine granularity is needed in the pixel detector due to its proximity to the
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Figure 21: Scheme of the ATLAS inner detector barrel being crossed by one

high-energy particle, labeled and with dimensions.

interaction point. Hits in a pixel are read out if the signal exceeds a tunable

threshold.
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Figure 22: Quarter-section of the ATLAS inner detector showing the major

detector elements along with their dimensions. Also shown are the typical

number of detector elements that tracks at different η have to cross.

The SemiConductor Tracker (SCT)

The SCT system is designed to provide eight strip measurements (four space-

points) per track originating in the intermediate radial range, contributing

to the measurement of momentum, impact parameter and vertex position.

The detector consists of 4088 modules of silicon-strip detectors arranged in

four concentric barrels and two end-caps of nine disks each. In the barrel

SCT eight layers of silicon microstrip detectors are approximately parallel to

the solenoid field and beam axis, providing precision point in the R − φ and

z coordinates, using small angle stereo to obtain the z-measurement. Each

silicon detector has 780 readout strips of 80 µm pitch. The barrel modules

are mounted on carbon-fibre cylinders at radii of 30.0, 37.3, 44.7, and 52.0

cm. The end-cap modules are very similar in construction but use tapered

strips with one set aligned radially.

The Transition Radiation Tracker (TRT)

The TRT is a drift-tube system and provides robust tracking information

with stand-alone pattern recognition capability in the LHC environment, to

enhance the momentum resolution by providing track measurement points up
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to the solenoid radius and to provide a fast level-2 trigger. The TRT consists

of 370,000 cylindrical drift tubes (straws). Each straw (4 mm diameter, made

of Kaptonr with a conductive coating) acts as a cathode and is kept at high

voltage of negative polarity. The straws in barrel region are arranged in three

cylindrical layers while The straws in end-cap regions are radially oriented

and arranged in 80 wheel-like modular structure. The TRT straw layout is

designed so that charged particles with transverse momentum pT > 0.5 GeV

and with pseudorapidity ∣η∣ < 2.0 cross typically more than 30 straws. The

TRT provides electron identification capability by employing Xenon gas to

detect transition radiation photons created in a radiator between the straws.

3.3 Calorimeters

Calorimeters measure the energy a particle loses as it passes through the

detector. It is usually designed to stop entire or “absorb” most of the par-

ticles coming from a collision, forcing them to deposit all of their energy

within the detector. It consists of metal plates (absorbers) and sensing el-

ements. Interactions in the absorbers transform the incident energy into a

”shower” of particles that are detected by the sensing elements. Electro-

magnetic calorimeters measure the energy of electrons and photons as they

interact with matter. Hadronic calorimeters sample the energy of hadrons

(particles that contain quarks, such as protons and neutrons) as they inter-

act with atomic nuclei. Calorimeters can stop most known particles except

muons and neutrinos.

The components of the ATLAS calorimetry system are: the Liquid Argon

(LAr) Calorimeter and the outer Tile Hadronic Calorimeter. Figure 23 is the

cut-away view of the ATLAS calorimeters, which covers full azimuthal range

over the range ∣η∣ < 4.9 [43]. In the analyses done here, only the Forward

Calorimeter (FCal) are used.
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Figure 23: Overview of the ATLAS calorimetry. Near the beam-pipe the

tracker is visible, surrounding it is the EM calorimeter and beyond the

hadronic calorimeter. Both barrel and end-caps elements are displayed.

3.3.1 Forward Calorimeter

The FCal are a liquid argon, ionization, sampling calorimeters, providing the

measurement of transverse energy ET of particles passing it. FCal are located

at the two end of ATLAS detector (named FCalA and FCalC), covering

3.2 < ∣η∣ < 4.9. Each of the two Forward Calorimeters consists of three

modules, one behind the other: FCal1 and FCal2 and FCal3, as shown on

Figure 24. The FCal modules are cylindrical in shape with a coaxial hole

through which the LHC beams pass. FCal1 module is made of copper is

the closest to the Interaction Point and is optimized for electromagnetic

measurements. FCal2 and FCal3 modules are are made mostly of tungsten

for measurement of hadronic showers.
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Figure 24: Schematic diagram showing the three FCal modules located in

the end-cap cryostat.

In this work, the fine η − φ segmentation of the calorimeter is not used.

Instead, the smaller segmentation (cells) are combined to form towers with

size 0.1 × 0.1 in phase space η − φ. In regions where the segmentation of

the calorimeter cells is larger than 0.1 × 0.1 (for example last layer of the

tile barrel), the cell contributes to multiple towers with its energy divided

between the towers. Similarly for the FCal where the segmentations are in

x − y rather than in η − φ, the x − y cells are combined to make towers of

0.1 × 0.1 in η − φ with energy of cells that span multiple towers dividend

between them. These calorimeter towers are used in the final analyses.

Zero Degree Calorimeter(ZDC)

Zero Degree Calorimeter (ZDC) gets its name as it is located installed on

either side (at 140 m downstream, i.e. at zero degrees) of interaction point.

Thus ZDC is well separated from the central detector so this minimizes in-

ferences between jet structure and flow.

The primary role of the Zero Degree Calorimeter is in event characteriza-

tion. Only the neutral particles from the event manage to reach the ZDC as

the charged particles are deflected away by the magnetic fields in the beam-

pipe. Thus in Pb+Pb collisions the ZDC the participant number by sampling

the spectator neutrons, which is equivalent to measuring the magnitude of the
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impact parameter. Each side of the ZDC consists of four modules as shown

in the left bottom plot of Figure 25. The detailed design of the modules is

shown in the right panel of Figure 25. Each module consists of 11 tungsten

plates 10mm thick in the beam direction and steel plates at the front and

back (also 10mm thick). Sandwiched between the plates are 1.5 mm diame-

ter quartz rods that run vertically and are viewed by photomultiplier tubes

(PMT) from above, via light-pipes. The quartz rods collect Cherenkov radi-

ation from shower particles and guide them to the PMTs. Each PMT is read

out by several channels of a Pre Processor Module (PPM). The PPMs are

64 channel, 40 MHz, 10 bit ADCs. The first two ZDC modules on the C side

and the second module on the A side also have quartz rods arranged in an

x−y grid along the beam-pipe. These can be used for position measurements

of the showers. They were however not used in any of the analyses presented

here.

Figure 25: Left Panel:Arrangement of ZDC modules on the side with position

sensing EM module. Right Panel: Configuration of the EM module with

position sensing rods
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3.3.2 Minimum Bias Trigger Scintillator

The minimum bias trigger scintillator (MBTS) provides highly efficient level-

1 (L1) triggering on minimum bias (non diffractive inelastic collisions) events

in pp, p+Pb and Pb+Pb collisions. The MBTS consist of 2 cm thick polystyrene

scintillator disks mounted on both sides of the interaction point just in front

of the electromagnetic end-cap at z = ±3.56m. Each side has an inner and

outer ring in η of eight counters in the azimuthal angle φ. The outer counters

pseudorapidity acceptance is 2.08 ≤ ∣η∣ ≤ 2.78, while the acceptance for inner

counters is 2.78 ≤ ∣η∣ ≤ 3.75.

In Run-1, each scintillator has a trapezoidal shape covering an angle of

2π/8. Light collected from each edge of the scintillator is guided to the

photomultiplier tubes (PMTs) using wavelength shifting fibers (WLS), as

shown on Figure 26. The MBTS signals, after being shaped and amplified in

such a way that the pulse amplitude is proportional to the amount of energy

deposited in the counter, are fed into leading edge discriminators and sent as

25 ns NIM pulses to the Central Trigger Processor (CTP). The total charge

collected as well as the arrival time of the signals are recorded. An MBTS

hit is defined as a signal above the discriminator threshold.

In Run-2, it was decided to replace the MBTS with a new detector based

on the same ideas and trying to keep the same materials, since the old received

a dose in the range of 0.1 ∼ 0.4 × 104 Gy. However, the number of read

out channels has to be reduced since they will be in use by the TileCal to

instrument the “gap regions”.

3.4 Trigger

The trigger system decides whether or not to keep a given collision event

for later study, which reduces the event rate from the design bunch-crossing

rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-1

(2009-2013),the trigger system has three distinct levels: Level-1 (L1), Level-2

(L2), and the Event Filter (EF). L1 is purely hardware based, built using
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Figure 26: Layout of one of the two MBTS disks in RunI

custom made electronics. L2 and EF are software based running on CPU

farms. For Run-2, L2 and EF has been merged into a single event processing

HLT farm, which reduces the complexity and allows for dynamic resource

sharing between algorithms [44]. A schematic overview of the upgraded Run-

2 ATLAS trigger and data acquisition system is shown in Figure 27.

The ATLAS trigger system carries out the selection process in three

stages. The Level-1 trigger works on a subset of information from the

calorimeter and muon detectors. The decision to keep the data from an

event is made less than two microseconds after the event occurs, and the

event is then retrieved from pipelined storage buffers. Of 40 million bunch

crossings per second, less than 100,000 are kept by the Level-1 trigger.

The Level-2 trigger is a large array of custom processors that analyze in

greater detail specific regions of interest identified by the Level-1 system for

each event. In the mean time, the full event data is collected into buffers. A

few thousand events per second pass Level-2, and have their data passed on
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Figure 27: Schematic layout of the ATLAS trigger and data acquisition sys-

tem in Run-2.

to Level-3.

The Level-3 trigger is a large farm of CPUs which perform a detailed

analysis of the full event data. About 200 events per second are left after the

Level-3 analysis, and these are passed on to a data storage system for offline

analysis.
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4 Measurements of longitudinal flow fluctua-

tions in Pb+Pb

For a long time the fireball created in heavy ion collisions is treated as a

boost-invariant system and particle production looks the same in all reference

frames related by a Lorentz boost in z-axis [7]. Thus study of the QGP

dynamics and anisotropic flow has been focused in the transverse directions.

However in recent years, the heavy ion community begin to realize the

boost-invariant picture could be broken at the single event level. Recent

studies have shown that, due to the longitudinal fluctuations, both flow mag-

nitudes vn and flow orientation Φn may keep constant at different pseudora-

pidity (η): , i.e. Vn(η1) ≠ Vn(η2), as illustrated on Figure 28. And studies

from AMPT further indicate the change of Vn along η is not in a purely

random way but has some patterns. This phenomena is referred to as flow

decorrelations. Study of this decorrelation effect over a broad pseudorapidity

range can provide a new set of tools for constraining the models for initial

states, and for studying the transport properties and evolution dynamics of

the QGP.

Figure 28: Longitudinal flow fluctuation (a) asymmetry of flow amplitude vn

(b) rotation of event plane Φn at different pseudorapidities range.

First measurement of flow decorrelation effect was done by CMS collab-

oration using a novel observable rn(η), which is defined as a ratio of of two

correlations: the flow correlation between η and ηref and the flow correlation
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between −η and ηref [45].

rn(η) =
⟨Vn(−η)V ∗

n (ηref)⟩

⟨Vn(η)V ∗

n (ηref)⟩
(41)

This ratio is sensitive to the correlation between η and −η. The CMS has

measured the ratio in Pb+Pb collision and p+Pb collisions for flow harmonics

n = 2 − 4. If there is no decorrelation, in the Pb+Pb system, rn(η) equals 1,

however, rn(η) is observed to be < 1 and decrease linearly as a function η.

Later on, ATLAS collaboration improved the measurements of flow decor-

relation. Firstly, the rn(η) in the CMS measurement, which is effectively the

first moment of the correlation between Vn in separate η intervals, is extended

to the second and third moments. Secondly, a correlation between four dif-

ferent η intervals is measured to separate the decorrelation from fluctuations

of amplitudes vn and from fluctuations of Φn. Thirdly, correlations between

harmonics of different order are also measured, e.g. between V2and V4 in

different η intervals, to investigate how mode-mixing effects evolve with ra-

pidity. In this way, flow decorrelation is studied involving V2−−V5 in Pb+Pb

collisions and is studied at two collision energies:
√
sNN = 2.76 and 5.02 TeV.

This measurement is the topic of this section.

The majority of work presented in this chapter is Ref [46].

4.1 Methodology

Here, we introduce the set of observables in this analysis, more details are

found in Refs. [45, 47].

To begin with, we firstly define the observed per-particle normalized flow

vector qn

qn ≡
∑iwie

inφi

∑iwi
. (42)

where the sums run over all particles in a given η interval and pT range of the

event, φi is the azimuthal angle of the ith particle and weight wi is assigned

to accounts for detector non-uniformity and tracking inefficiency.
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The single-event quantity, q-vector, is a raw estimate of the true flow

vector Vn, which also contains statistical smearing sn (vector) and non-flow

cn (vector) components

qn = Vn + sn + cn (43)

In general, the three parts are assumed to be uncorrelated in each event. The

two-particle correlation can be decomposed as

⟨qanq
b∗
n ⟩ = ⟨V a

n V
b∗
n ⟩ + ⟨canc

b∗
n ⟩ + ⟨sans

b∗
n ⟩ (44)

In the absence of non-flow correlation, the correlator averaged over many

events can be expressed as:

⟨qanq
b∗
n ⟩ ≈ ⟨V a

n V
b∗
n ⟩ (45)

where the statistical fluctuation vanishes after averaging, since they are ran-

domly oriented from event to event. Thus in general, the flow (Vn) correlation

can be approximated by qn correlation.

The first observable is constructed using the correlation between k-th

moment of the n-th order flow vectors from two different η intervals. And the

two windows are selected to be symmetric around η = 0. The flow correlation

is then averaged over many events in a given centrality class to get the ratio

rn∣n;k(η), for k = 1,2,3:

rn∣n;k(η) =
⟨qkn(−η)q

∗k
n (ηref)⟩

⟨qkn(η)q
∗k
n (ηref)⟩

(46)

=
⟨[vn(−η)vn(ηref)]

k
coskn(Φn(−η) −Φn(ηref))⟩

⟨[vn(η)vn(ηref)]
k

coskn(Φn(η) −Φn(ηref))⟩

where ηref is the reference pseudorapidity, which is fixed and is common to

the numerator and the denominator. The sine(imaginary) terms vanish in

the last expression in Equation (46) because Φn(−η) −Φn(ηref) should be an

even function since the positive or negative sign of the value should be ran-

dom. In essence, the ratio rn∣n;k(η) quantifies the correlation (decorrelation)
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of flow between η and −η, by comparing each of them to a common reference

pseudorapdity window. And from its construction, the observable is effec-

tively a 2k-particle correlator between two subevents as defined in Ref. [48],

and the implementation details of the correlator should be found in Ref [47].

Figure 29 is a cartoon illustrating the construction of rn∣n;k(η) with AT-

LAS detector, where ∣η∣ < 2.5 at mid-rapidity is covered by Inner Detector

and the 4.0 < ∣ηref ∣ < 4.9 region is covered by Forward Calorimeter. The

pseudorapidity gap between ηref and η is large enough to suppress non-flow

correlation between the flow vectors in both the numerator and denominator

of Equation (46).
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Figure 29: Schematic illustration of procedure for constructing the correlator

rn∣n;k(η) eq. (46). The acceptance coverages for the ATLAS tracker used for

η and reference detector used for ηref are discussed in Section 3.

