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ABSTRACT

W Boson Production in Ultrarelativistic Heavy-Ion
Collisions at the CERN LHC

Thomas E. Balestri

Ultrarelativistic heavy-ion collisions at the CERN Large Hadron Collider (LHC) are capable of

producing a medium of deconfined quarks and gluons. This phase of nuclear matter is called a

Quark-Gluon Plasma (QGP) and is believed to have been present during the first microseconds

following the Big Bang. W bosons are a unique probe in a QGP since they do not carry color

charge and thus do not interact with a strongly-coupled medium. Furthermore, the kinematics

of W bosons are sensitive to the Bjorken momentum fraction x of partons within nucleons, and

therefore W bosons may also be used to constrain parton distribution functions and to detect

the presence of nuclear effects. This thesis presents the measurement of W boson production in

the dense nuclear environment created in Pb+Pb collisions at a per nucleon pair center-of-mass

energy
√
sNN = 2.76 TeV. The data for this measurement were collected with the ATLAS detector

in 2011 and correspond to an integrated luminosity
∫

Ldt = 0.14 nb−1. The production of W

bosons is detected using the W → µνµ decay channel, resulting in fiducial yields of 5487 ±96 (stat.)

±86 (syst.) W+ → µ+νµ events and 5262 ±95 (stat.) ±83 (syst.) W− → µ−ν̄µ events. These results

are combined with yields from the corresponding electron channel W → eνe, and the combined

measurement is used to construct the differential production yields and lepton charge asymmetry

as a function of lepton absolute pseudorapidity. The integrated production yields and charge ratio

as a function of the mean number of binary nucleon-nucleon collisions 〈Npart〉 are also presented.

The results are compared to predictions based on next-to-leading order QCD calculations. These

observables can aid in better understanding nucleon structure within a heavy nucleus as well as

provide insight into the mechanism of jet energy loss in a QGP.
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Chapter 1

Introduction

W± bosons were first discovered in pp̄ collisions at the CERN SPS collider in 1983 [51] and provided

confirmation of the Standard (Glashow-Salam-Weinberg) Electroweak Model. Since then, the cross

section for W production has been calculated in pertubative Quantum Chromodynamics (pQCD)

up to next-to-next-to-leading order (NNLO) [52, 53]. The firm knowledge of W production has

been used extensively at high-energy colliders to test Standard Model (SM) predictions, search for

physics beyond the Standard Model (BSM), and provide information about nucleon structure by

constraining parton distribution functions (PDFs). However, over the past decades, measurements

in high-energy accelerators involving W bosons have strictly been confined to bi-nucleon systems

(i.e. pp, pp̄).

In 2010, the Large Hadron Collider (LHC) at CERN began colliding Pb ions at the highest

center-of-mass energy ever attained in a heavy-ion system, resulting in abundant production of W

bosons and enabling the first measurement of W boson production in an A + A system. This is

the topic of this thesis, which presents the most current and precise measurements of W boson

production in heavy-ion collisions (the corresponding publication may be found in Ref. [40]). W

bosons are typically detected through their leptonic e, µ decay channels, which also involve the

production of undetectable neutrinos. Thus, an experimental signature in events containing a W

boson is the presence of large missing transverse energy (see Figure 1.1).

A question of primary importance is how the physics of free nucleon systems compare to that of

bound nucleon systems (so-called nuclear effects). A significant advantage of W production in A+A

collisions is the ability to study isospin effects induced by pn and nn interactions. The leading-
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Figure 1.1: Event display of a W → eνe event during the 2011 heavy-ion run period at the LHC.

order mechanisms for W+(W−) production proceed via the annihilation of a u(d) valence quark

and d̄(ū) sea quark. Since W bosons and large rapidity are preferentially produced in the direction

of the quark with a larger momentum fraction, isospin effects are attributed to the valence quark

distribution functions at large Bjorken-x and are expected to alter the W+/W− ratio relative to

pp and pp̄ measurements. Furthermore, parton distribution functions are expected to be modified

by the presence of other nucleons within the nucleus and thus, the sensitivity of the W kinematics

to the parton momentum fraction may provide a means to observe nuclear effects. This is one of

two results presented in this work.

In heavy-ion collisions at ultrarelativistic energies, normal nuclear matter undergoes a phase

transition to a deconfined state of quarks and gluons called a Quark-Gluon Plasma (QGP). Since

W bosons (and its electroweak decay products) do not carry color charge, they do not interact

with this strongly-coupled medium. Thus, the W production rate should be unaffected by the

presence of a QGP and should scale with the number of binary nucleon-nucleon interactions. This

property can be used to benchmark parton energy loss in a QGP and to provide information on

the modified jet fragmentation function. The dependence of W production yields on the number

of binary nucleon-nucleon collisions is the second result presented in this work.
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This thesis is organized as follows: Chapter 2 discusses the important theoretical and phe-

nomenological developments leading to this measurement. The major findings and results preceding

the construction of Quantum Chromodynamics are mentioned. Parton distribution functions are

introduced and the correlation of W production with the parton structure of nucleons is discussed.

A section on the formation of a QGP is provided and the chapter concludes with a discussion on

nuclear effects and the applicability of W bosons in heavy-ion systems.

Chapter 3 describes the operation of the Large Hadron Collider and introduces pertinent ex-

perimental terminology. The ATLAS detector and its individual components are then described in

detail.

Chapter 4 provides a discussion on the muon identification and reconstruction algorithms used

in ATLAS. Descriptions of the methods by which muon measurements in different sub-detectors are

combined to form a muon track and various corrections for material effects are applied are included

in this chapter.

Chapter 5 details the analytical procedure for locating W bosons in heavy-ion collisions. This

chapter includes a list of the datasets used in the current measurement, event selection, construction

of missing energy in a heavy-ion collision, detector efficiencies, background determination, and

systematic uncertainties.

Chapter 6 presents the results. These include measurements of the differential W production

yields as a function of absolute pseudorapidity, the lepton charge asymmetry, and the integrated

yields and charge ratio as a function of the mean number of binary collisions.