If flow harmonics from multi-particle correlations factorize into single-

particle flow harmonics, e.g. ⟨V k
n (η)V ∗k

n (ηref)⟩
2
= ⟨v2k

n (η)⟩ ⟨v2k
n (ηref)⟩, then

one should expect that rn∣n;k(η) = 1. Therefore, a value of rn∣n;k(η) different

from unity implies a factorization-breaking effect due to longitudinal flow

decorrelation, which gets contribution from both the magnitude asymmetry

and event plane twist.
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In order to estimate the separate contributions of the asymmetry and

twist effects, a new observable Rn∣n;2(η) is proposed in Ref [47], which involves

correlations of flow vectors in four η intervals and is mainly sensitive to event

plane twist effect. The definition of the observable is:

Rn∣n;2(η) =
⟨qn(−ηref)qn(−η)q∗n(η)q

∗

n(ηref)⟩

⟨qn(−ηref)q∗n(−η)qn(η)q
∗

n(ηref)⟩
(47)

=
⟨vn(−ηref)vn(−η)vn(η)vn(ηref) cosn [Φn(−ηref) −Φn(ηref) + Φn(−η) −Φn(η) ]⟩

⟨vn(−ηref)vn(−η)vn(η)vn(ηref) cosn [Φn(−ηref) −Φn(ηref) − (Φn(−η) −Φn(η))]⟩

where the notation “2” in the subscript indicates that there are two qn and

two q∗n in the numerator, as well as in the denominator. Seen from Equa-

tion (47), the effect of amplitude asymmetry is the same in both the nu-

merator and the denominator, thus this correlator is mainly sensitive to the

event-plane twist effects. Figure 30 is a schematic illustration of the relations

between different flow vectors with ATLAS detector.
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Figure 30: Similar plot as Figure 29 but for correlator Rn,n∣n,n(η).

The study of flow decorrelations can also be extended to between harmon-

ics of different orders. The first type is V2V3 defined as observable r2,3∣2,3:

r2,3∣2,3(η) =
⟨q2(−η)q∗2(ηref)q3(−η)q∗3(ηref)⟩

⟨q2(η)q∗2(ηref)q3(η)q∗3(ηref)⟩
=

⟨V2(−η)V ∗

2 (ηref)V3(−η)V ∗

3 (ηref)⟩

⟨V2(η)V ∗

2 (ηref)V3(η)V ∗

3 (ηref)⟩

(48)
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If the longitudinal fluctuations for V2 and V3 are independent of each other,

one would expect a factorization relationship r2,3∣2,3 ≈ r2∣2r3∣3.

The other two interesting observables are decorrelation effect of V4 and

V5 with their non-linear components:

r2,2∣4(η) =
⟨q2

2(−η)q
∗

4(ηref)⟩

⟨q2
2(η)q

∗

4(ηref)⟩
=

⟨V 2
2 (−η)V ∗

4 (ηref)⟩

⟨V 2
2 (η)V ∗

4 (ηref)⟩
(49)

r2,3∣5(η) =
⟨q2(−η)q3(−η)q∗5(ηref)⟩

⟨q2(η)q3(η)q∗5(ηref)⟩
=

⟨V2(−η)V3(−η)V ∗

5 (ηref)⟩

⟨V2(η)V3(η)V ∗

5 (ηref)⟩
(50)

As discussed in Section 2, higher order flow harmonics contain a linear contri-

bution associated with initial geometry and mode-mixing contributions from

lower-order harmonics due to nonlinear hydrodynamic response [16, 17, 49]:

V4 = V4L + χ4V
2

2 (51)

V5 = V5L + χ5V2V3 (52)

If the linear component of v4 and v5 is uncorrelated with lower-order har-

monics, i.e. ⟨V 2
2 V

∗

4L⟩ ∼ 0 and ⟨V2V3V ∗

5L⟩ ∼ 0, one expects [47]:

r2,2∣4 ≈ r2∣2;2 , r2,3∣5 ≈ r2,3∣2,3 (53)

Furthermore, using Equation (51) the rn∣n;1 correlators involving n = 4

and n = 5 can be approximated by:

r4∣4;1(η) ≈
⟨V4L(−η)V ∗

4L(ηref)⟩ + χ2
4 ⟨V

2
2 (−η)V ∗2

2 (ηref)⟩

⟨V4L(η)V ∗

4L(ηref)⟩ + χ2
4 ⟨V

2
2 (η)V ∗2

2 (ηref)⟩
, (54)

r5∣5;1(η) ≈
⟨V5L(−η)V ∗

5L(ηref)⟩ + χ2
5 ⟨V2(−η)V ∗

2 (ηref)V3(−η)V ∗

3 (ηref)⟩

⟨V5L(η)V ∗

5L(ηref)⟩ + χ2
5 ⟨V2(η)V ∗

2 (ηref)V3(η)V ∗

3 (ηref)⟩
. (55)

Therefore, both the linear and nonlinear components are important for r4∣4;1

and r5∣5;1.
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4.2 A simple interpretation of the observables

Based on CMS observation that rn∣n;1(η) decrease almost linearly along η, we

propose a simple model, which assumes Vn in each event is a slowly varying

function in η near mid-rapidity (η = 0). Therefore, we perform a perturbative

expansion for the flow vector along η near mid-rapidity

Vn(η) ≈ Vn(0)(1 + αnη)e
iβnη (56)

In the equation, Vn(0) is the flow vector at mid-rapidity, the term (1 +

αnη) characterizes the linear variation along η direction for flow magnitude,

and eiβnη represents the rotation (twist) of flow orientation with respect to

the flow vector at mid-rapidity. With the above approximation, the flow

correlation can be write as

⟨qkn(η)q
∗k
n (ηref)⟩ ≈ ⟨qn(0)

k ⟨(1 + kηαn)e
ikβnηq∗kn (ηref)⟩⟩ (57)

Note the linear approximation is only valid for small η, while we still keep

qn(ηref) as a whole. For the flow vector taken from the reference window

at large pseudorapidity, one may not simply take the linear approximation.

Instead, we take the following parameterization:

qkn(0)q
∗k
n (ηref) ≡Xn;k(ηref) − iYn;k(ηref), (58)

Then Equation (57) can be written as

⟨qkn(η)q
∗k
n (ηref)⟩ ≈ ⟨(1 + kηαn)(Xn;k + kηβnYn;k)⟩ ≈ ⟨Xn;k + kηαnXn;k + kηβnYn;k⟩

(59)

= ⟨Xn;k⟩ (1 + kη
⟨αnXn;k⟩

⟨Xn;k⟩
+ kη

⟨βnYn;k⟩

⟨Xn;k⟩
) (60)

and rn∣n;k can be approximated by:

rn∣n;k(η) = 1−2kF r
n;kη, F

r
n;k ≈ F

asy
n;k +F

twi
n;k , F

asy
n;k ≡

⟨αnXn;k(ηref)⟩

⟨Xn;k(ηref)⟩
, F twi

n;k ≡
⟨βnYn;k(ηref)⟩

⟨Xn;k(ηref)⟩
,

(61)
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If F asy
n;k and F twi

n;k in Equation (61) are also independent of k, i.e.

F asy
n;k = F asy

n;1 ≡ F asy
n , F twi

n;k = F
twi
n;1 ≡ F twi

n , (62)

then one expects:

rn∣n;k ≈ r
k
n∣n;1 or rkn∣n (63)

Deviation from this relation could provide insights on the detailed event-by-

event structure in the longitudinal flow fluctuations.

In fact, using the approximation Equation (59) and assuming qn(−ηref)q∗n(0) ≈

q∗n(ηref)qn(0) we have:

⟨qn(−ηref)qn(−η)q
∗

n(η)q
∗

n(ηref)⟩ ≈ ⟨qn(−ηref)q
∗

n(0)qn(0)q
∗

n(ηref)e
−2iβnη⟩

≈ ⟨q2
n(0)q

2∗
n (ηref)e

−2iβnη⟩ = ⟨Xn;2⟩ (1 − 2η
βnYn;2

⟨Xn;2⟩
) (64)

Therefore, the observable R can be approximated as:

Rn∣n;2 ≈ 1 − 4η
⟨βnYn;2(ηref)⟩

⟨Xn;2(ηref)⟩
≈ 1 − 4F twi

n;2 η (65)

if Rn∣n;2 is parameterized with a linear function similar to Equation (61),

then:

Rn∣n;2 = 1 − 2FR
n η, F

R
n ≈ 2F twi

n;2 (66)

The contributions from FB asymmetry and event-plane twist can be esti-

mated from rn∣n;2 and Rn∣n;2:

F twi
n;2 = FR

n /2 , F asy
n;2 = F r

n;2 − F
R
n /2 , (67)

4.3 Datasets

This analysis uses approximately 7 µb−1 and 470 µb−1 of Pb+Pb data at
√
sNN = 2.76 and 5.02 TeV, respectively, recorded by the ATLAS experiment

at the LHC. The 2.76 TeV data were collected in 2010, while the 5.02 TeV

data were collected in 2015. This trigger system selected 7 µb−1 and 22 µb−1
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of minimum-bias Pb+Pb data at
√
sNN = 2.76 TeV and

√
sNN = 5.02 TeV,

respectively. To increase the number of recorded events from very central

Pb+Pb collisions, a dedicated Level-1 trigger was used in 2015 to select events

requiring the total transverse energy (ΣET
) in the FCal to be more than

4.54 TeV. This ultra-central trigger sampled 470 µb−1 of Pb+Pb collisions at

5.02 TeV and was fully efficient for collisions with centrality 0–0.1%. Details

about the event and track selection are in Ref. [46].

4.4 Data analysis

The data analysis is divided into two steps: building qkn from different subde-

tectors in an event and constructing different observables with corresponding

qkn. The flow vector from FCal severs as the reference qkn(ηref), while the ID

provide the flow vector as a function of pesudurapidity qkn(η).

In experiments, the detector performance is not uniform at (η, φ) due

to various reasons. In this case, supposing we have a isotropic true parti-

cle distribution in (η, φ), the observed distribution is anistropic due to the

detector acceptance effet. This fake anisotropy will bias our flow correlator.

The detector acceptant effect also exist for particles with different transverse

momentum pT.

In order to remove the detector effects, each track is assigned a weight

such that Equation (42) is a weighted average [32]. The weight used for the

ith-particle in the ID is defined as:

wID
i (η, φ, pT) = dID(η, φ)/ε(η, pT) , (68)

where ε(η, pT) is the track efficiency and compensates detector inefficiency

in η and pT direction, determined from GEANT simulation and detailed in

[46]. The weight factor dID(η, φ) corrects for variation of non-uniformity of

detector acceptance at φ, and is also a function of pesudurapidity η. In

practice, we determine dID(η, φ) in each given η interval with width equals

to 0.1 and use it to all particles detected in the same interval.
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For a chosen η interval, the distribution in azimuthal bins, N(φ, η), is

built up from reconstructed charged particles summed over all events. The

weight factor is then obtained as dID(η, φ) ≡ ⟨N(η)⟩ /N(φ, η), where ⟨N(η)⟩

is the average of N(φ, η). After the “flattening” procedure, the φ-dependent

non-uniformity from track reconstruction should be removed adequately.

This step is very very important for any azimuthal correlation analysis. Sim-

ilarly, the weight in the FCal for the flow vector from Equation (42) is defined

as:

wFCal
i (η, φ) = dFCal(η, φ)ET,i , (69)

where ET,i is the transverse energy measured in the ith tower in the FCal

covering a small (η, φ) region. The azimuthal weight dFCal(η, φ) is calculated

in η intervals of 0.1 in a similar way to what is done for the ID. The flow

vectors qn(η) and qn(ηref) are further corrected by subtracting an event-

averaged offset: qn − ⟨qn⟩evts [50]. The flow vectors obtained after these

reweighting and offset procedures are used in the correlation analysis.

The preprocessed flow vectors are used in the correlation analysis. The

correlation quantities used in rn∣n;k are calculated as:

⟨qkn(η)q
∗k
n (ηref)⟩ ≡ ⟨qkn(η)q

∗k
n (ηref)⟩s

− ⟨qkn(η)q
∗k
n (ηref)⟩b

, (70)

where subscripts “s” and “b” represent the correlator constructed from the

same event (“signal”) and from the mixed-event (“background”), respec-

tively. The mixed-event quantity is constructed by combing qkn(η) from each

event with q∗kn (ηref) obtained in other events with similar characteritics (cen-

trality, vertex z position etc). Thus the mixed-event quantity contains no

signal and should mainly reflect remaining detector effect, which is found to

be typically more than two orders of the corresponding signal term.

In general, for the mixed-event quantity, we select q vectors located in

the same η range from one event and move to next event for another η

range. Depends on how many different η ranges involved in the correlator,

we combine the same number of different events to construct the mixed-event

quantity. For example, the correlator involving flow vectors in two different
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η ranges, e.g. r2,3∣5, is calculated as:

⟨q2(η)q3(η)q
∗

5(ηref)⟩ ≡ ⟨q2(η)q3(η)q
∗

5(ηref)⟩s − ⟨q2(η)q3(η)q
∗

5(ηref)⟩b . (71)

The product of q2(η)q3(η) is from one event and q∗5(ηref) is from a similar

event. On the other hand, for correlators involving more than two different

η ranges, such as Rn∣n;2, each mixed event is constructed from four different

events with similar centrality and Zvtx.

Since Pb+Pb is a symmetric collision system, most correlators can be

symmetrized. For example, the event averaged quantity holds this condition

⟨qkn(−η)q
∗k
n (ηref)⟩ = ⟨qkn(η)q

∗k
n (−ηref)⟩. So instead of Equation (46) the actual

measured observable is:

rn∣n;k(η) =
⟨qkn(−η)q

∗k
n (ηref) + qkn(η)q

∗k
n (−ηref)⟩

⟨qkn(η)q
∗k
n (ηref) + qkn(−η)q

∗k
n (−ηref)⟩

. (72)

The symmetrization procedure also allows further cancellation of possible

differences between η and −η in the tracking efficiency or detector acceptance.

Similarly, we have

r2,2∣4(η) =
⟨q2

2(−η)q
∗

4(ηref)⟩ + ⟨q2
2(ηref)q∗4(−η)⟩

⟨q2
2(η)q

∗

4(ηref)⟩ + ⟨q2
2(ηref)q∗4(η)⟩

(73)

r2,3∣5(η) =
⟨q2(−η)q3(−η)q∗5(ηref)⟩ + ⟨q2(ηref)q3(ηref)q∗5(−η)⟩

⟨q2(η)q3(η)q∗5(ηref)⟩ + ⟨q2(ηref)q3(ηref)q∗5(η)⟩
(74)

The last thing to mention is related to the the algorithm implemented in

data analysis. For example, in the ⟨qkn(−η)q
∗k
n (ηref)⟩ correlator, when k = 2

case, we need to calculate squared qn :

q2
n =
∑
N
i=1∑

N
j=1wiwje

in(φi+φj)

∑
M
i=1∑

M
j=1wiwj

(75)

in this way q2
n contains duplicated particle with the same index i = j, which

is a q2n contribution. The duplication of same indexed particles introduce

mixture of harmonics of other orders. These particle multiples need to be

removed. In this analysis, for the correlator which use more than one q-vector
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term in correlator with correction

q2
n (q2

n − ω1q2n)/(1 − ω1)

q3
n (q3

n − 3ω1q2nqn + 2ω2q3n)/(1 − 3ω1 + 2ω2)

q2q3 (q2q3 − ω1q5)/(1 − ω1)

Table 1: The correction to remove duplicated particle multiple. Here ωk =
∑iw

k+1
i

(∑iwi)
k+1 and qkn =

∑iw
k
i e
inφi

∑iw
k
i

and wi is the particle weight and φi is the

azimuthal angle of particle.

from the same η region or k times of the same qn, we remove the contained

duplicated terms. The actually correlator are calculated in Table 1. Note

we can only do this correction for qn(η) calculated using tracks in Inner

Detector and couldn’t do that for flow vector qn(ηref) calculated using towers

of FCal. But the duplicated term contribution should be small in FCal,

since its contribution is inverse to multiplicity, 1/M . On the other hand,

this duplicated term from FCal is equal in numerator and denominator so it

should largely cancel out in the ratio.

As a summary, Table 2 gives a list of the set of correlators measured

in this analysis. The results are calculated in intervals of centrality and

presented as a function of η for the range ∣η∣ < 2.4. The main results are

obtained using 5.02 TeV Pb+Pb data. The 2010 2.76 TeV Pb+Pb data are

statistically limited, and are used only to obtain rn∣n;1 and Rn∣n;2 to study

the dependence on collision energy.

Figure 31 and Figure 32 show the sensitivity of r2∣2;1 and r3∣3;1, respec-

tively, to the choice of the range of ηref . A smaller ηref value implies a smaller

pseudorapidity gap between η and ηref . The values of rn∣n;1 generally decrease

with decreasing ηref , possibly reflecting the contributions from the dijet cor-

relations. However, such contributions should be reduced in the most central

collisions due to large charged-particle multiplicity and jet-quenching effects.

Therefore, the decrease of rn∣n;1 in the most central collisions may also reflect

the ηref dependence of F r
n;1. In this analysis, the reference flow vector is cal-
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Table 2: The list of observables measured in flow decorrelation analysis.

Observables Pb+Pb datasets

rn∣n;k for n = 2,3,4 and k = 1 2.76 and 5.02 TeV

Rn∣n;2 for n = 2,3 2.76 and 5.02 TeV

rn∣n;k for n = 5 and k = 1 5.02 TeV

rn∣n;k for n = 2,3 and k = 2,3 5.02 TeV

Rn∣n;2 for n = 4 5.02 TeV

r2,2∣4, r2,3∣5, r2,3∣2,3 5.02 TeV

culated from 4.0 < ηref < 4.9, which reduces the effect of dijets and provides

good statistical precision. For this choice of ηref range, r2∣2;1 and r3∣3;1 show

a linear decrease as a function of η in most centrality intervals, indicating a

significant breakdown of factorization. A similar comparison for r4∣4;1 can be

found in the Ref. [46].
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Figure 31: The r2∣2;1(η) measured for several ηref ranges. Each panel shows

the results for one centrality range. The error bars are statistical only.
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Figure 32: The r3∣3;1(η) measured for several ηref ranges. Each panel shows

the results for one centrality range. The error bars are statistical only.

Figure 33 and Figure 34 show r2∣2;1 and r3∣3;1 calculated for several pT

ranges of the charged particles in the ID. A similar comparison for r4∣4;1 can

be found in the Ref. [46]. If the longitudinal-flow asymmetry and twist reflect

global properties of the event, the values of rn∣n;1 should not depend strongly

on pT. Indeed no dependence is observed, except for r2∣2;1 in the most central

collisions and very peripheral collisions. The behavior in central collisions

may be related to the factorization breaking of the v2 as a function of pT and

η [45]. The behavior in peripheral collisions is presumably due to increasing

relative contributions from jets and dijets at higher pT and for peripheral

collisions. Based on this, the measurements are performed using charged

particles with 0.5 < pT < 3 GeV.
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Figure 33: The r2∣2;1(η) measured in several pT ranges. Each panel shows

the results for one centrality range. The error bars are statistical only.
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Figure 34: The r3∣3;1(η) measured in several pT ranges. Each panel shows

the results for one centrality range. The error bars are statistical only.
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4.5 Systematic uncertainties

In this analysis, all the observables are found to follow approximately linear

decrease with η, i.e. D(η) ≈ 1 − cη for a given observable D(η) where c is a

constant. The systematic uncertainty is therefore presented as the relative

uncertainty to 1 −D(η) at η = 1.2. There are several sources contributing to

the systematic uncertainty:

• The effect of detector azimuthal non-uniformity

• The systematic uncertainty associated with the track quality

• the pT -dependent uncertainty in the track reconstruction efficiency

ε(η, pT)

Details about the systematic is summarized in Ref [46], and the values

are listed in Tables 3–5.

Table 3: Systematic uncertainties in percent for 1 − r2∣2;k and 1 − r3∣3;k at

η = 1.2 in selected centrality intervals.

1−r2∣2;1 1−r2∣2;2 1−r2∣2;3

0–5% 20–30% 40–50% 0–5% 20–30% 40–50% 0–5% 20–30% 40–50%

Event mixing[%] 0.8 0.2 0.3 2.2 0.4 0.6 6.0 0.6 2.1

Track selections[%] 0.4 0.3 0.2 1.5 0.4 0.9 9.4 1.0 2.4

Reco. efficiency[%] 0.3 0.1 0.1 0.4 0.1 0.1 0.9 0.1 0.1

Total[%] 1.0 0.4 0.4 2.7 0.6 1.1 12 1.2 3.2

1−r3∣3;1 1−r3∣3;2 1−r3∣3;3

0–5% 20–30% 40–50% 0–5% 20–30% 40–50% 0–5% 20–30%

Event mixing[%] 0.6 0.4 0.9 2.2 1.2 7.9 7.0 9.5

Track selections[%] 0.6 0.2 0.6 2.5 0.7 4.4 12 10

Reco. efficiency[%] 0.1 0.1 0.1 0.4 0.2 0.9 1.1 1.5

Total[%] 0.9 0.5 1.1 3.4 1.5 9.1 14 14
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Table 4: Systematic uncertainties in percent for 1 −R2∣2;2, 1−R3∣3;2, 1− r4∣4;1

and 1 − r5∣5;1 at η = 1.2 in selected centrality intervals.

1−R2∣2;2 1−R3∣3;2

0–5% 20–30% 40–50% 0–5% 20–30% 40–50%

Event mixing [%] 6.1 1.5 1.5 4.6 2.9 14

Track selections [%] 3.5 0.4 0.7 2.0 3.2 13

Reco. efficiency[%] 0.2 0.1 0.1 0.1 0.2 0.5

Total [%] 7.1 1.6 1.7 5.1 4.4 20

1−r4∣4;1 1−r5∣5;1

0–5% 20–30% 40–50% 0–5% 20–30% 40–50%

Event mixing [%] 1.8 1.5 2.7 13 5.1 9.8

Track selections [%] 1.5 1.1 2.0 6.3 3.6 4.6

Reco. efficiency[%] 0.3 0.3 0.6 2.2 1.6 1.3

Total [%] 2.4 1.9 3.5 15 6.5 11

1−r2,3∣2,3 1−r2,2∣4 1−r2,3∣5

0–5% 20–30% 40–50% 0–5% 20–30% 40–50% 0–5% 20–30% 40–50%

Event mixing [%] 4.1 1.7 3.2 16 1.5 2.4 15 3.4 7.8

Track selections [%] 1.4 0.5 2.0 12 1.6 1.5 14 2.0 7.4

Reco. efficiency[%] 0.1 0.0 0.1 1.6 0.1 0.1 1.2 0.1 0.5

Total [%] 4.4 1.8 3.8 21 2.2 2.9 21 4.0 11

Table 5: Systematic uncertainties in percent for 1 − r2,3∣2,3, 1 − r2,2∣4 and

1 − r2,3∣5 at η = 1.2 in selected centrality intervals.

4.6 Results

4.6.1 rn∣n;1

Figures 35 to 37 shows the longitudinal decorrelation of flow vector rn∣n;k(η)

for different orders(n = 2,3,4) and k = 1, for different centrality bins in

Pb+Pb collisions with two different collision energies. For simplicity only

the first moment k = 1 results are shown in these figures. For k > 1 cases and

comparison between different k will be discussed in next subsection. The
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three figures are results for elliptic flow(n = 2) , triangular flow(n = 3) and

quadrangle flow(n = 4) respectively. In each figure, from top left to bottom

right , rn∣n;1(η) is presented in different centrality classes from central 0% to

peripheral 60%. In each panel, there are two curves representing the same

observable measured at two different collision energy 2.76TeV and 5.02TeV

as comparison.
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Figure 35: The r2∣2;1(η) compared between the two collision energies. Each

panel shows results from one centrality interval. The error bars and shaded

boxes are statistical and systematic uncertainties, respectively.

From Figures 35 to 37, a almost linear decrease as a function of η is ob-

served for the decorrelation of flow vector V2, V3 and V4, except in the most

central collisions of V2. These slope of decreasing trend reflects the strength

of decorrelation. The elliptic flow decorrelaiton shows a non-monotonic cen-

trality dependence (it is weakest around the 20–30% centrality range, and is

more pronounced in both more central and more peripheral collisions). Such

non-monotonic centrality dependence is associated with the average elliptic
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Figure 36: Similar plot to Figure 35 but for r3∣3;1(η).
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Figure 37: Similar plot to Figure 35 but for r4∣4;1(η).

shape of initial conditions created by non-central overlapping collision region

[51], which drives the development of elliptic flow in mid-central collisions,
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whereas the fluctuation becomes more important in central collisions and

peripheral collisions. For triangular and quadrangle flow, the rate of the de-

crease is approximately independent of centrality. This could be due to the

fact that both of them are driven by fluctuations. The difference of flow ori-

gin between v2 and v3, v4 may be one reason that the observed decorrelation

is stronger for n > 2.

Note, in 0 − 1% centrality the rate of v2 decrease is weaker than v3, v4

and the decreasing trend is more like a qubic function 1 − aη − bη3 . The

original motivation is that the initial conditions in 0−1% centrality or less is

predominantly generated by fluctuations such that magnitudes of first several

εn are comparable and the hydrodynamic response is expected to be linear

vn ∝ εn for all harmonics. However v2 is observed to differ from original

expectation not only in its amplitude compared with other harmonics, but

also in the shape of v2(pT). Further more the event plane angle Φ2 at same

η is found to be different among different pT, while for other harmonics the

event plane angles are similar among different pT. The peculiarity of elliptic

flow in most central collisions is still in under exploration in theory.

As for the collision energy dependence of flow decorrelation, From Fig-

ures 35 to 37 shows all three harmonics have a little stronger decorrelation at

lower energy 2.76TeV, which is expected as the collision system becomes less

boost-invariant at lower collision energy and it is also observed in a recent

study using AMPT initial condition [52].

The decreasing trend of rn∣n;1 for n = 2–4 in Figures 35 to 37 indicates

significant breakdown of the factorization of two-particle flow harmonics into

those between different η ranges. However, the size of breakdown depends

on the harmonic order n, collision centrality, and collision energy.

4.6.2 Rn∣n;2

Figures 38 and 39 show R2∣2;2 and R3∣3;2 in several centrality intervals. Firstly,

we see both observables decrease linearly with η in all centrality intervals.

Secondly, the decreasing rates is faster at lower collision energy. Since R2∣2;2 ≠
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1 is mostly caused by the event-plane twist [47], so the energy dependence

study indicates stronger event-plane decorrelation effect at lower energy.
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Figure 38: The R2∣2;2(η) compared between the two collision energies. Each

panel shows results from one centrality interval. The error bars and shaded

boxes are statistical and systematic uncertainties, respectively.

As stated before, the measured decreasing trend can be described by

linear functions quite well

rn∣n;k = 1 − 2F r
n;k η , Rn∣n;2 = 1 − 2FR

n;2 η (76)

here, the slope parameters are obtained with as linear-regression coefficients,

which is the same with least squares fitting.

F r
n;k =

∑i(1 − rn∣n;k(ηi))ηi

2∑i η
2
i

, FR
n;2 =

∑i(1 −Rn∣n;2(ηi))ηi

2∑i η
2
i

, (77)
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Figure 39: Similar plot with Figure 38 but for R3∣3;2(η) .

This slope reflects the the average η-weighted deviation of rn∣n;1(η) and

Rn∣n;2(η) from unity, where the average runs over all data points. Char-

acterizing decorrelation effect using slope provides more clear information

than using the decorrelation function.

Figure 40 and Figure 41 shows F r
n;1 and FR

n;2 as a function of centrality

(in terms of Npart) respectively. As one seen the F r
n;1 and FR

n;2 has centrality

dependence for some harmonic order. How the F parameter change from one

energy to another is studied in relative value, via the ratio of F r
2;1 values and

of FR
2;2 values at the two energies.

The values of F r
n;1 and FR

n;2 are larger with decreasing
√
sNN, as the ra-

pidity profile of the initial state is more compressed due to smaller beam

rapidity ybeam at lower
√
sNN. This energy dependence has been predicted

for F r
n;1 in hydrodynamic model calculations [53], and it is quantified in Fig-

ure 42 via the ratio of F r
2;1 values and of FR

2;2 values at the two energies. The

weighted averages of the ratios calculated in the range 30 < Npart < 400 are

given in Table 6. Compared to
√
sNN = 5.02 TeV, the values of F r

2;1 and FR
2;2

at
√
sNN = 2.76 TeV are about 10% higher, and the values of F r

3;1 and F r
4;1

are about 16% higher.
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Figure 40: Centrality dependence of F r
2;1 (left panel), F r

3;1 (middle panel) and

F r
4;1 (right panel) for Pb+Pb at 2.76 TeV (circles) and 5.02 TeV (squares).

The error bars and shaded boxes are statistical and systematic uncertainties,

respectively. The widths of the centrality intervals are not fixed but are

optimized to reduce the uncertainty.
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Figure 41: Centrality dependence of FR
2;2 (left panel), FR

3;2 (middle panel) and

FR
4;2 (right panel) for Pb+Pb at 2.76 TeV (circles) and 5.02 TeV (squares).

The error bars and shaded boxes are statistical and systematic uncertainties,

respectively. The widths of the centrality intervals are not fixed but are

optimized to reduce the uncertainty.