The final chapter (Chapter 7) provides a summary and outlook for measurements involving W

bosons using the current p+ Pb and future Pb+Pb data.
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Chapter 2

Background

High-energy physics is concerned with understanding the basic building blocks of matter and the

physical laws that govern their interactions. Early in the study of nuclear physics, it was observed

that in addition to the gravitational and electromagnetic forces, two additional forces govern the

universe: weak interactions responsible for β decay and strong interactions that bind nucleons

within the nucleus. At the scale of elementary particles, the dominant forces are the electromag-

netic, weak, and strong interactions. These are well described by the Standard Model with gauge

group SU(3)⊗ SU(2)⊗U(1) [54, 55].

Within the Standard Model there are three families of elementary particles: quarks, leptons,

and force mediators. These are summarized in Figure 2.1. SU(2) generates W bosons, which are

mediators of weak charged-current interactions. The SU(2) ⊗ U(1) gauge group generates the Z

boson and photon, which are mediators of weak neutral-current and electromagnetic interactions,

respectively. The SU(3) [56–58] symmetry group generates the gluon, which is responsible for the

strong interaction. Spontaneous symmetry breaking by a scalar field gives rise to the masses of the

quarks, leptons, and heavy-gauge bosons via the Higgs mechanism [1].

In 1952, the Brookhaven Cosmotron became the first modern particle accelerator and began

producing strange particles in the laboratory [59]. The discovery of internal symmetries of the strong

interaction facilitated the classification of hadrons into multiplets. Studies of nuclear reactions

showed that, to a good approximation, the strong interactions are independent of the charge of the

nucleons. Interchanging a proton and neutron does not change the nature of the strong interaction.
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Figure 2.1: Summary of the elementary particles that make up the Standard Model. There are

three generations of quarks and leptons. Gauge bosons are mediators of the strong, weak, and

electromagnetic forces. The Higgs Mechanism [1] is responsible for the masses of the leptons,

quarks, and heavy-gauge bosons.
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Therefore, the strong interaction possesses an SU(2) isospin symmetry 1 in which the p and n states

form an isospin doublet. The SU(2) generators I1, I2, I3 satisfy the Lie algebra:

[Ii, Ij ] = iεijkIk (2.1)

Acting on the p and n states,

I3 |p〉 =
1

2
|p〉 I3 |n〉 = −1

2
|n〉

I+ |n〉 = |p〉 I− |p〉 = |n〉 (2.2)

The isospin can be extended to other hadrons to form additional isospin multiplets (e.g. π+, π0, π−

are I = 1 isospin triplets).

The observation that heavy baryons like Λ and K particles are copiously produced (at a time

scale of ∼ 10−23 seconds) but decay slowly (∼ 10−10 seconds) led to the formulation of a new

quantum number: strangeness S. It was postulated [60] that strange particles are produced by the

strong force but decay via the weak interaction. Gell-Mann [61] and Nishijima [62] then proposed

that the strangeness of a particle is conserved in any strong interaction but is not conserved in

a weak interaction. This explained the strangeness-conserving process π− + p → Λ0 + K0 and

strangeness-changing process Λ0 → π0 + p and K0 → π+ + π−, where S(Λ0) = −1, S(K0) = +1,

and S of pions and nucleons are zero.

Strangeness is associated to a U(1) symmetry, like the electric charge Q. Gell-Mann and

Nishijima formulated a relation between S, Q, and I3 (isospin generator) that is conserved under

all known interactions:

Q = I3 +
Y

2
(2.3)

with

Y = B + S

where B is the baryon number. Y is called the hypercharge.

1This is actually not an exact symmetry since the mass difference within a multiplet is not zero. However, the

mass difference is at most a few percent, and thus isospin is an approximate symmetry.
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In 1961, Gell-Mann and Ne‘eman showed that mesons and baryons with the same spin and parity

could be grouped to form representations of the SU(3) group. These representations are known as

the Eightfold-Way. This scheme was further corroborated by the discovery of the Ω− [63], which

was hypothesized by the model. However, none of the fundamental representations of SU(3) were

realized by the observed hadrons. This led to the proposal of the Quark Model by Gell-Mann [64]

and Zweig [65] who postulated that hadrons are composed of more elementary constituents called

quarks.

2.1 Quark Model

There are three types (flavors) of light quarks in the fundamental representation (denoted 3) of

SU(3): the u (up) quark with a charge of 2/3, the d (down) quark with a charge of −1/3, and

the s (strange) quark also with a charge of −1/3. The corresponding antiquarks (q̄) belong to the

conjugate representation (denoted 3̄). Each quark possesses a color quantum number: (anti)red,

(anti)green, or (anti)blue. In this formulism, (anti)baryons (B = 1) and (anti)mesons (B = 0) are

qqq (q̄q̄q̄) and qq̄ “colorless” bound states, respectively. The combinations of light quark mesons are

grouped into a SU(3) singlet and octet 3⊗ 3̄ = 8⊕ 1, whereas the light quark baryon combinations

yield a decuplet, two octets, and a singlet 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1.

The three color states also generate an SU(3) symmetry. However, the color symmetry is

exact whereas the flavor symmetry is approximate due to the different masses of the u, d, and s

quarks [2, 66]. The discovery of the c (charm), b (bottom), and t (top) quarks extends the flavor

SU(3) group to SU(6). However, the symmetry at higher orders is so poor that the t quark does

not form bound states at all.

The Quark Model led to the view that quarks interact via the exchange of colorless gluons,

which are an octet of vector fields in the adjoint representation of SU(3). The proton was perceived

as consisting of one d and two u quarks that are collectively called “valence” quarks and of quark-

antiquark pairs produced from gluon-splitting, forming the quark “sea”. However, at this point in

time, quarks and gluons were still theoretical entities [56].
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2.2 Evidence of Quarks and Gluons

The inner structure of the proton was first studied in deep inelastic 2 scattering (DIS) experiments

using leptonic projectiles on a nucleus target. To address this new data, Feynman and Bjorken

introduced the parton model [67], which views nucleons as composite objects made up of point-

like constituents called partons. The parton model provided a simple framework for calculating

scattering cross sections and structure functions of nucleons.

The process `N → `′X is shown in Figure 2.2. In this diagram, k and k′ are the four-momenta

of the incoming and outgoing leptons and P is the four-momentum of a nucleon with mass M . The

square of the center-of-mass energy is then:

s = (P + k)2 (2.4)

k

k

q

P, M W

Figure 2.2: Description of deep inelastic scattering `N → `′X. The quantities k and k′ are the

four-momenta of the incoming and outgoing leptons, P is the four-momentum of a nucleon with

mass M , and W = (P + q)2 = M2 + 1−x
x Q2 is the mass of the recoiling system X. The exchange

particle (γ, W , or Z) transfers four-momentum q = k − k′ to the nucleon [2].

The momentum transfered by the virtual photon to the nucleon is q = k − k′. The energy loss

of the lepton in the rest frame of the nucleon can be expressed as:

ν = E − E′ = q · P
M

(2.5)

2The process is “deep” since the photon deeply penetrates the proton (Q2 >> M2). The process is inelastic

because the proton breaks up into components with mass W 2 >> M2.
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where E and E′ are initial and final lepton energies. The energy scale of the collision is conven-

tionally written as Q2 ≡ −q2 > 0 3. Then the fraction of the nucleon’s momentum carried by the

struck quark can be expressed as:

x =
Q2

2Mν
(2.6)

This is known as the Bjorken x.

The cross section for inclusive inelastic scattering in terms of the structure functions W1(ν,Q2)

and W2(ν,Q2) and scattering angle θ is:

(
dσ

dΩdE′

)
lab

=
α2
e

4E2 sin4 θ
2

[
W2(ν,Q2) cos2 θ

2
+W1(ν,Q2) sin2 θ

2

]
(2.7)

Thus, the structure functions can be determined by measuring the energy and angular dependence

of the outgoing lepton.

To determine if the leptons are scattering off point-like objects, the behavior of the cross section

for point-like scattering can be compared to that for scattering off a charge cloud. The structure

functions from elastic scattering off a static charge distribution have electric and magnetic form

factors [68] that decrease the elastic cross section with increasing Q2, making it more likely that the

proton breaks up. However, for an electron scattering off partons inside the nucleus, the structure

functions have only a weak Q2 dependence at fixed x. Bjorken reasoned that in the limit that

Q2 →∞, the structure functions would become:

F1(x) := lim
Q2→∞

MW1(ν,Q2)

F2(x) := lim
Q2→∞

νW2(ν,Q2)

(2.8)

The dependence of the proton structure functions F1,2 only on x is known as Bjorken scaling. The

scaling behavior was originally observed in the SLAC experiments and later by other experiments,

3−q2 = 2(EE′−k ·k′)−m2
` −m2

`′ , where m`(`′) are the initial and final lepton masses. If EE′ sin2(θ/2) >> m`(`′),

−q2 ≈ sin2(θ/2), where θ is the lepton scattering angle w.r.t. the lepton beam direction.
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as shown in Figure 2.3 [69–73]. The data supported the existence of point-like partons within the

proton.

 Q
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Figure 2.3: The proton structure function F2 in electromagnetic scattering of electrons and

positrons on protons (H1 and ZEUS) and of electrons (SLAC) and muons (BCDMS, E665, NMC)

on a fixed target [2]. The data are plotted as a function of Q2. Scaling violations appear at

x < 10−2.
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In the parton model, the proton structure functions can be expressed in terms of parton distri-

bution functions. In the infinite momentum frame of the proton, the parton momentum is collinear

with that of the proton. If each parton has charge ei and a probability fi(x) to carry momentum

fraction x of the total momentum of the parent proton, then the density functions satisfy:

∑
i

∫
xfi(x)dx = 1 (2.9)

where the summation is over all constituents of the proton. The parton has longitudinal momentum

xpL,proton and mass xMproton. It can be shown [74] that:

F2(x) = x
∑
i

e2
i fi(x) (2.10)

If the partons are spin-1/2 fermions:

F2(x) = 2xF1(x) (2.11)

This is the Callan-Gross relation and was confirmed by experimental studies [75] (Figure 2.4).

Figure 2.4: Experimental evidence of the Callan-Gross relation, showing that partons are spin-1/2

particles. If partons were spin-0, the magnetic structure function F1(x) = 0.

However, to show that these partons are indeed quarks, the parton distribution functions had to

predict the correct flavor mixture in the nucleons. If q(x) (q̄(x)) represent the parton distribution
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functions of q (q̄) quarks, and dn(x)(un(n)) = up(x)(dp(x)) ≡ u(x)(d(x)), then from Eqn. 2.10 the

proton and neutron structure functions [73, 76, 77] can be expressed as:

F ep2 = x

[
1

9
(4uv(x) + dv(x)) +

4

3
S

]
F en2 = x

[
1

9
(uv(x) + 4dv(x)) +

4

3
S

]
(2.12)

where v represents valence quarks and S is the contribution of the quark-antiquark pairs from

the sea. It was predicted that as x → 0 at fixed Q2, the number of quarks should increase and

contributions from the sea become important. The ratio of the structure functions would then

become:
F e+n2 (x)

F e+p2 (x)
→ 1 as x→ 0 (2.13)

As x→ 1, the valence quarks should dominate and:

F e+n2 (x)

F e+p2 (x)
→ uv(x) + 4dv(x)

4uv(x) + dv(x)
as x→ 1 (2.14)

In the proton at large x, the density function uv(x) >> dv(x) and Equation 2.14 approaches

1/4 4. This was observed experimentally, as shown in Figure 2.5, and strongly suggested that these

partons are quarks. Experimental data from ν+N scattering at CERN [79, 80] also supported this

conclusion.