Another thing is that at different energy, the collision system has different

longitudinal length ybeam, so maybe the entire change of slope parameter
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Figure 42: Centrality dependence of ratio of F r
n;1 values (left panel) and

FR
n;2 values (right panel) at 2.76 TeV and 5.02 TeV. The lines indicate the

average values in the range 30 < Npart < 400, with the results and fit uncer-

tainties given by Table 6. The error bars and shaded boxes are statistical

and systematic uncertainties, respectively.

with
√
sNN can be explained by this. So we should study the decorrelaiton

function as a function of scaled pseudorapidity η/ybeam. In this case, the slope

parameter should be multiplied by the beam rapidity, i.e. F̂ r
n;1 ≡ F r

n;1ybeam

and F̂R
n;2 ≡ F

R
n;2ybeam.

Figure 43 shows the ratio of F̂ r
2;1 values and of F̂R

2;2 values at the two

energies. The beam rapidity is ybeam = 7.92 and 8.52 for
√
sNN = 2.76 and

5.02 TeV, which can lead to %7.5 reduction of the ratio. And the final result

shows F̂ r
2;1 and F̂R

2;2 at
√
sNN = 2.76 TeV are about 3% higher, and the values

of F̂ r
3;1 and F̂ r

4;1 are about 8% higher
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Figure 43: Centrality dependence of ratio of F̂ r
n;1 ≡ F r

n;1ybeam values (left

panel) and F̂R
n;2 ≡ F

R
n;2ybeam values (right panel) at 2.76 TeV and 5.02 TeV.

The lines indicate the average values in the range 30 < Npart < 400, with the

results and fit uncertainties given by Table 6. The error bars and shaded

boxes are statistical and systematic uncertainties, respectively.

Table 6: Results of the fits to the ratio of F r
n;1, FR

n;2, F̂ r
n;1 ≡ F r

n;1ybeam and

F̂R
n;2 ≡ FR

n;2ybeam values at the two energies in the range 30 < Npart < 400

shown in Figures 42 and 43. The uncertainties include both statistical and

systematic uncertainties.

n = 2 n = 3 n = 4

F r
n;1(2.76 TeV)/F r

n;1(5.02 TeV) 1.100 ± 0.010 1.152 ± 0.011 1.17 ± 0.036

FR
n;2(2.76 TeV)/FR

n;2(5.02 TeV) 1.103 ± 0.026 1.18 ± 0.08 –

F̂ r
n;1(2.76 TeV)/F̂ r

n;1(5.02 TeV) 1.023 ± 0.009 1.071 ± 0.010 1.088 ± 0.033

F̂R
n;2(2.76 TeV)/F̂R

n;2(5.02 TeV) 1.025 ± 0.024 1.10 ± 0.07 –
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4.6.3 rn∣n;k (k > 1)

r2∣2;k can be extended to higher order of k, which carry more information

about the probability distribution of EbyE flow fluctuations in η. Under

assumptions in Ref. [47], it is shown that a scaling relationship Fn;k/k = Fn;1

holds as given by Equation (63).

Figure 44 compares the results for second-order harmonic flow v2 at 5.02

TeV, where r2∣2;k for k = 1–3 with rk
2∣2;1

for k = 2–3 are plotted together for

comparison. In the most central collisions (0–5% centrality), where v2 is

driven by the initial-state fluctuations, r2∣2;k = r
k
2∣2;1

almost holds. In other

centrality intervals, where the average geometry contribution for v2 is more

important, we see r2∣2;k < r
k
2∣2;1

.
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Figure 44: The r2∣2;k for k = 1–3 compared with rk
2∣2;1

for k = 2–3 in various

centrality intervals for Pb+Pb collisions at 5.02 TeV. The error bars and

shaded boxes are statistical and systematic uncertainties, respectively. The

data points for k = 2 or 3 in some centrality intervals are rebinned to reduce

the uncertainty.
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Figure 45 shows the result for third-order harmonic flow v3, which is

driven by initial-state fluctuations in all centrality intervals. The data indi-

cates r3∣3;k = r
k
3∣3;1

holds approximately.
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Figure 45: The r3∣3;k for k = 1–3 compared with rk
3∣3;1

for k = 2–3 in various

centrality intervals for Pb+Pb collisions at 5.02 TeV. The error bars and

shaded boxes are statistical and systematic uncertainties, respectively. The

data points for k = 2 or 3 in some centrality intervals are rebinned to reduce

the uncertainty.

In this analysis, the difference between rn∣n;k and rk
n∣n;1

is quantified us-

ing the slopes (F r
n;k) of rn∣n;k are calculated via Equation (76) and Equa-

tion (77).Then, the scaled slopes F r
n;k/k are compared with each other as a

function of centrality in Figure 46.

For elliptic flow v2, the data shows a clearing hierarchy F r
2;3/3 > F r

2;2/2 >

F r
2;1. However in the most central and most peripheral collisions, the scaling

relationship F r
n;k/k = F

r
n;1 holds approximately. On the other hand, For trian-

gular flow v3, the data shows a slightly opposite trend , F r
3;3/3 ≲ F

r
3;2/2 ≲ F

r
3;1
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in mid-central collisions (150 < Npart < 350).
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Figure 46: The values of F r
n;k/k for k = 1,2 and 3 for n = 2 (left panel)

and n = 3 (right panel), respectively. The error bars and shaded boxes

are statistical and systematic uncertainties, respectively. The widths of the

centrality intervals are not fixed but are optimized to reduce the uncertainty.

As discussed in Section 4.1, decorrelation effect can be disentangled into

magnitude and event plane twist utilizing rn∣n;2 and Rn∣n;2 , which contains

same event plane twist effect but different degrees of asymmetry.

Figure 47 compare the the two observables for second-order harmonics

n = 2 and and 48 is the result for n = 3. For both harmonics n = 2,3, Rn∣n;2

shows a slower decreasing trend than rn∣n;2 in all centrality intervals. This is

because the Rn∣n;2 is mainly affected by the event-plane twist effects, while

the rn∣n;2 receives contributions from both FB asymmetry and event-plane

twist.

Following discussion in Section 4.1, FB asymmetry and event-plane twist

are separated using the slope parameters F r
n;2 and FR

n;2 via the relation:

F twi
n;2 = FR

n;2 , F asy
n;2 = F r

n;2 − F
R
n;2 . (78)

The results are shown in Figure 49. Despite different physics origin and

different decorrelation degree for v2 and v3, the two components are very

similar to each other in the two harmonics.
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Figure 47: The r2∣2;2(η) and R2∣2;2(η) in various centrality intervals for

Pb+Pb collisions at 5.02 TeV. The error bars and shaded boxes are sta-

tistical and systematic uncertainties, respectively.

4.7 Mixed-harmonics correlation

The hydrodynamic calculation and experimental measurements show that

correlations among flow harmonics with different orders exist and only several

particular combinations are meaningful observables [33, 49, 50, 54]. There-

fore it is worthwhile to study how this mixed-harmonics correlation change

while different harmonics are separated with a varying η gap. There are three

groups of harmonics measured in this thesis work r2,3∣2,3, r2,2∣4 and r2,3∣5.

Figure 50 show r2,3∣2,3 in different centrality bins with comparison to the

product of r2∣2;1 and r3∣3;1. These two observables are consistent with each

other, indicating that the previously observed anti-correlation between v2 and

v3 is a property of the entire event [54], and that longitudinal fluctuations of

elliptic flow and triangular flow are uncorrelated.

Secondly, Figure 51 shows r2,2∣4 in different centrality bins, with compar-
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Figure 48: The r3∣3;2(η) and R3∣3;2(η) in various centrality intervals for

Pb+Pb collisions at 5.02 TeV. The error bars and shaded boxes are statis-

tical and systematic uncertainties, respectively. The data points in 40–50%

centrality interval are rebined to reduce the uncertainty.

ison to r2∣2;2 as well as r4∣4;1. As discussed in Section 4.1, assuming that the

linear and non-linear components of v4 in Equation (51) are independent,

then r2,2∣4 would be expected to be similar to r2∣2;2. The good agreement

between r2∣2;2 and r2,2∣4 is confirmed in Figure 51 in different centrality bins.

This figure also shows that r4∣4;1 shows stronger decorrelation effect than

r2∣2;2 in all centrality intervals, suggesting that the decorrelation effects are

stronger for the linear component of v4 than for the nonlinear component

(see Equation (54)).

Figure 52 shows r2,3∣5 in different centrality bins, with comparison to

r2,3∣2,3 and r5∣5;1. This study checks the similar influence of the linear and

nonlinear effects for v5. The three observables r2,3∣2,3, r2,3∣5, and r5∣5;1 show

similar values in all centrality intervals, albeit with large statistical uncer-
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Figure 49: The estimated event-plane twist component F twi
n;2 and FB asym-

metry component F asy
n;2 as a function of Npart for n = 2 and 3 for Pb+Pb

collisions at 5.02 TeV. The error bars and shaded boxes are statistical and

systematic uncertainties, respectively.

tainties.

The decorrelaiton measured by the three new mixed harmonics corre-

lator in Figures 50 to 52 are also quantified by calculating the slopes in

each centrality interval and presenting the results as a function of centrality.

Following the example for rn∣n;k, the slopes are calculated using the linear

regression method of Equation (76) and Equation (77):

r2,3∣2,3 = 1 − 2F r
2,3∣2,3 η , r2,2∣4 = 1 − 2F r

2,2∣4 η , r2,3∣5 = 1 − 2F r
2,3∣5 η . (79)

The results are summarized in Figure 53, with each panel corresponding

to the slopes of distributions in Figures 50 to 52, respectively. The only

significant difference is seen between F4∣4;1 and F2∣2;2 or F2,2∣4.

82



η

C
or

re
la

to
r

0.8

0.9

1

ATLAS
-1bµPb+Pb 5.02 TeV, 470 

0-0.1%

2,3|2,3r

3|3;1r2|2;1r

η

C
or

re
la

to
r

ATLAS
-1bµPb+Pb 5.02 TeV, 22 

0-5%

2,3|2,3r

3|3;1r2|2;1r

η

C
or

re
la

to
r

ATLAS
-1bµPb+Pb 5.02 TeV, 22 

5-10%

2,3|2,3r

3|3;1r2|2;1r

η

C
or

re
la

to
r

ATLAS
-1bµPb+Pb 5.02 TeV, 22 

10-20%

2,3|2,3r

3|3;1r2|2;1r

η0 0.5 1 1.5 2

C
or

re
la

to
r

0.8

0.9

1

ATLAS
-1bµPb+Pb 5.02 TeV, 22 

20-30%

2,3|2,3r

3|3;1r2|2;1r

η0 0.5 1 1.5 2

C
or

re
la

to
r

ATLAS
-1bµPb+Pb 5.02 TeV, 22 

30-40%

2,3|2,3r

3|3;1r2|2;1r

η0 0.5 1 1.5 2

C
or

re
la

to
r

ATLAS
-1bµPb+Pb 5.02 TeV, 22 

40-50%

2,3|2,3r

3|3;1r2|2;1r

η0 0.5 1 1.5 2

C
or

re
la

to
r

ATLAS
-1bµPb+Pb 5.02 TeV, 22 

50-60%

2,3|2,3r

3|3;1r2|2;1r

Figure 50: The r2,3∣2,3 (circles) and r2∣2;1r3∣3;1 (squares) as a function of η for

several centrality intervals. The error bars and shaded boxes are statistical

and systematic uncertainties, respectively. The r2,3∣2,3 data in the 50–60%

centrality interval are rebined to reduce the uncertainty.
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Figure 51: Comparison of r2∣2;2, r2,2∣4 and r4∣4;1 for several centrality intervals.

The error bars and shaded boxes are statistical and systematic uncertainties,

respectively. The data points in some centrality intervals are rebined to

reduce the uncertainty.
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Figure 52: Comparison of r2,3∣2,3, r2,3∣5 and r5∣5;1 for several centrality inter-

vals. The error bars and shaded boxes are statistical and systematic uncer-

tainties, respectively. The r5∣5;1 data in some centrality intervals are rebinned

to reduce the uncertainty.
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Figure 53: Comparison of the slopes of the correlators as a function of Npart

for three groups of correlators: r2,3∣2,3 and r2∣2;1r3∣3;1 (for which the slope is

F2∣2;1 + F3∣3;1) in Figure 50 (left panel), r2∣2;2, r2,2∣4 and r4∣4;1 in Figure 51
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error bars and shaded boxes are statistical and systematic uncertainties, re-

spectively.
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4.8 summary

In this analysis, the longitudinal flow decorrelation is studies using Pb+Pb

data at
√
sNN = 2.76 and 5.02 TeV, respectively. In general, the decorrelation

effect is indicated by the the breakdown of factorization of two-particle az-

imuthal correlations into single-particle flow harmonics Vn. The amount of

factorization breakdown increases approximately linearly as a function of the

η separation between the two particles. And the decorrelation effect is found

to be stronger at lower collision energy for all harmonics, which cannot be ex-

plained entirely by the change in the beam rapidity. The decorrelation effect

is found to have comparable contributions from forward-backward asymme-

try of the flow magnitude and event-plane twist.

We also extended our research to study the deocrrelation of higher mo-

ments of haromincs, e.g. kth-moment of Vn. The coefficient for the kth-

moment of Vn scales with k for n > 2, but scales faster than k for n = 2. The

coefficient for the kth-moment of Vn scales with k for n > 2, but scales faster

than k for n = 2.

Lastly, we studied the longitudinal flow decorrelation between harmonic

flows of different order. The correlation of V2V3 between two η ranges is

found to factorize into the product of the correlation for V2 and the cor-

relation for V3, suggesting that the longitudinal fluctuations of V2 and V3

are independent of each other. The correlations between V4 and V 2
2 suggest

that the longitudinal fluctuations of V4 have a significant nonlinear contri-

bution from v2, i.e. v4 ∝ V 2
2 . Similarly, the correlations between V5 and

V2V3 suggest that the longitudinal fluctuations of V5 are driven by the non-

linear contribution from V2V3 , i.e. V5 ∝ V2V3. The results presented in

this thesis work provide new insights into the fluctuations and correlations

of harmonic flow in the longitudinal direction, which can be used to improve

full three-dimensional viscous hydrodynamic models.

87



5 Measurements of (a)symmetric cumulants

correlations in pp, p+Pb and Pb+Pb

Symmetric cumulant scn,m{4} introduced in Section 2 was first measured

by ALICE collaboration in Pb+Pb [33]. Then CMS extended the analy-

sis to small systems, pp and p+Pb, observing correlation patterns similar to

Pb+Pb collisions [55]. These correlated harmonics are interpreted to provide

further evidences for a long-range multi-particle collectivity in small collision

systems. However, a recent study with Monte Carlo simulations shows that

the CMS results, obtained with standard cumulant method, could be domi-

nated by non-flow effects associated with jet and dijets, especially in pp colli-

sions [56]. Thus the reanalysis of scn,m{4} using the subevent method which

further suppress non-flow is necessary before the results can be used. Also

we measured the proposed three particle correlator acn{3} using subevent

method for the first time.

The majority of work presented in this chapter is published [57].