However, from the DIS data, the u and d valence and sea quarks were found to carry approxi-

mately 50% of the total momentum of the proton. Since the virtual photon in e+p scattering only

probes charged particles, the additional 50% must be from neutral particles that do not contribute

to the cross section. This provided the first evidence of the existence of gluons predicted by field

theory and could explain the scaling violations at low-x observed in the experimental data (Fig-

ures 2.3 and 2.6). The scaling violation could then be interpreted as the result of radiation of hard

gluons from quarks. At the time, the parton model could not predict this behavior, and it was here

where the field theory of strong interactions could successfully describe the experimental data.

4Corrections for nuclear binding and nucleon off-shell effects put this value closer to 3/7 but are model dependent

and introduce significant uncertainties [78].
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Figure 2.5: Ratio of the proton and neutron structure functions as a function of Bjorken x.

2.3 Quantum Chromodynamics

The strong interactions of quarks and gluons are governed by Quantum Chromodynamics (QCD).

This model is described by a non-Abelian Yang-Mills gauge theory with gauge group SU(3) [2, 81–

83]. The QCD Lagrangian describes the interaction of three equal-mass Dirac fields (three colors

for each quark flavor) with eight massless gluon fields and is given by:

L =
∑
q

ψ̄q,a(iγ
µDµ −mqδab)ψq,b −

1

4
FAµνF

µν
A −

1

2αG
∂µACµ ∂µA

µ
C − ∂µϕ̄CD

µϕC (2.15)

where repeated indices imply summation. γµ are the Dirac γ-matrices, and ψq,a(b) are the quark-

field spinors for quark flavor q and mass mq. The color indices a(b) run over the number of quark

color quantum numbers (i.e. a, b = 1 to Nc = 3).

The covariant derivative Dµ is associated with local transformations of the quark-field spinors

and is given by:

Dµ = ∂µδab − igstCabACµ (2.16)
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Figure 2.6: Proton structure function at two Q2 values. Bjorken scaling is observed down to the

“pivot point” at x ∼ 0.14, where scaling violations are observed due to gluon radiation [2].
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where ACµ represents the gluon fields and C 5 runs over the eight colors of gluons (i.e. C = 1

to N2
c − 1 = 8). tCab ≡ λCab/2 represent the eight 3 × 3 Gell-Mann matrices and are generators of

rotations in SU(3) space of the quark color state after interaction with a gluon. gs(≡ 2
√
αsπ) is

the QCD coupling constant.

Under a local color gauge transformation, the physics of the strong interaction does not change.

The quark field spinors transform as:

ψ(x)→ U(x)ψ(x) (ψ̄(x)→ ψ̄(x)U(x)†) (2.17)

where

U(x) = eiθ
C(x)tC (2.18)

The fermion sector of the Lagrangian ψ̄q,a(iγ
µDµ − mqδab)ψq,b must be independently gauge in-

variant. In its current form, this is not the case due to the extra term in the derivative ∂µψ →

U∂µψ + (∂µU)ψ. Thus, the covariant derivative must transform like the quark fields:

Dµψ → UDµψ (2.19)

which determines the transformation of the gluon field under SU(3):

tCAµC → UtCAµCU
−1 +

i

gs
(∂µU)U−1 (2.20)

The Lagrangian is adjoined with the gluon field tensor FAµν with massless gauge field Aµ:

FAµν = ∂µAAν − ∂νAAµ − gsfABCABµACν (2.21)

where fABC are structure constants for the SU(3) color group and A,B,C run over the eight types

of gluons. This last term is necessary to obtain gauge invariance in the gluonic field tensor under

local SU(3) transformations. The generators of SU(3) satisfy the Lie algebra:

[tA, tB] = ifABCt
C . (2.22)

The last two terms in Equation 2.15 are, respectively, the gauge-fixing term necessary for

covariant quantization of the gluon fields (αG = 1 for the Feynman gauge and αG → 0 for the

5Uppercase letters will indicate gluon fields while lowercase letters will indicate quark colors.
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Landau gauge) and the Faddeev-Popov ghost term [84] necessary to eliminate unphysical particles

and maintain the path integral formulation.

Equation 2.15 can be written as a free Lagrangian Lfree for each participating field and an

interaction Lagrangian Lint. The free Lagrangian can be decomposed into:

Lfree = Lgluon
free + Lquark

free + Lghost
free (2.23)

where

Lgluon
free = −1

4
(∂µAνC − ∂νA

µ
C)(∂µAνC − ∂νA

µ
C)− 1

2αG
∂µACµ ∂µA

µ
C (Proca, spin 1)

Lquark
free =

∑
q

ψ̄q,a(iγ
µ∂µ −mq)ψq,b (Dirac, spin 1/2)

Lghost
free = −∂µϕ̄C∂µϕC (2.24)

The quark-gluon, gluon-gluon, and ghost-gluon field interaction terms determine the vertex factors.

These are given by:

Lquark−gluon
int = gsAµC

∑
q

ψ̄q,aγ
µtCψq,b

Lgluon−gluon
int = −gs

2
fABC(∂µAνA − ∂νA

µ
A)ABµACν −

g2
s

4
fABCfADEAµBA

ν
CADµAEν

Lghost−gluon
int = gsfABC(∂µϕ̄

A)ϕBACµ (2.25)

The gluon-gluon coupling is specific to the non-Abelian SU(3) group. In other words, both

QED and QCD require massless gauge fields 6, corresponding to photons and gluons, respectively.

However, photons themselves do not carry charge, whereas gluons carry color charge and thus can

interact with one another. This self-interaction term requires the introduction of the ghost term

for a proper quantization of the field. In Lint, the Feynman rules [86] yield a quark-antiquark-gluon

vertex, a three-gluon vertex from the three factors of Aµ, and a four-gluon vertex from the four

factors of Aµ. The corresponding Feynman diagrams are shown in Figure 2.7.

6Massive gauge fields are introduced through spontaneous symmetry breaking and the Higgs Mechanism, which

is responsible for the masses of the weak gauge bosons W±, Z [1, 85]
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Figure 2.7: Feynman diagrams from the interaction QCD Lagrangian corresponding to qq̄g, three-

gluon, and four-gluon vertices.

2.3.1 Running Coupling

In perturbation theory, gluon loops in Feynman diagrams result in divergences at large loop mo-

menta. These are called ultraviolet divergences and are absorbed by re-expressing parameters in

the Lagrangian with physically observable quantities. This process is called renormalization. Loop

corrections to a diagram are applied using a renormalization scale µR, which has units of energy

and can be chosen [87] at the scale of the momentum transfer of the process 7 i.e. µ2
R ≈ Q2.

The renormalized coupling is thus a function of the scale and satisfies the renormalization group

equation:

µ2
R

dαS
dµ2

R

= β(αS) = −(b0α
2
S + b1α

3
S + b2α

4
S + . . . ) (2.26)

which gives the rate at which the coupling changes as the renormalization scale increases [82].

In β(αS), the one-loop coefficient b0 = (33 − 2nf )/(12π), the two-loop coefficient b1 = (153 −

19nf )/(24π2), and the three-loop coefficient b3 = (2857 − 5033
9 nf + 325

27 n
2
f )/(128π3). The negative

sign implies that for small nf , the αS runs to zero at large Q2 (i.e. short distances) and the strong

interaction decreases. This is called asymptotic freedom [88, 89] (Figure 2.8). Thus, in comparison

to QED, in which the vacuum polarization functions as a dielectric medium that reduces the effective

electric charge at large distances, in QCD, gluons produce an antiscreening effect.

In an energy range where only the light-quark flavors are considered (nf = 3 and mq << µR)

and higher-order terms are ignored, the running coupling is:

7The choice of µR should not change the physics in the calculation.
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Figure 2.8: Strong coupling αS as a function of the energy scale Q [3].

αS(µ2
R) =

1

b0 ln(µ2
R/Λ

2)
(2.27)

where Λ is the scale at which αS becomes strong with decreasing Q2 (i.e. the non-perturbative scale

of QCD). Experimental measurements have yielded a value of Λ ≈ 200 MeV. Thus, perturbative

QCD calculations are only valid for Q > Λ, and the strong interaction becomes “strong” at distance

scales greater than ∼ 1/Λ, which is roughly the size of the nucleon.

2.4 Factorization and Hard-Scattering

In Section 2.2, experimental evidence from DIS for the existence of quarks and gluons was presented.

However, to current date, no experiments have ever directly observed free quarks or gluons [90]. The

inability to separate a color-singlet state into its colored components is known as quark confinement

and is a consequence of the strong coupling at large distances. QCD has been studied in this regime

using a scheme introduced by Wilson [91] in which the continuum gauge theory is replaced by a

statistical mechanical system on a four-dimensional lattice. This section will discuss how parton

distribution functions (PDFs) can be used with perturbative QCD to learn more about nucleon

structure.
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Factorization theorems [92] enable the derivation of cross sections for hard processes in QCD by

separating perturbative from nonperturbative effects. Short-range dynamics are handled perturba-

tively, whereas soft processes are factorized and are contained within PDFs. Major features of the

PDFs are that they are experimentally accessible and universal (i.e. the PDFs are independent of

the hard process under consideration). The part of the cross section that remains after factoring

the PDFs is the (perturbatively calculable) short distance cross section for the hard scattering of

partons.

A hard process between two nucleons is shown schematically in Figure 2.9. The factorization

theorem of Drell and Yan [93] postulates that the interaction cross section σAB→X between hadrons

A and B can be obtained by weighting the hard subprocess by the parton distribution functions:

σAB→X =
∑
a,b

∫ ∫
dxadxbfa/A(xa, µ

2
F )fb/B(xb, µ

2
F )
[
σ̂LO + αS(µ2

R)σ̂NLO + . . .
]
ab→X (2.28)

Figure 2.9: Schematic of factorization in nucleon-nucleon cross section calculations. σ̂ represents

the hard-scattering process and fa/A(b/B) are the parton distribution functions in hadron A and B,

respectively [4].

The hard-scattering process is represented by σ̂ and is calculated in perturbative QCD to O(αnS).

Higher-order terms correspond to virtual (loop) contributions and radiation components from ad-

ditional quarks and gluons. fa/A(b/B) is the probability to find parton a(b) in hadron A(B) with
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momentum fraction xa(b) (i.e. PDFs). The PDFs depend on the factorization scale µ2
F , which

separates the perturbative and nonperturbative regimes. In principle, perturbation theory should

be invariant under changes of the unphysical parameters µF and µR. However, this is only the case

when the perturbation series is extended to a complete set of higher-order corrections. Failing to

include these higher-order terms results in a dependence of the cross section on the two scales. To

avoid unnatural logarithmic terms, µF and µR are typically set to µF = µR = MX . Varying the

scales results in contributions to the PDF uncertainties.

The PDFs are related to the structure functions in the scattering cross section by choosing a

renormalization scheme, of which the most common is the MS scheme [94]. In this scheme, the

structure function takes the form:

F2(x,Q2) = x
∑
i

e2
i qi(x,Q

2) +
αS(Q2)

2π
x

∫ 1

x

dξ

ξ

[∑
i

e2
iC2,q(

x

ξ
)qi(ξ,Q

2) + e2
iC2,g(

x

ξ
)g(ξ,Q2)

]
(2.29)

where C2,q and C2,g are the coefficient functions for the contributions from quark and gluon scatter-

ing. By requiring that the factorization-scale dependence of F2 vanish in a perturbative expansion

over all orders, a group of differential equations may be derived that relates the PDFs at one scale

to those at another scale. These are called the DGLAP equations [95–98].