5.1 Methodology

Symmetric cumulants can be constructed in different ways, either using tracks

from the whole detector, which is referred to as “standard” method, or tracks

from different η region, which is referred to as “sub-event” method. Each

method is summarized as below.

Cumulants in the standard method

The standard cumulant method is used by CMS and ALICE collaboration

in large and small collision systems [33, 55].

Firstly, for each single event, one calculates k-particle azimuthal correla-

tions, ⟨k⟩, in one event using a complex number notation [30, 31]:

⟨2n⟩ = ⟨ein(φ1−φ2)⟩ , ⟨3n⟩ = ⟨ei(nφ1+nφ2−2nφ3)⟩ , ⟨4n,m⟩ = ⟨ein(φ1−φ2)+im(φ3−φ4)⟩

(80)
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where “⟨⟩” denotes average over all particle combinations in the single event,

in which all the particles must be taken different, respectively.

Secondly, one use ⟨k⟩ to construct the event-averaged multi-particle sym-

metric and asymmetric cumulants

acn{3} = ⟪3n⟫ , scn,m{4} = ⟪4n,m⟫ − ⟪2n⟫⟪2m⟫ , (81)

where the outer “⟨⟩” represents a weighted event average, with the weight

equal to the multiplicity in each event. Usually, the event average is done over

an event ensemble with similar multiplicity in order to reduce flow fluctuation

with multiplicity [30]. When the residual non-flow correlations is negligible,

scn,m{4} and acn{3} should mostly measure the flow correlation between vn

and vm or between vn and v2n:

acn{3} = ⟨v2
nv2n cos 2n(Φn −Φ2n)⟩ , scn,m{4} = ⟨v2

nv
2
m⟩ − ⟨v2

n⟩ ⟨v
2
m⟩ . (82)

This analysis measures three types of cumulants defined in Equation (81):

sc2,3{4}, sc2,4{4} and ac2{3}.

In data analysis, the standard cumulant is implemented in the direct cu-

mulants framework [30, 31]. We first define Q-vectors of nth order flow

harmonic with moments k = 1,2... in each event [30] , along with the associ-

ated sum of weights S

Qn,,k =
M

∑
i=1

ωki e
inφi , Sp,k = [

M

∑
i=1

wki ]

p

(83)

where wj is the weight factor to compensate for detector effect, and is deter-

mined in the same way as in flow decorrelation analysis in Section 4. From

the above definition, it immediately follows that Q∗

n,,k =Q−n,,k.

m-particle azimuthal correlations and cumulants are then constructed

in terms of the moments of the distribution of the Q-vector amplitude. For

example, in the ⟨2n⟩ case, it suffices to separate the diagonal and off-diagonal
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terms in ∣Qn,1∣
2 and S2,1

∣Qn,1∣
2 =Qn,1Q

∗

n,1 =
M

∑
i,j=1

ωiωje
i(nφi−nφj) (84)

=
M

∑
i,j=1
i≠j

ωiωje
i(nφi−nφj) + S1,2

S2,1 =
M

∑
i,j=1

ωiωj =
M

∑
i,j=1
i≠j

ωiωj + S1,2 (85)

Then the single-event observable two-particle correlation, ⟨2n⟩ is expressed

as:

⟨2n⟩ =

∑
M
i,j=1
i≠j

ωiωjei(nφi−nφj)

∑
M
i,j=1
i≠j

ωiωj
=
Qn,1Q∗

n,1 − S1,2

S2,1 − S1,2

(86)

Similarly, the three-particle correlation is

⟨3n⟩ =
Qn,1Qm,1Q∗

2n,1 −Q2n,2Q−2n,1 − 2Qn,1Qn,2 + 2S1,3

S3,1 − 3S1,1S1,2 + 2S1,3

(87)

and four-particle correlation is

⟨4n,m⟩ =
∣Qm,1∣

2∣Qn,1∣
2 − 2Re∣Qm+n,2Q∗

m,1Q
∗

n,1∣ − 2Re∣Qm,1Q∗

m−n,2Q
∗

n,1∣ + ∣Qm+n,2∣
2

S4,1 − 6S1,2S2,1 + 3S2,2 + 8S1,3S1,1 − 6S1,4

(88)

+
∣Qm−n,2∣

2 − s1,2(∣Qm,1∣
2 + ∣Qn,1∣

2) + 4Re∣Qm,3Q∗

m,1 +Qn,3Q∗

n,1∣ + S2,2 − 6S1,4

S4,1 − 6S1,2S2,1 + 3S2,2 + 8S1,3S1,1 − 6S1,4

In the “standard” cumulant method described above, all k-particle multi-

plets involved in ⟨kn⟩ and ⟨kn,m⟩ are selected using tracks in the entire Inner

Detector (ID) acceptance of ∣η∣ < ηmax = 2.5, as illustrated on Figure 54. The

non-flow contribution to scn,m{4} are negligible by in A+A collisions, but are

proven to be strong in small system pp and p+Pb in a study using HIJING

and PYTHIA, which only have non-flow [56].
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Figure 54: Schematic view of the η coverage of the Inner Detector.

Cumulants in the subevent method

In the subevent method, the tracks from ID are divided into several subevent

based on the η. Each subevent covers a unique η interval. Since typi-

cally non-flow particles are correlated within a narrow region in η, the non-

flow correlation should be weakened when one implement a pesudorapidity

gap by require particles are from different η interval. Under this idea, the

(a)symmetric cumulant are constructed by only correlating tracks between

different subevents.

Figure 55: Schematic view of the partition of Inner Detector in two-subevent

method.

The first type is the two-subevent cumulant method, where the tracks

are divided into two region −ηmax < ηa < 0 and 0 ≤ ηb < ηmax, as illustrated
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in Figure 55. The two subevents are labelled by a and b separately. The

per-event k-particle azimuthal correlations are evaluated as:

⟨2n⟩a∣b = ⟨ein(φa1−φ
b
2)⟩ (89)

=
Qa
nQ

b∗
n

Sa1,1S
b
1,1

⟨3n⟩2a∣b = ⟨ei(nφa1+nφ
a
2−2nφb3)⟩ (90)

=
(Qa

2,1Q
a
2,1 −Qa

4,2)Q
b∗
4,1

(Sa2,1 − S
a
1,2)S

b
1,1

⟨4n,m⟩2a∣2b = ⟨ein(φa1−φ
b
2)+im(φa3−φ

b
4)⟩ (91)

=
(Qa

nQ
a
m − Sa1,2Q

a
n+m,1)(Q

b
n,1Q

b
m,1 − S

b
1,2Q

b
n+m,1)

∗

(Sa2,1 − S
a
1,2)(S

b
2,1 − S

b
1,2)

Here the three- and four-particle cumulants are defined as:

ac
2a∣b
n {3} = ⟪{3}n⟫2a∣b , sc

2a∣2b
n,m {4} = ⟪{4}n,m⟫2a∣2b − ⟪{2}n⟫a∣b ⟪{2}m⟫a∣b . (92)

This two-subevent implementation effectively suppresses correlations within

a single jet (intra-jet correlations), since each particles from one jet usually

usually fall in one subevent.

Figure 56: Schematic view of the partition of Inner Detector in three-

subevent method.

The third type is the three-subevent cumulant methods. Similar to 2

subevent method, here the pseudorapidity acceptance −2.5 < η < 2.5 is di-

vided into three subevents a, b and c, each covering one third of the η range,
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as illustrated in Figure 56.The per-event k-particle azimuthal correlations

are evaluated as:

⟨3n⟩a,b∣c = ⟨ei(nφa1+nφ
b
2−2nφc3)⟩ (93)

=
Qa
n,1Q

b
n,1 ∗Q

c∗
2n,1

Sa1,1S
b
1,1S

c
1,1

⟨4n,m⟩a,b∣2c = ⟨ein(φa1−φ
c
2)+im(φb3−φ

c
4)⟩ (94)

=
(Qa

n,1Q
a
m,1 − S

a
1,2Q

a
n+m,1)Q

b∗
n,1Q

c∗
m

(Sa2,1 − S
a
1,2)S

b
1,1S

c
1,1

Here the three- and four-particle cumulants are defined as:

ac
a,b∣c
n {3} = ⟪3n⟫a,b∣c , sc

a,b∣2c
n,m {4} = ⟪4n,m⟫a,b∣2c − ⟪2n⟫a∣c ⟪2m⟫b∣c . (95)

Compared to two-subevent method, the three-subevent method also effi-

ciently suppresses the inter-jet correlations associated with dijets, since a

dijet event usually produce particles in at most two subevents, as seen in

Figure 56. One can also swap the label η range for subevent a with subevent

b or c, which should give the same result (when flow decorrelation effect is not

consider). To maximize the statistical precision, these results are averaged

to obtain the final value in this thesis.

Figure 57: Schematic view of the partition of Inner Detector in four-subevent

method.
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The forth type is the four-subevent cumulant method, which is only ap-

plicable for the symmetric cumulants scn,m{4}. Each of the four subevents a,

b, c, and d covers one quarter of the η range, as illustrated in Figure 57. Then

The multi-particle azimuthal correlations and cumulants are then calculated

as:

⟨4n,m⟩a,b∣c,d = ⟨ein(φa1−φ
c
2)+im(φb3−φ

d
4)⟩ =

Qa
n,1Q

b
n,1Q

c∗
n,1Q

d∗
n,1

Sa1,1S
b
1,1S

c
1,1S

d
1,1

(96)

sc
a,b∣c,d
n,m {4} = ⟪4n,m⟫a,b∣c,d − ⟪2n⟫a∣c ⟪2m⟫b∣d (97)

The four-subevent method should further suppress the residual non-flow con-

tributions than all the other method. We can also swap the η ranges for the

four subevents and average these results to gain batter statistical precision.

Normalized cumulants

The positive and negative sign of scn,m{4} and acn{3} is an indication of

positive correlation or negative correlation between different flow harmonics.

On the other hand, the absolute value of scn,m{4} and acn{3} is deemed as

the strength of flow correlations, and one expect the signal is very close to

zero if the correlation is very loose.

Although the symmetric cumulant scn,m{4} reflects the nature of the

correlation between vn and vm, the magnitude of the scn,m{4} also depends

on the square of single flow harmonics v2
n and v2

m (see Equation (82)) .

However the single flow magnitude vn itself is a function of multiplicity in

most case, then the magnitude of the scn,m{4} is also affected by the square

of single flow harmonics v2
n and v2

m (see Equation (82)). This dependence on

the single flow harmonics can be scaled out via the normalized cumulants [49,
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58]:

nsc2,3{4} =
sc2,3{4}

v2{2}2v3{2}2
=

⟨v2
2v

2
3⟩

⟨v2
2⟩ ⟨v

2
3⟩
− 1 , (98)

nsc2,4{4} =
sc2,4{4}

v2{2}2v4{2}2
=

⟨v2
2v

2
4⟩

⟨v2
2⟩ ⟨v

2
4⟩
− 1 , (99)

nac2{3} =
ac2{3}

v2{2}2
√
v4{2}2

=
⟨v2

2v4 cos 4(Φ2 −Φ4)⟩

⟨v2
2⟩

√
⟨v2

4⟩
, (100)

where the vn{2}2 = ⟨v2
n⟩ are flow harmonics obtained using a two-particle cor-

relation method based on a peripheral subtraction technique [59, 60], which

will be discussed in Section 6. The normalized cumulants should reflect the

nature of the correlation between vn and vm.

5.2 Datasets

This analysis is based on ATLAS datasets corresponding to integrated lu-

minosities of 0.9 pb−1 of pp data recorded at
√
sNN = 13 TeV, 28 nb−1 of

p+Pb data recorded at
√
sNN = 5.02 TeV, and 7 µb−1 of Pb+Pb data at

√
sNN = 2.76 TeV. The 2.76 TeV Pb+Pb data were collected in 2010. The

p+Pb data were mainly collected in 2013, but also include 0.3 nb−1 of data

collected in 2016, which increase the number of events at moderate multi-

plicity. During both p+Pb runs, the LHC was configured to provide a 4∼TeV

proton beam and a 1.57∼TeV per-nucleon Pb beam, which produced collisions

at
√
sNN = 5.02 TeV, with a rapidity shift of 0.465 of the nucleon–nucleon

centre-of-mass frame towards the proton beam direction relative to the AT-

LAS rest frame. The direction of the Pb beam is always defined to have

negative pseudorapidity. The 13 TeV pp data were collected during several

special runs of the LHC with low pile-up in 2015 and 2016. A summary of

the datasets used in this analysis is shown in Table 7.

For each collision system, the multi-particle cumulants are calculated us-

ing the so-called reference particles. Two selections of reference particles are

considered, for which the multiplicity Mref in a given event is the number
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Table 7: The list of datasets used in symmetric cumulant analysis.

Pb+Pb p+Pb pp

Integrated luminosity (year)
7 µb−1 (2010) 28 nb−1 (2013) 0.07 pb−1 (2015)

0.3 nb−1 (2016) 0.84 pb−1 (2016)

of reconstructed charged particles with ∣η∣ < 2.5 and with corresponding pT

ranges: 0.3 < pT < 3 GeV or 0.5 < pT < 5 GeV. Figure 58 shows the multiplic-

ity (not corrected for tracking efficiency) distributions for the reconstructed

charged-particle tracks with 0.3 < pT < 3 GeV for all collision systems. The

observed discontinuities reflect the offline selection requirement of at least

90% efficiency for the high multiplicity triggers.

More details about the dataset, track selection and tracking efficiency are

in Refs. [57, 61].

5.3 Systematic uncertainties

The evaluation of the systematic uncertainties follows closely the procedure

established for the four-particle cumulants cn{4} and is detailed in Ref. [62].

The main sources of systematic uncertainties are related to the detector az-

imuthal non-uniformity, track selection, track reconstruction efficiency, trig-

ger efficiency and pile-up. Due to the relatively poor statistics and larger

non-flow effects, the systematic uncertainties are typically larger in pp colli-

sions. The systematic uncertainties are also generally larger, in percentage,

for four-particle cumulants scn,m{4} than for the three-particle cumulants

ac2{3}, since the ∣scn,m{4}∣ values are much smaller than those for ac2{3}.

The systematic uncertainties are generally similar among the two- and three-

and four-subevent methods, but are different from those for the standard

method, which is strongly influenced by non-flow correlations. The follow-

ing discussion focuses on the three-subevent method, which is the default

method used to present the final results.

The effect of detector azimuthal non-uniformity is accounted for using
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Figure 58: Distributions of the reference particle multiplicity for particles

with 0.3 < pT < 3 GeV from pp, p+Pb and low-multiplicity Pb+Pb collisions

.

the weight factor wi(φ, η) in Equation (83). The impact of the weighting

procedure is studied by fixing the weight to unity and repeating the analysis.