PDFs used in cross section calculations are solutions to the DGLAP equations 8:

∂qi(x,Q
2)

∂log Q2
=
αS
2π

∫ 1

x

dξ

ξ

[
Pqiqj (ξ, αS)qj(

x

ξ
,Q2) + Pqi,g(ξ, αS)g(

x

ξ
,Q2)

]
∂g(x,Q2)

∂log Q2
=
αS
2π

∫ 1

x

dξ

ξ

[
Pgqj (ξ, αS)qj(

x

ξ
,Q2) + Pgg(ξ, αS)g(

x

ξ
,Q2)

]
(2.30)

where Pab(x, αS) are the splitting functions (kernels), which give the probability of a parent parton

a to emit a gluon with momentum fraction 1 − z, thereby producing a daughter parton b with

momentum fraction z. The splitting functions can be perturbatively expanded in powers of the

running coupling:

Pab(x, αS) = P 0
ab(x) +

αS
2π
P 1
ab(x) + · · · (2.31)

8The DGLAP equations sum leading powers of [αS log Q2]n generated by multiple gluon emission in a region of

phase space where the pT is strongly ordered. This contribution dominates at log(Q) >> log(1/x).
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2.4.1 Extraction of Parton Distribution Functions

The DGLAP equations can be used to obtain the evolution of the parton density with Q2. However,

cross section calculations also require knowledge of the x dependence, which must be determined

from global fits to data from DIS, Drell-Yan, and jet measurements at current energy ranges. The

dependence of the parton momentum fraction on the energy scale Q = MX and center-of-mass

energy is given by:

xa =
MX√
s
e+yX , xb =

MX√
s
e−yX (2.32)

where yX is the longitudinal boost (rapidity) of the produced resonance X:

yX =
1

2
ln
E + pz
E − pz

yX =
1

2
ln
xa
xb

(2.33)

HERA data [99, 100] provide information of the PDFs at low-x, whereas fixed target DIS [70, 72,

101–103] and DY [104, 105] experiments probe the high-x region. Jet measurements [106, 107] in

colliders also provide a wealth of information over a broad range of x and Q2, especially for gluon

distributions. W/Z production at high-energy colliders probe the regions 10−3 < x < 10−1 at

|y| < 2.5 and 10−4 < xa < 10−3 and 0.1 < xb < 1 at 2 < |y| < 5. Figure 2.10 presents the parton

kinematic phase-space accessible at the LHC. Also shown are the regions accessed by the TeVatron,

HERA, and fixed-target experiments.

To determine the PDFs, a general ansatz is used to parametrize the parton distributions at

a pertubative “starting scale” Q2
0. The DGLAP equations are then used with the parametrized

functions to obtain PDFs at any Q2 9. The DGLAP evolution extrapolates the PDFs to different

Q2 where measurements from data are available. The theory predictions are fit to the experimental

data, thus constraining the input parameters and yielding PDFs in (x,Q2) space. The fit minimizes

a global χ2 function that describes the compatibility between the data and theory [112].

Figure 2.11 presents (momentum weighted) PDFs xfi(x) for the proton from the CTEQ collab-

oration [113]. The antiquark PDFs are denoted by xf̄i(x). The PDFs obey the sum rules [114, 115],

9DGLAP evolution no longer becomes applicable at very low x. In this region, a BFKL [108–111] description may

be used.
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Figure 2.10: Parton kinematic range in (x,Q2) space probed by fixed-target and collider experi-

ments. The incoming partons have x1,2 = (M/14 TeV)e±y with Q = M [2].
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which for the proton (neutron) are:

∫ 1

0
[u(x)− ū(x)] dx = 2(1)

∫ 1

0

[
d(x)− d̄(x)

]
dx = 1(2) (valence) (2.34)

and ∫ 1

0
[q(x)− q̄(x)] dx = 0 (sea) (2.35)

which satisfies the valence structure of the proton (neutron): uud (udd). The valence quark distri-

butions are defined as uv(x) = u(x)− ū(x) and dv(x) = d(x)− d̄(x), the gluon distribution as xg(x),

and the light-sea distribution as xS(x) = x[2(ū(x) + d̄(x) + s̄(x))]. From momentum conservation:

∫ 1

0

nf∑
i

x [qi(x) + q̄i(x)] + xg(x)dx = 1 (2.36)

where the summation is over the parton flavors.

The PDF uncertainties in Figure 2.11 are determined using the Hessian Method [112], which

explores the χ2 in the neighborhood of its minimum. This involves diagonalizing an n-dimensional

Hessian matrix 10, where n is the number of free parameters in the global fit, resulting in an

orthonormal basis set from which the PDF errors can be determined. The PDFs are varied

along the positive and negative directions of each eigenvector, resulting in a displacement from

the best-fit point S0 of T =
√

∆χ2 (e.g. 90% C.L., 68% C.L.). The uncertainty analysis yields

2n PDF sets: eigenvector basis sets in the positive and negative direction along each eigenvector

S+
1 , S

−
1 , ..., S

+
n , S

−
n . Let X be an observable. Then the value of X using the central PDF set is

X0 and, for the ith eigenvector, the variations in the positive and negative direction are given by

X+
i , and X−i , respectively. The PDF error for the observable can be calculated using the “Master

Equation”:

∆X+
max =

√√√√ n∑
i=1

[max(X+
i −X0, X

−
i −X0, 0)]2

∆X−max =

√√√√ n∑
i=1

[max(X0 −X+
i , X0 −X−i , 0)]2 (2.37)

10The Hessian is the matrix of second derivatives of the χ2.
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Figure 2.11: CT10 parton distribution functions at different energy scales Q. In each figure,

xuvalence = x(u − ū), xdvalence = x(d − d̄), xg/10, and xqsea/10 are shown. The dashed curves are

from the central fit.
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where ∆X+
max adds in quadrature the PDF error contributions that result in an increase in the

observable X and ∆X−max adds in quadrature those that result in a decrease in X. The maximum

difference is used since, in some instances, both X+
i and X−i result in variations of the observable in

the same direction. In this case, ∆X+
max is calculated with the most positive variation and ∆X−max

with the most negative.

The neutron PDF is related to the proton PDF by isospin symmetry:

u(x) := uv(x) + us(x) = up(x) = dn(x)

d(x) := dv(x) + ds(x) = dp(x) = un(x) (2.38)

where v is the valence and s is the sea contributions. All other parton distributions are the same

for the proton and neutron:

S := us(x) = ūs(x) = ds(x) = d̄s(x) = ss(x) = s̄s(x) (2.39)

where heavy quarks have been omitted. The structure functions can then be expressed in the form

of Eqn. 2.10:

1

x
F p2 (x) =

1

9
(4uv(x) + dv(x)) +

4

3
S

1

x
Fn2 (x) =

1

9
(4dv(x) + uv(x)) +

4

3
S (2.40)

2.5 Parton Distribution Functions and W Rapidity

To leading order, W boson production proceeds via the Drell-Yan mechanism qq̄′ →W , as depicted

in Figure 2.12. In the narrow width approximation in which the decay width ΓW of the gauge boson

is neglected, the cross section for W production is [86]:

σ̂qq̄
′→W =

π

3

√
2GFM

2
W |Vqq′ |2δ(sx1x2 −M2

W ) (2.41)

where GF
11 is the Fermi coupling constant and represents the strength of the weak interactions

at energies much less than MW , sx1x2 = M2
W is the squared parton center-of-mass energy, and

11The Fermi coupling constant can also be expressed as GF =
√

2 g2

8M2
W

, where g = e
sin θw

is the weak interaction

coupling constant. θw is the weak mixing angle, which is related to the mass of the massive gauge bosons cos θw = MW
MZ

.
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MW = 80.385 GeV [2] is the mass of the W boson. Vqq′ is the appropriate quark-mixing matrix

element from the Cabibbo-Kobayashi-Maskawa (CKM) matrix [116, 117]:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


The CKM matrix is unitary. Thus, VijV

∗
ik = δjk, VijV

∗
kj = δik, and VikV

∗
jk = 0, resulting in six

vanishing combinations that are represented as unitarity triangles in a complex plane [2].

Figure 2.12: Leading-order Feynman diagram for W boson production.

In the leading-order diagram, W bosons are most likely to couple with the light-flavor quarks

(i.e. q(x) = u(x) or d(x) and q̄′(x) = d̄(x) or ū(x)). This can be seen from Figure 2.13, which

presents the parton decomposition of Drell-Yan processes as a percentage of the LO cross section

in pp and pp̄ collisions at the LHC and TeVatron, respectively. The u and d flavor contributions

are reversed in nn collisions in a Pb+Pb system (see Equation 2.40), whereas in np collisions the u

and d contributions to the cross section become equal. Since matrix elements in the CKM matrix

decrease when mixing across families (i.e. Cabibbo suppression), some contributions are much

smaller than others. NLO and NNLO corrections (e.g. qq̄′ → Wg) increase the LO cross section

by approximately 25% and 5% [3], respectively.

The rapidity of the W boson and parton are related by Equations 2.32 and 2.33, which imply

that W bosons at large rapidity are produced in the direction of the parton with larger momentum

fraction in the hard scattering process. Since at high x, on average, uv(x) > d̄s(x) 12 and dv(x) >

12Here, qv(x) is the valence quark distribution whereas qs(x) is the sea quark distribution. This notation is adopted

for clarity since the proton and neutron valence quark distributions are reversed.
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Figure 2.13: Parton decomposition of the W+ (solid line) and W− (dotted line) total cross sections

as a function of
√
s. Individual contributions are shown as a percentage of the total cross section [5].

In a nn collision, the u and d flavor contributions are reversed, whereas in a np collision they are

the same.
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ūs(x) (Figure 2.11), the W is preferentially produced in the direction of the valence quark. In

Pb+Pb collisions, for W+(W−), this is in the direction of the valence u(d) quark. Moreover, in

pp(nn) collisions, a larger number of W+(W−) bosons are produced at forward rapidity since on

average upv(x) > dpv(x)(dnv (x) > unv (x)). This results in an asymmetric rapidity distribution between

W+ and W− bosons and is primarily driven by the difference in the uv(x) and dv(x) distribution

functions. In the case of np or pn collisions, the asymmetry depends on the direction of the incoming

valence quarks: more W+(W−) bosons are produced at forward rapidity in the p(n)-going direction.

The asymmetry in each collision system can be implied from Figure 2.14, which presents the W

rapidity distributions in simulation for pp, np, and nn collisions. The explicit dependence of the

W± differential cross section on the parton distribution functions (at leading order) is [118]:

dσ

dy
(AB →W+X) =

2πGF

3
√

2
x1x2{|Vud|2

[
u(x1)d̄(x2) + d̄(x1)u(x2)

]
+ |Vus|2 [u(x1)s̄(x2) + s̄(x1)u(x2)]

+ |Vcs|2 [c(x1)s̄(x2) + s̄(x1)c(x2)] + |Vcd|2
[
c(x1)d̄(x2) + d̄(x1)c(x2)

]
+ |Vub|2

[
u(x1)b̄(x2) + b̄(x1)u(x2)

]
+ |Vcb|2

[
c(x1)b̄(x2) + b̄(x1)c(x2)

]
} (2.42)

dσ

dy
(AB →W−X) =

2πGF

3
√

2
x1x2{|Vud|2 [ū(x1)d(x2) + d(x1)ū(x2)] + |Vus|2 [ū(x1)s(x2) + s(x1)ū(x2)]

+ |Vcs|2 [c̄(x1)s(x2) + s(x1)c̄(x2)] + |Vcd|2 [c̄(x1)d(x2) + d(x1)c̄(x2)]

+ |Vub|2 [ū(x1)b(x2) + b(x1)ū(x2)] + |Vcb|2 [c̄(x1)b(x2) + b(x1)c̄(x2)]} (2.43)

where AB = pp,np, or nn and q(x1,2) and q̄(x1,2) are the appropriate quark/antiquark distributions

in the proton or neutron for each parton in the hard scattering process.