The results are mostly consistent with the nominal results. The correspond-

ing uncertainties for scn,m{4} vary in the range of 0–4%, 0–2% and 1–2% in

pp, p+Pb and Pb+Pb collisions, respectively. The uncertainties for ac2{3}

vary in the range of 0–2% in pp collisions, and 0–1% in p+Pb and Pb+Pb

collisions, respectively.
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The systematic uncertainty associated with the track selection is esti-

mated by tightening the ∣d0∣ and ∣z0 sin θ∣ requirements. They are each varied

from the default requirement of less than 1.5 mm to less than 1 mm. In p+Pb

and Pb+Pb collisions, the requirement on the significance of impact param-

eters, ∣d0∣/σd0 and ∣z0 sin θ∣/σz0 are also varied from less than 3 to less than

2. For each variation, the tracking efficiency is re-evaluated and the anal-

ysis is repeated. For ac2{3}, which has a large flow signal, the differences

from the nominal results are observed to be less than 2% for all collision

systems. For scn,m{4}, for which the signal is small, the differences from

the nominal results are found to be in the range of 2–10% in pp collisions,

2–7% in p+Pb collisions and 2–4% in Pb+Pb collisions. The differences are

smaller for results obtained for 0.5 < pT < 5 GeV than those obtained for

0.3 < pT < 3 GeV.

Previous measurements indicate that the azimuthal correlations (both

the flow and non-flow components) have a strong dependence on pT, but a

relatively weak dependence on η [27, 60]. Therefore, pT-dependent system-

atic effects in the track reconstruction efficiency could affect the cumulant

values. The uncertainty in the track reconstruction efficiency is mainly due

to differences in the detector conditions and material description between

the simulation and the data. The efficiency uncertainty varies between 1%

and 4%, depending on track η and pT [60, 61]. Its impact on multi-particle

cumulants is evaluated by repeating the analysis with the tracking efficiency

varied up and down by its corresponding uncertainty as a function of track

pT. For the standard cumulant method, which is more sensitive to jets and

dijets, the evaluated uncertainty amounts to 2–6% in pp collisions and less

than 2% in p+Pb collisions for ⟨Nch⟩ > 100. For the subevent methods, the

evaluated uncertainty is typically less than 3% for most of the ⟨Nch⟩ ranges.

Most events in pp and p+Pb collisions are collected with the high mul-

tiplicity (HMT) triggers with several online N rec
ch thresholds. In order to

estimate the possible bias due to trigger inefficiency as a function of ⟨Nch⟩,

the offline N rec
ch requirements are changed such that the HMT trigger effi-
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ciency is at least 50% or 80%. The results are obtained independently for

each variation. These results are found to be consistent with each other for

the subevent methods, and show some differences for the standard cumulant

method in the low ⟨Nch⟩ region. The nominal analysis is performed using the

50% efficiency selection and the differences between the nominal results and

those from the 80% efficiency selection are included in the systematic uncer-

tainty. The changes for pp collisions are in the range of 5–15% for sc2,3{4},

2–8% for sc2,4{4} and 1–5% for ac2{3}. The ranges for p+Pb collisions are

much smaller due to the much sharper turn-on of the trigger efficiency and

larger signal: they are estimated to be 1–3% for sc2,3{4}, 2–4% for sc2,4{4}

and 1–2% for ac2{3}.

In this analysis, a pile-up rejection criterion is applied to reject events

containing additional vertices in pp and p+Pb collisions. In order to check

the impact of residual pile-up, the analysis is repeated without the pile-

up rejection criterion. No differences are observed in p+Pb collisions, as is

expected since the µ values in p+Pb are modest. For the 13 TeV pp dataset,

the differences with and without pile-up rejection are in the range of 0–7%

for sc2,3{4}, 2–15% for sc2,4{4} and 2–3% for ac2{3}. As a cross-check, the pp

data are divided into two samples with approximately equal number of events

based on the µ value: µ > 0.4 and µ < 0.4, and the results are compared. No

systematic differences are observed between the two independent datasets.

The systematic uncertainties from different sources are added in quadra-

ture to determine the total systematic uncertainty. In p+Pb and Pb+Pb

collisions, the total uncertainties are in the range of 3–8% for sc2,3{4}, 1–5%

for sc2,4{4} and 1–4% for ac2{3}. In pp collisions, the total uncertainties

are larger, mainly due to larger non-flow contribution, larger pile-up and the

less sharp turn-on of the HMT triggers. They are in the ranges of 10–20%

for sc2,3{4}, 10–20% for sc2,4{4} and 2–5% for ac2{3}. The total systematic

uncertainties are generally smaller than the statistical uncertainties.

The vn{2} values used to obtain normalized cumulants from Eqs. (98)–

(100) will be discussed in later Section 6. The uncertainties of normalized
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cumulants are obtained by propagation of the uncertainties from the original

cumulants and vn{2}, taking into account that the correlated systematic

uncertainties partially cancel out.

5.4 Comparison between standard and subevent meth-

ods

5.4.1 sc2,3{4}

The top row of Figure 59 compares the sc2,3{4} from the standard, two-

, three- and four-subevent methods from pp collisions. In the left panel,

particles are selected with range 0.3 < pT < 3 GeV, while on the right panel

range 0.5 < pT < 5 GeV is applied.

Firstly, for the standard method, one observes positive signal over the full

⟨Nch⟩ range in each pT range. And the standard method becomes larger at

lower ⟨Nch⟩ or at higher pT, where the non-flow correlation is more dominant

and stronger. These behaviors suggest that the sc2,3{4} values from the

standard method in pp collisions is strongly influenced by non-flow effects in

all ⟨Nch⟩ and pT ranges.

In contrast, the values from the subevent methods are negative over the

full ⟨Nch⟩ range.These values are slightly more negative at lowest ⟨Nch⟩ and

also more negative at higher pT. For 0.3 < pT < 3 GeV, the two-, three- and

four-subevent method gives consistent results. For the high pT region of 0.5 <

pT < 5 GeV, results from the two-subevent method are systematically lower

than the three- and four-subevent methods, suggesting that the two-subevent

method may be affected by negative non-flow contributions. Such negative

non-flow correlation has been observed in a PYTHIA8 calculation [56].

The middle row of Figure 59 shows the sc2,3{4} from p+Pb collisions. At

⟨Nch⟩ > 140, all four methods have negative and consistent values, indicating

non-flow is very weak the the measurement reflects the genuine long-range

collective correlations. At ⟨Nch⟩ < 140, the standard method keeps increasing

and remains positive at lower ⟨Nch⟩, which indicate this multiplicity the
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sc2,3{4} gets significant contribution from non-flow correlations. In contrast,

sc2,3{4} from various subevent methods are still negative and consistent with

each other at ⟨Nch⟩ < 140, suggesting that non-flow contribution is weak in

subevent methods.

The bottom row of Figure 59 shows the sc2,3{4} from low-multiplicity

Pb+Pb collisions. The results are consistent among all four methods across

most of the ⟨Nch⟩ range, although the results from the standard method are

systematically larger. In the low ⟨Nch⟩ region, where the non-flow is expected

to be significant, the results have too large uncertainties to distinguish be-

tween different methods.

5.4.2 sc2,4{4}

The top row of Figure 60 compares the sc2,4{4} from the standard, two-

, three- and four-subevent methods from pp collisions. In the left panel,

particles are selected with range 0.3 < pT < 3 GeV, while on the right panel

range 0.5 < pT < 5 GeV is applied. Positive values are seen in from all four

methods over the full ⟨Nch⟩ range in each pT range. However, the values

from the standard method are much larger than the subevent methods and

also exhibit a much faster uptrend towards the lower ⟨Nch⟩ region. These

behaviors are consistent with the expectation that the standard method is

more affected by dijets. As for the subevent methods, they are consistent for

⟨Nch⟩ > 100 and split at low ⟨Nch⟩ region. In general, the two-subevent gives

a slight larger value than three- or four-subevent methods, and the difference

becomes significant at low ⟨Nch⟩ region. Within the statistical uncertainties

of the measurement, no differences are observed between the three- and four-

subevent methods. This comparison suggests that the residual non-flow from

dijets is still not totally negligible in pp collisions since the flow signal is

weak here. And three or more subevents are more robust from the non-flow

correlations contamination over the measured ⟨Nch⟩ range.

The middle row of Figure 60 shows sc2,4{4} in p+Pb collisions. Firstly,

we see the standard method gives significant larger values than the subevent
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methods over the full ⟨Nch⟩ range. However, no differences are observed

among various subevent methods, except in ⟨Nch⟩ < 40, which may reflect

some residual non-flow correlations and the real difference could change since

statistical uncertainties are also very huge here. These results suggest that

the in p+Pb systems, the standard method is still biased by large contribu-

tions from non-flow correlations at low ⟨Nch⟩, and this contribution may not

vanish even at large ⟨Nch⟩ values. In contrast, subevent event methods are

robust measurements in ⟨Nch⟩ > 40.

The bottom row of Figure 60 shows sc2,4{4} from Pb+Pb collisions. The

difference between standard method and subevent methods are not that big

but still clear and exist at all the ⟨Nch⟩ range. This difference varies slowly

with ⟨Nch⟩, similar to the behavior observed for the p+Pb collisions in the

large ⟨Nch⟩ region. This increase reflects the known fact that the v2 increases

with ⟨Nch⟩ in Pb+Pb collisions.

As a summary, Figure 60 show that sc2,4{4} is positive for all the three

collision systems, which indicates that v2 and v4 are positive correlated.

5.4.3 ac2{3}

Results for asymmetric cumulant ac2{3} is presented in Figure 61. ac2{3}

also measures v2 and v4 correlation like sc2,4{4}. It is a three particle correla-

tor and is more prone to non-flow contamination, but the benefit is that the

underlying flow signal is much stronger than sc2,4{4}. In this figure we will

show results from three different methods: the standard, the two-subevent,

and the three-subevent methods, in pp, p+Pb and Pb+Pb collisions.

The top row in Figure 61 shows the results in pp collisions in 0.3 < pT < 3

GeV (left panel) and 0.5 < pT < 5 GeV (right panel). The results are positive

for the standard, two-subevent, and three-subevent methods. Here, we see

the standard method are much larger than those from the subevent methods,

consistent with the expectation that the standard method is more affected by

non-flow correlations from dijets. Two-subevent and three-subevent methods

are consistent at ⟨Nch⟩ > 100 and become different at lower multiplicity. The
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ac2{3} values from the three-subevent method show a slight increase for

⟨Nch⟩ < 40 but are nearly constant for ⟨Nch⟩ > 40. This behavior suggests that

in the three-subevent method, the non-flow contribution may play some role

at ⟨Nch⟩ < 40, but is negligible for ⟨Nch⟩ > 40. Therefore, the ac2{3} from the

three-subevent method supports the existence of a three-particle long-range

collective flow that is nearly ⟨Nch⟩-independent in pp collisions, consistent

with the ⟨Nch⟩-independent behavior of v2 and v4 previously observed from

the two-particle correlation analysis [60].

The middle and bottom rows of Figure 61 show ac2{3} from p+Pb and

Pb+Pb collisions, respectively.

In general, the standard method shows a clear difference with subevent

methods, and the subevent methods are consistent in except in the low multi-

plicity region. At ⟨Nch⟩ < 60, non-flow correlations dominates and contribute

positively to the correlator. At ⟨Nch⟩ > 60 region, the influence of non-flow

contributions is very small for in the subevent methods in both collision sys-

tems. Therefor the ⟨Nch⟩ dependence of ac2{3} reflects the ⟨Nch⟩ dependence

of the v2 and v4, which increase with ⟨Nch⟩, and the increase is stronger in

Pb+Pb collisions. This is consistent with previous observations that v2 and

v4 increase with ⟨Nch⟩ more strongly in Pb+Pb than in p+Pb collisions [61].

The results presented above suggest that the three-subevent method is

sufficient to suppress most of the non-flow effects. It is therefore used as the

default method for the discussion below.
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Figure 59: The symmetric cumulant sc2,3{4} as a function of ⟨Nch⟩ for

0.3 < pT < 3 GeV (left panels) and 0.5 < pT < 5 GeV (right panels) obtained

for pp collisions (top row), p+Pb collisions (middle row) and low-multiplicity

Pb+Pb collisions (bottom row). In each panel, the sc2,3{4} is obtained from

the standard method (filled symbol), the two-subevent method (open circles),

three-subevent method (open squares) and four-subevent method (open di-

amonds). The error bars and shaded boxes represent the statistical and

systematic uncertainties, respectively.
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Figure 60: The symmetric cumulant sc2,4{4} as a function of ⟨Nch⟩ for

0.3 < pT < 3 GeV (left panels) and 0.5 < pT < 5 GeV (right panels) obtained

for pp collisions (top row), p+Pb collisions (middle row) and low-multiplicity

Pb+Pb collisions (bottom row). In each panel, the sc2,4{4} is obtained from

the standard method (filled symbol), two-subevent method (open circles),

three-subevent method (open squares) and four-subevent method (open di-

amonds). The error bars and shaded boxes represent the statistical and

systematic uncertainties, respectively.
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Figure 61: The asymmetric cumulant ac2{3} as a function of ⟨Nch⟩ for

0.3 < pT < 3 GeV (left panels) and 0.5 < pT < 5 GeV (right panels) obtained

for pp collisions (top row), p+Pb collisions (middle row) and low-multiplicity

Pb+Pb collisions (bottom row). In each panel, the ac2{3} is obtained from

the standard method (filled symbol), two-subevent method (open circles),

and three-subevent method (open squares). The error bars and shaded boxes

represent the statistical and systematic uncertainties, respectively.106



5.5 Comparison between collision systems

5.5.1 sc2,3{4}, sc2,4{4} and ac2{3}

Figure 62 shows a direct comparison of cumulants for the three collision

systems.

The results for sc2,3{4}, sc2,4{4} and ac2{3} are presented in three panels

respectively. The top row is the results for 0.3 < pT < 3 GeV and the bottom

row is for 0.5 < pT < 5 GeV. These results support negative correlation be-

tween v2 and v3 and a positive correlation between v2 and v4. Such correlation

patterns have previously been observed in Pb+Pb systems [33, 50, 54], but

are now confirmed also in the small collision systems without the influence of

non-flow effects. For symmetric cumulants sc2,3{4} and sc2,4{4}, we adopt a

wide multiplicity bin including more events to reduce statistical uncertainty

for each measured points. In the multiplicity range covered by the pp colli-

sions, ⟨Nch⟩ < 150, the results for sc2,3{4} and sc2,4{4} are similar among the

three systems. In the range ⟨Nch⟩ > 150, sc2,3{4} and sc2,4{4} are larger in

Pb+Pb than in p+Pb collisions one reason is due to magnitude of flow vn

is larger in Pb+Pb. For asymmetric cumulant ac2{3}, we have finer ⟨Nch⟩

bin which gives more points in pp system than scn,m{4}. At ⟨Nch⟩ < 100, the

results are similar among the three systems, but they deviate from each other

at higher ⟨Nch⟩. The pp data are approximately constant or decrease slightly

with ⟨Nch⟩, while the p+Pb and Pb+Pb data show significant increases as a

function of ⟨Nch⟩.

5.5.2 nsc2,3{4}, nsc2,4{4} and nac2{3}

Figure 63 shows the results for normalized cumulants, nsc2,3{4}, nsc2,4{4}

and nac2{3}, compared among the three systems. This normalization helps

to remove the variation from multiplicity dependence of vn. Within expec-

tation, the normalized cumulants generally show a much weaker multiplicity

dependence at ⟨Nch⟩ > 100, where the statistical uncertainties are small.

In the top row are results from 0.3 < pT < 3 GeV. For the normalized
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Figure 62: The ⟨Nch⟩ dependence of sc2,3{4} (left panels), sc2,4{4} (middle

panels) and ac2{3} (right panels) in 0.3 < pT < 3 GeV (top row) and 0.5 <

pT < 5 GeV (bottom row) obtained for pp collisions (solid circles), p+Pb

collisions (open circles) and low-multiplicity Pb+Pb collisions (open squares).

The error bars and shaded boxes represent the statistical and systematic

uncertainties, respectively.

symmetric cumulant nsc2,3{4}, values from p+Pb and Pb+Pb are consistent

while the absolute magnitude in pp is almost 4 times larger. This is very

different from the good consistency of sc2,3{4} values shown in Fig. 62. One

highly possible reason is because ⟨v2
3⟩ values from the template fit method [60]

may be significantly underestimated due to the presence of a large away-side

peak at ∆φ ∼ π in the two-particle correlation function [27, 39]. We will

discuss the produce to obtain ⟨v2
n⟩ used in the normalization in Section 6.

For nsc2,4{4} and nac2{3} , the value are similar among different collision

systems and is constant at large ⟨Nch⟩, although some differences at the
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relative level of 20–30% are observed.

The bottom row in Figure 63 shows normalized cumulants in 0.5 < pT <

5 GeV. The normalized cumulants are consistent with 0.3 < pT < 3 GeV not

only in the patterns but also in the magnitude of values. On the other hand,

the original un-normalized cumulants in Figure 62 differ by a large factor

between the two pT ranges: about a factor of three for sc2,3{4} and sc2,4{4},

and a factor of two for ac2{3}. These results suggest that the pT dependence

of sc2,3{4}, sc2,4{4} and ac2{3} largely reflects the pT dependence of the vn

at the single-particle level.
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Figure 63: The ⟨Nch⟩ dependence of nsc2,3{4} (left panels), nsc2,4{4} (middle

panels) and nac2{3} (right panels) in 0.3 < pT < 3 GeV (top row) and 0.5 <

pT < 5 GeV (bottom row) obtained for pp collisions (solid circles), p+Pb

collisions (open circles) and low-multiplicity Pb+Pb collisions (open squares).

The error bars and shaded boxes represent the statistical and systematic

uncertainties, respectively.
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5.6 Summary

In summary, in this chapter we present results of symmetric and asym-

metric cumulants in
√
s = 13 TeV pp,

√
sNN = 5.02 TeV p+Pb, and low-

multiplicity
√
sNN = 2.76 TeV Pb+Pb collisions. The symmetric cumulants

scn,m{4} = ⟨v2
nv

2
m⟩ − ⟨v2

n⟩ ⟨v
2
m⟩ probe the correlation of the flow magnitudes,

while the asymmetric cumulant ac2{3} = ⟨v2
2v4 cos 4(Φ2 −Φ4)⟩ is sensitive to

correlations involving both the flow magnitude vn and flow phase Φn. These

cumulants are calculated with the standard cumulant method, which is same

with CMS and ALICE, as well as with the two-, three- and four-subevent

methods to suppress non-flow effects. The final results are presented as a

function of the average number of charged particles with pT > 0.4 GeV,

⟨Nch⟩.

Firstly, comparison between different methods suggest the standard method

is inevitable contaminated by non-flow correlations, which is significant in pp

collisions over the full ⟨Nch⟩ range, as well as over the low ⟨Nch⟩ range in p+Pb

and Pb+Pb collisions. Secondly, systematic, but much smaller, differences

are also observed in the low ⟨Nch⟩ region between the two-subevent method

and three- or four-subevent methods, which indicate that the two-subevent

method may still be affected by correlations arising from jets. Lastly, the

three-subevent and four-subevent methods show consistent results within ex-

perimental uncertainties, suggesting that non-flow correlations have been suf-

ficiently suppressed in these methods. Therefore, the three-subevent method

is used to present the main results in this analysis.

The three-subevent method provides a measurement of negative sc2,3{4}

and positive sc2,4{4} and ac2{3} over nearly the full ⟨Nch⟩ range and in all

three collision systems. These results indicate a negative correlation between

v2 and v3 and a positive correlation between v2 and v4, which is similar with

observation in Pb+Pb systems [33, 50, 54] where the result is attributed

to the hydrodynamic flow of a strongly interacting medium. After scaling

by the ⟨v2
n⟩ estimated from a two-particle analysis [59, 60], the resulting

normalized cumulants nsc2,3{4}, nsc2,4{4} and nac2{3} show a much weaker
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dependence on ⟨Nch⟩, and their values are quantitatively similar to each

other among the three systems. These new results from subevent cumulant

methods provides further evidence of a similar origin of long-range collective

phenomenon involving many particles in small and large systems. These

similarity provide an important input and constraints on theoretical model

calculations.

111



6 Measurements of two-particle correlations

in pp, p+Pb and Pb+Pb

This section details the procedure to extract the ⟨v2
n⟩ used to normalize the

cumulants scn,m{4} and acn{3} in Section 5 in pp, p+Pb and Pb+Pb systems.

The orginazation of this scetion is as follows: In Section 6.1 and Section 6.2,

the construction of 2D and 1D correlation function in data analysis are dis-

cussed. In Sections 6.3 and 6.4, the template fit method is introduced which

subtracts non-flow correlation before extracting ⟨v2
n⟩. In Section 6.5, the sys-

tematic uncertainties are described. And In Section 6.6 the final results are

shown. The analysis is done in two different pT range: pT ∈ (0.3,3) GeV and

pT ∈ (0.5,5) GeV separately. This analysis is mostly contained in Ref. [57].

6.1 2D Two-particle correlations

Two-particle correlation method measures the distribution of pair yields of

two particles via the relative azimuthal difference ∆φ and relative pseudo-

rapdity difference ∆η. For a given event class, which is decided upon the

number of reconstructed tracks (N rec
ch ), the correlation function is defined as:

C(∆φ,∆η) =
S(∆φ,∆η)

B(∆φ,∆η)
(101)

where S and B represent pair distributions constructed from the same event

and from “mixed events”, respectively.

The same-event distribution (signal distribution) is constructed using all

particle pairs that can be formed in each event from tracks, averaged over

many events

S(∆η,∆φ) = ⟨
d2Npairs

same(∆φ,∆η)

d∆ηd∆φ
⟩ (102)

The S distribution contains both the physical correlations between particle

pairs and correlations arising from detector acceptance effects.
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The mixed-event distribution is similarly constructed by choosing the two

particles in the pair from two different events, also averaged over many event

pairs

B(∆η,∆φ) = ⟨
d2Npairs

mixed(∆φ,∆η)

d∆ηd∆φ
⟩ (103)

The B distribution does not contain physical correlations, but has detector

acceptance effects similar to those in S. Upon dividing by the B, detec-

tor acceptance effects largely cancel from S, and the resulting correlation

function contains physical correlations only. The pair of events used in the

mixing are have similar N rec
ch (∣∆N rec

ch ∣ < 10) and similar vertex position zvtx

(∣∆zvtx∣ < 10 mm), so that acceptance effects in S are properly reflected

in, and compensated by, corresponding variations in B. To correct S and

B for the individual φ-averaged inefficiencies of particles a and b, the pairs

are weighted by the inverse product of their tracking efficiencies 1/(εaεb).

Typically, the two-particle correlations are used only to study the shape of

the correlations in ∆φ, and are conveniently normalized. In this paper, the

normalization of C(∆η,∆φ) is chosen such that the ∆φ-averaged value of

C(∆η,∆φ) is unity for ∣∆η∣ > 2.

Figure 64 shows one example of mixed-event distribution, signal distribu-

tion and correlation function in high multiplicity p+Pb events at 5.02 TeV.

Tracks are taken from ATLAS Inner Detector (ID) which has a pseudorapid-

ity coverage η ∈ (−2.5,2.5) and a full azimuthal coverage. Thus for a pair of

particles, the relative pseuodurapdity range is η ∈ (−5,5).The mixed-event

distribution have a triangular shape in ∆η direction, which is is understood

as the finite pair acceptance effect such that the phase space to sample a

pair at larger ∆η drops linearly toward the edge of the detector acceptance.

Apart from the the shape, the are also small modulation in both ∆η and

∆φ due to non-uniform acceptance of detector, which are small effect and

invisible. A similar triangular shape is also seen in signal distribution, along

with some visible ∆η and ∆φ modulation reflecting the physics correlations.

After dividing by mixed-event distribution both triangular shape and detec-

tor effect are cancelled in the correlation function. The the magnitude of
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correlation function is ∼ 1 on average rather than true pair yields, due to the

normalization of B(∆η,∆φ). However, the overall normalization is not so

important for the extraction of vn as they are defined as modulations relative

to the average in Equation (28).
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Figure 64: Signal distribution, mixed-event distribution and correlation func-

tion from p+Pb collision, with trigger and associated particles selected

from pT ∈ (0.3,3)GeV. These correlation functions are plotted over the

range −π/2 < ∆φ < 3π/2; the periodicity of the measurement requires

C(∆η,3π/2) = C(∆η,−π/2).

6.2 1D Two-particle correlations

One-dimensional correlation functions C(∆φ) are obtained by integrating

the numerator and denominator of Equation (101) over long-range region

(2 < ∣∆η∣ < 5) prior to taking the ratio

C(∆φ) =
∫

5

2 d∣∆η∣S(∣∆η∣,∆φ)

∫
5

2 d∣∆η∣B(∣∆η∣,∆φ)
(104)

The ∣∆η∣ range is choose to avoid non-flow peak around (∆η ≈ 0,∆φ ≈

0). From the one-dimensional correlation function, per-trigger-particle yields

(PTY) is calculated

Y (∆φ) =
∫

3π/2

−π/2 B(∆π)d∆π

Na
∫

3π/2

−π/2 d∆π
C(∆φ) (105)
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where Na denotes the total number of trigger particles, with each track is

corrected to account for the tracking efficiency. The Y (∆φ) distribution is

identical in shape to C(∆φ) , but has a physically relevant normalization: it

represents the average number of particles correlated with each trigger parti-

cle in a given ∆φ interval. This allows operations, such as subtraction of the

Y (∆φ) distribution in one event-activity class from the Y (∆φ) distribution

in another, which will be discussed in Section 6.3.

Figure 65 shows the per-trigger yields at different N rec
ch range in p+Pb. In

these “peripheral” (low multiplicity) events, the modulation in ∆φ is mainly

dominated by away-side dijet correlations. From “peripheral” to “central”

(high multiplicity ) events, a clear near-side “ridge” becomes visible. Fig-

ure 66 is the similar plot for pp at 13TeV and near-size ridge emerges in more

central events.
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Figure 65: The landscape of 1D correlation function in Y (∆φ), integrated

over 2 < ∣∆η∣ < 5 in 5.02TeV p+Pb with 0.5 < pa,bT < 5 GeV. Each panel shows

the distributions for one multiplicity interval.
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Figure 66: Similar plot with Figure 65 but for pp 13TeV.
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6.3 Template fitting method

In the small system, away-side dijet correlations dominate the ∆φ structure of

per-trigger yield, as seen in Figures 65 and 66. Direct Fourier decomposition

method

Y (∆φ) = A(1 + 2
∞

∑
n=1

vn,n cos(n∆φ)) (106)

gives a measured v2
n biased by the dijet correlation, especially for odd har-

monics. For this purpose, a template fit method [59, 60] is proposed, in

which the dijet contribution was estimated and removed, thus obtaining the

genuine long-range correlation and its Fourier coefficient. This method is

developed by ATLAS for several publications already [59, 60]. Here we just

give a brief introuction.

In this method, The measured per-trigger yield distribution in a given

N rec
ch interval is assumed to result from a superposition of a scaled “periph-

eral” distribution Y (∆φ)peri, obtained for low multiplicity events N rec
ch < 20,

and a constant pedestal modulated by cos(n∆φ) for n ≥ 2 [59, 60]. Therefore,

we construct the template fit function

Y (∆φ)tmp = F Y (∆φ)peri + Yridge(∆φ) (107)

where

Yridge(∆φ) = G
tmp (1 + 2

∞

∑
n=2

vn{2, tmp}2 cosn∆φ) (108)

By fitting the template function Y (∆φ)tmp to the actual measured per-trigger

yield Y (∆φ), the scale factor F and pedestal Gtmp are fixed, and vn{2, tmp}

are calculated from a Fourier transform.

The left panel of Figure 67 shows such a template fit, in the 13 TeV

pp data, that only includes v2{2, tmp}2. The right panel shows the differ-

ence between the Y (∆φ) and the Y (∆φ)tmp distributions demonstrating the

presence of small, but significant residual v3{2, tmp}2 and v4{2, tmp}2 compo-

nents. While it is possible that cos 3∆φ and cos 4∆φ contributions could arise

in the template fitting method due to small multiplicity-dependent changes

in the shape of the dijet component of the correlation function, such effects
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would not produce the excess at ∆φ ∼ 0 observed in the right-hand panel

in Figure 67. That excess and the fact that its magnitude is compatible

with the remainder of the distribution indicates that there is real cos 3∆φ

and cos 4∆φ modulation in the two-particle correlation functions. Thus this

analysis measures vn{2, tmp}2 with n = 2 − 4.

Figure 67: Left panel: template fit to the Y (∆φ) in 13 TeV pp collisions.

This plot corresponds to the N rec
ch > 90 multiplicity range. The template

fitting includes only the second-order harmonic, v2{2, tmp}2. The solid points

indicate the measured Y (∆φ) , the open points and curves show different

components of the template (see legend) that are shifted along the y axis

by G or by FY (0)peri, where necessary, for presentation. Right panel: The

difference between the Y (∆φ) and the template fit, showing the presence of

v3{2, tmp}2 and v4{2, tmp}2 components. The vertical error bars indicate

statistical uncertainties.

However, template fit method has a limitation that vn{tmp}2 from the

fit does not equal to the true flow v2
n if vn has multiplicity dependence.

One notice both Y (∆φ) and Y (∆φ)peri contain a dijet component and flow
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component:

Y (∆φ) = Y (∆φ)cent
dijet +G

cent (1 + 2
∞

∑
n=2

v2
n cosn∆φ) . (109)

Y (∆φ)peri = Y (∆φ)peri
dijet +G

peri (1 + 2
∞

∑
n=2

vn{peri}2 cosn∆φ) . (110)

With the assumption that the shape of the dijet component is invariant at

different of N rec
ch , and the magnitudes of the dijet components are related by

the scale factor F : Ydijet(∆φ) = FY
peri

dijet(∆φ), Equation (107) can be written

as:

Y (∆φ) = Y (∆φ)cent
dijet+(G

tmp+FGperi)+2
∞

∑
n=2

(Gtmpvn{tmp}2 + FGperivn{peri}2) cosn∆φ.

(111)

Comparing with Equation (109) and Equation (110), one obtains Gcent =

Gtmp + FGperi and the following relation:

vn{2, tmp}2 = vn{2}2 +
F Gperi

Gtmp
(vn{2}2 − vn{2,peri}2) (112)

or equivalently

vn{2}2 = vn{2, tmp}2 −
F Gperi

Gtmp + FGperi
(vn{2, tmp}2 − vn{2,peri}2) , (113)

The above equation indicates that one can only measure the exact flow har-

monics when vn is constant at different multiplicity, which is the case for

v2 in pp but not for other systems. In most cases, collective behavior de-

veloping at low multiplicity region is less prominent compared to those at

the high multiplicity region, i.e. vn increase with multiplicity. Therefore

results from the template fit method overestimated the true flow. Another

limitation is that vn{2, tmp} has sensitivity to choice of multiplicity bin of

these peripheral events, which determines the contribution of overestimation

in Equation (112).

6.4 One-step correction after template fit

In principle, we can use Equation (113) to get the true flow value. Since

vn{2, tmp} and F are determined already from template fit, there are only
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two unknown Gperi and vn{2,peri} and we use a data-driven way to get a

raw estimation.

We can assume Y (∆φ)peri is mainly modulated by (di)jets correlations on

top of uncorrelated pairs (Gperi) and flow contribution is negligible based on

observation. Using zero-yield-at-minimum (ZYAM) method, which assumes

pair yield from (di)jets has its minimum value equal to zero, one can use

value of the lowest point on Y (∆φ)peri to represent Gperi. A second-order

polynomial fit to the 1D Y (∆φ)peri distribution is used to find the location

of the minimum point, ∆φZYAM, as show on Figure 68. From this the value

Gperi is determined as the yield Y (∆φZYAM)peri.

0 2 4
φΔ

0.28

0.3

0.32

0.34

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 0.28
polynomial fit

  InternalATLASATLAS
-1 13TeV 0.9pbpp

<5GeV
T

0.5GeV<p

<20rec
ch0<N

0 2 4
φΔ

3.1

3.15

3.2

3.25

3.3

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 3.10

  InternalATLASATLAS
-1 13TeV 0.9pbpp

<5GeV
T

0.5GeV<p

<110rec
ch80<N

0 2 4
φΔ

0.9

0.95

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 0.87
polynomial fit

  InternalATLASATLAS
-1 13TeV 0.9pbpp

<5GeV
T

0.5GeV<p

<40rec
ch20<N

0 2 4
φΔ

3.9

4

4.1

)φ
Δ

Y(

|<5ηΔLRC: 2<|

pedestal = 3.90

  InternalATLASATLAS
-1 13TeV 0.9pbpp

<5GeV
T

0.5GeV<p

<140rec
ch110<N

0 2 4
φΔ

1.55

1.6

1.65

)φ
Δ

Y(

|<5ηΔLRC: 2<|

pedestal = 1.54

  InternalATLASATLAS
-1 13TeV 0.9pbpp

<5GeV
T

0.5GeV<p

<60rec
ch40<N

0 2 4
φΔ

4.9

5

5.1

)φ
Δ

Y(

|<5ηΔLRC: 2<|

pedestal = 4.93

  InternalATLASATLAS
-1 13TeV 0.9pbpp

<5GeV
T

0.5GeV<p

rec
ch140<N

0 2 4
φΔ

2.25

2.3

2.35

)φ
Δ

Y(

|<5ηΔLRC: 2<|

pedestal = 2.22

  InternalATLASATLAS
-1 13TeV 0.9pbpp

<5GeV
T

0.5GeV<p

<80rec
ch60<N

0 2 4
φΔ

0.38

0.4

0.42

0.44

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 0.38
polynomial fit

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<20rec
ch0<N

0 2 4
φΔ

2.95

3

3.05

3.1

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 2.94

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<100rec
ch80<N

0 2 4
φΔ

5.8

5.9

6

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 5.83

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<180rec
ch160<N

0 2 4
φΔ

0.95

1

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 0.93
polynomial fit

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<40rec
ch20<N

0 2 4
φΔ

3.6

3.65

3.7

3.75

3.8

)φ
Δ

Y(

|<5ηΔLRC: 2<|

pedestal = 3.62

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<120rec
ch100<N

0 2 4
φΔ

6.9

7

7.1

7.2

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 6.94

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<220rec
ch180<N

0 2 4
φΔ

1.6

1.65

1.7

)φ
Δ

Y(

|<5ηΔLRC: 2<|

pedestal = 1.61

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<60rec
ch40<N

0 2 4
φΔ

4.3

4.4

4.5

)φ
Δ

Y(

|<5ηΔLRC: 2<|

pedestal = 4.33

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<140rec
ch120<N

0 2 4
φΔ

8

8.1

8.2

8.3

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 8.06

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<260rec
ch220<N

0 2 4
φΔ

2.3

2.35

2.4

)φ
Δ

Y(

|<5ηΔLRC: 2<|

pedestal = 2.27

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<80rec
ch60<N

0 2 4
φΔ

5.1

5.2

5.3

)φ
Δ

Y(

|<5ηΔLRC: 2<|

pedestal = 5.08

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

<160rec
ch140<N

0 2 4
φΔ

9.4

9.6

9.8

)φ
Δ

Y(

|<5ηΔLRC: 2<|
pedestal = 9.48

  InternalATLASATLAS
-1+Pb 5.02TeV 28nbp

<5GeV
T

0.5GeV<p

rec
ch260<N

Figure 68: ZYAM procedue to get Gperi using a second order polynomila fit.

Left: p+Pb at 5.02TeV, Right: pp at 13TeV.

The vn{2,peri} is not measurable directly in the peripheral interval (N rec
ch <

20), so we can use vn{2, tmp} of the second N rec
ch interval (20 ≤ N rec

ch < 40) as

an estimate. So the the correction is applied starting from the third-lowest

N rec
ch interval (40 ≤ N rec

ch < 60) in this analysis. Since the non-flow contribution

primarily affects the odd harmonics, the v3{2, tmp}2 may become negative in

the first few N rec
ch intervals in pp collisions. In such cases, the correction starts

from the second N rec
ch interval with positive v3{2, tmp}2 (60 ≤ N rec

ch < 80) by

using v3{2, tmp} from the previous N rec
ch interval (40 ≤ N rec

ch < 60).
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Figure 69 compares the corrected vn{2}2 and vn{2, tmp}2 for three periph-

eral N rec
ch intervals: N rec

ch < 20, N rec
ch < 10 and 10 ≤ N rec

ch < 20. The corrected

values are smaller than original template fit values and is less sensitive to

choice of peripheral bins.
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Figure 69: The values of vn{2, tmp}2 from template fit and vn{2}2 with

correction applied obtained in p+Pb collisions for n = 2 (left panel), n =

3 (middle panel) and n = 4 (right panel). In each panel, the values are

calculated for three peripheral N rec
ch intervals: N rec

ch < 20, N rec
ch < 10 and 10 ≤

N rec
ch < 20. Only statistical uncertainties are shown.

6.5 Systematic error

The template fit method follows the prescription of the previous ATLAS

publications. So the systematic uncertainties is very similar to Ref. [60].

Here we will discuss the several main sources : pileup, tracking efficiency

and choice of the peripheral bin used in the template fits.

Pileup. Pileup events, when included in the two-particle correlation mea-

surement, dilute the v2
n signal since they produce pairs where the trigger and

associated particle are from different collisions and thus have no physical

correlations. In the p+Pb data, nearly all of the events containing pileup are

removed by the procedure in Ref. [27]. The influence of the residual pileup

is evaluated by relaxing the pileup rejection criteria and then calculating the

change to v2
n values. The differences are taken as an estimate of the uncer-
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tainty for the vn{2}2, and are found to be negligible in low event activity

classes, and increase to 4% for events with N rec
ch ∼300.

In pp, default analysis use events with only 1 reconstructed vertex since

events with multiple vertices have a high possibility to have pileup events.

However there is still a chance of merged vertices, and events with multiple

unresolved vertices affect the results by increasing the combinatoric pedestal

in Y (∆φ). The fraction of events with merged vertices is estimated and

taken as the relative uncertainty associated with pileup in the pp analysis.

The merged-vertex rate in the 13 TeV pp data is0–3% over the 0-150 N rec
ch

range.

In Pb+Pb, no pileup effect is checked since rate of pileup events is negli-

gible.

Tracking efficiency. The systematic uncertainties in the efficiency ε(pT, η)

is studied in the same way as in Section 4. In the pp analysis, this uncer-

tainty is estimated to be 0.5% for v2
2 and 2.5% for v2

3 and v2
4. Tracks in p+Pb

and peripheral Pb+Pb are reconstructed using the same algorithm, the cor-

responding uncertainties are the same for both cases, which are 0.8%, 1.6%,

and 2.4% for v2
2, v2

3 and v2
4, respectively.

Choice of the peripheral bin . The important feature of the template fit

analysis is the assumption that the dijet component Y (∆φ)dijet is indepen-

dent of ⟨Nch⟩. In Ref. [60], the uncertainty associated with this assumption

is studied by changing the default peripheral interval from N rec
ch < 20 to

N rec
ch < 10 and 10 ≤ N rec

ch < 20. It was found that the vn{tmp} values are

relatively insensitive to the choice of the peripheral interval for n = 2 and

n = 4, but the sensitivity is much larger for n = 3. This finding is repro-

duced in Fig. 70 for pp collisions, which shows that the v3{tmp}2 obtained

via Equation (107) differs substantially for the different N rec
ch ranges. The big

difference in v3{tmp}2 may due to the known fact that template fitting have

a bias when v2
n has a obvious ⟨Nch⟩ dependence, as shown in Equation (113).

This bias is only significant for n = 3 in pp but should be there for all har-

monics in p+Pb and Pb+Pb, where flow of the first few orders n = 2 − 4 are
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Figure 70: The values of vn{2, tmp}2 obtained following the template fit

procedure Equation (107) [60] in pp collisions for n = 2 (left panel), n =

3 (middle panel) and n = 4 (right panel). In each panel, the values are

calculated for three peripheral N rec
ch intervals: N rec

ch < 20, N rec
ch < 10 and 10 ≤

N rec
ch < 20. Only statistical uncertainties are shown.

found to increase monotonously with multiplicity. For a more precise result,

the bias term need to be corrected.

6.6 Results

In addition to the template fit with and without the above mentioned correc-

tion procedure, ATLAS and CMS Collaborations also calculated directly the

vn{2} values via a Fourier transform of the Y (∆φ) distribution without dijet

subtraction [55, 60]. The differences between the direct Fourier transform

and template fit reflect mainly the away-side jet contribution subtracted by

the template fit procedure, and therefore give a sense of the magnitude of

unknown systematics associated with the template fit procedure. If these

differences are too large, the vn{2, tmp} values may be sensitive to the sys-

tematic effects associated with the assumption that the shape of Y (∆φ)jet is

independent of N rec
ch .

Figure 71 compares the vn{2} in 0.3 < pT < 3 GeV obtained from Y (∆φ)

using three methods: a direct Fourier transform (solid circles), a template
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fit (open circles) and a template fit corrected for the bias (open squares), as

described above. The systematic uncertainties for the template fit results are

nearly the same as those from Ref. [60]. Figure 71 shows that the changes

introduced by the correction procedure described above are small in all cases

and for all harmonics. The values of the even-order harmonics, v2 and v4, are

also quite similar to those obtained from the direct Fourier transformation,

reflecting the fact that the dijet correlations have very little influence on the

even-order harmonics. On the other hand, significant differences are observed

between the direct Fourier transform and template fit for v3, especially in the

pp collisions, due to the influence of Y (∆φ)jet, a trend observed and discussed

previously in Refs. [39, 60]. The template fit procedure is able to subtract

the dijet correlations and change the sign of v3, but also introduces a large

uncertainty associated with the procedure. As discussed in Section 5, the

behavior of the symmetric cumulants sc2,3{4} in Figure 62 and normalized

cumulants nsc2,3{4} in Figure 63 in pp collisions, suggest that the v3 values

from the template fit procedure are significantly underestimated due to the

presence of a large residual non-flow bias. In contrast, the differences of v3

between the direct Fourier transform and the template fit are much smaller

in the p+Pb and the Pb+Pb collisions, except in the very low ⟨Nch⟩ region.

Therefore, the v3 values in p+Pb and Pb+Pb systems extracted from the

template fit procedure are expected to be less affected by the dijets.

Figure 72 shows the vn{2} for 0.5 < pT < 5 GeV in three collision systems.
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Figure 71: The v2 (left column), v3 (middle column) and v4 (right column)

obtained from two-particle correlations in 0.3 < pT < 3 GeV in pp (top row),

p+Pb (middle row) and Pb+Pb (bottom row) collisions. In each panel,

they are compared between three methods: direct Fourier transformation

(solid circles), template fit (open circles) and the improved template fit (open

squares). The error bars and shaded boxes represent the statistical and

systematic uncertainties, respectively.
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Figure 72: Similar plot with Figure 71 but for 0.5 < pT < 5 GeV.
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7 Conclusions

In this thesis work, comprehensive studies of flow decorrelation in longitudi-

nal direction in 2.76 TeV and 5.02 TeV Pb+Pb collisions were presented. The

factorization of two-particle azimuthal correlations into single-particle flow

harmonics Vn is found to be broken due to flow decorrelation, and the amount

of factorization breakdown increases approximately linearly as a function of

the η separation between the two particles. Centrality depenence, pT de-

pendence and energy dependence of this decorrelation effect is studied. The

results presented in this thesis work provide new insights into the fluctuations

and correlations of harmonic flow in the longitudinal direction, which can be

used to improve full three-dimensional viscous hydrodynamic models.

Correlations of two flow harmonics vn and vm via three- and four-particle

cumulants are measured in 13 TeV pp, 5.02 TeV p+Pb, and 2.76 TeV periph-

eral Pb+Pb collisions. The large non-flow background from dijet production

present in the standard cumulant method is suppressed using a method of

subevent cumulants involving two, three and four subevents separated in

pseudorapidity. The results show a negative correlation between v2 and v3

and a positive correlation between v2 and v4 for all collision systems and

over the full multiplicity range. The relative correlation strength, obtained

by normalisation of the cumulants with the ⟨v2
n⟩ from a two-particle corre-

lation analysis, is similar in the three collision systems and depends weakly

on the event multiplicity and transverse momentum. These results based

on the subevent methods provide strong evidence of a similar long-range

multi-particle collectivity in pp, p+Pb and peripheral Pb+Pb collisions.

While the two analyses presented here are independent measurements re-

lying on different experimental techniques and in different systems, together

they can help to provide measurements toward a unified picture of the col-

lective phenomena from pp, p+Pb and Pb+Pb.
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