Considering only the light flavor u and d quarks, the cross section for W production becomes:

dσW+

dy
=

2πGF

3
√

2
x1x2|Vud|2

[
u(x1)d̄(x2) + d̄(x1)u(x2)

]
dσW−

dy
=

2πGF

3
√

2
x1x2|Vud|2 [ū(x1)d(x2) + d(x1)ū(x2)] (2.44)

The charge asymmetry in the W rapidity distributions is defined as:

AW (y) =
dσW+/dy − dσW−/dy
dσW+/dy + dσW−/dy

(2.45)
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Figure 2.14: Simulated W rapidity distributions for W+ (red) and W− (blue) bosons in pp (Top),np

(Middle), and nn (Bottom) collisions at
√
s = 2.76 TeV. The distributions for W+ and W− are

normalized by their respective cross sections predicted by POWHEG in each collision system.
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To see how the rapidity asymmetry can be used to constrain u(x)/d(x) [119], consider Equation 2.46

for pp collisions:

dσW+

dy
=

2πGF

3
√

2
x1x2|Vud|2

[
up(x1)d̄p(x2) + d̄p(x1)up(x2)

]
dσW−

dy
=

2πGF

3
√

2
x1x2|Vud|2 [ūp(x1)dp(x2) + dp(x1)ūp(x2)] (2.46)

Assuming that ūp(x) = d̄p(x), the asymmetry can be written as:

A(y) =
(up(x1)− dp(x1))ūp(x2) + ūp(x1)(up(x2)− dp(x2))

(up(x1) + dp(x1))ūp(x2) + ūp(x1)(up(x2) + dp(x2))
(2.47)

In the limit that x1 ∼ 1 and x2 << 1, ūp(x1) is negligible and the asymmetry becomes:

A(y) ≈ up(x1)− dp(x1)

up(x1) + dp(x1)
(2.48)

Since the W rapidity distributions in pp collisions are symmetric (see Figure 2.14), the rapidity

charge asymmetry does not change when x1 ↔ x2 (y ↔ −y). Therefore, the ratio of the parton

distribution functions are directly sensitive to the asymmetry by:

dp(x)

up(x)
≈ 1−A(y)

1 +A(y)
(pp) (2.49)

Using the isospin symmetry in Equation 2.38, the same procedure can be applied to nn and pn

collisions (see Appendix D). For nn, the result is:

dp(x)

up(x)
≈ 1 +A(y)

1−A(y)
(nn) (2.50)

In the case of np collisions, the rapidity distributions are asymmetric and
dσW+ (y)

dy =
dσW− (−y)

dy ,

from which it follows that AW (+y) = −AW (−y). The sensitivity of the asymmetry on the parton

distributions becomes:

dp(x1)

up(x1)
≈ 1 +A(y)

1−A(y)
(np; x1 ∼ 1, x2 << 1)

dp(x2)

up(x2)
≈ 1−A(y)

1 +A(y)
(np; x1 << 1, x2 ∼ 1) (2.51)

The result for pn may be obtained by the tranformation A(y) → −A(y) in the relations above.

Equations 2.49-D.14 show that direct access to parton distribution functions is provided by the

rapidity charge asymmetry in W± production.
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2.6 Leptonic W Decays

The W boson cannot be directly detected since it is a very short-lived particle. Furthermore, the

four-momentum of the W cannot be easily determined experimentally because the z component

of the neutrino is unknown – momentum conservation is only expected in the transverse plane

because an unknown amount of energy of the incoming hadrons escapes down the beam pipe.

Leptonic observables are more readily attainable and thus, leptonic decays are usually used in

physics analyses to identify the presence of a W boson.

From the Lagrangian for the standard model of electroweak interactions [120–122], the charged-

current term is:

− gW

2
√

2

∑
i

ψ̄iγ
µ(1− γ5)(T+W+

µ + T−W−µ )ψi (2.52)

where ψi are spinor fields, γµ are the Dirac matrices, γ5 = iγ0γ1γ2γ3, θW is the Weinberg angle,

and gW = e/ sin θw. T+ and T− are the isospin raising and lowering operators and W±µ ≡ (W 1
µ ∓

iW 2
µ)/
√

2 are the charged-boson fields.

Using the Feynman rules, one obtains from Equation 2.52 the charged-current weak interaction

vertex factor:

− igW√
2
γµ

(
1− γ5

2

)
(2.53)

It can be seen from Equation 2.53 that the coupling of W bosons to a lepton and neutrino takes

the form of a vector minus axial-vector: ψ̄νγµ(1− γ5)ψ`. This is referred to as “V-A coupling”.

The V-A structure is related to the helicity operator, which is the projection of the spin S onto

the direction of the momentum p̂i:

h ≡ p̂ · S =
1

2
p̂i

σi 0

0 σi


Every particle has a chirality state of ±1 with chirality operator γ5. In the ultrarelativistic limit,

chiral states correspond to helicity states. Thus, ultrarelativistic particles with positive helicity

eigenvalues are right-handed (ψR), whereas those with negative helicity eigenvalues are left-handed

(ψL) [82]. The term 1
2(1−γ5) is the projector of left-handed chiral particle states, and therefore this
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term in Equation 2.52 selects left-handed helicity components of particle spinors and right-handed

components of antiparticle spinors. The V-A structure in W decays results in an anisotropic lepton

angular distribution of the form 13:

dσ

d cos θ∗
∝ (1− λq cos θ∗)2 (2.54)

where q is the charge of the lepton, θ∗ is the lepton polar angle of emission in the rest frame of the

W with respect to the incoming quark 14, and λ signifies the helicity of the W boson. The V-A

structure dictates that the spin of the W is aligned with the antiquark [124]. Thus, in most cases in

Pb+Pb collisions, the W is left-handed. However, at central rapidity, the probability that the sea

quark carries a larger momentum fraction increases and thus the helicity state of the W becomes

an admixture of left-handed and right-handed states [125].

Equation 2.54 has a simple qualitative interpretation that applies to all nucleon combinations

in Pb+Pb collisions. Consider the process ud̄ → W+ → µ+ν. Since W bosons at large rapidity

are preferentially produced in the direction of the valence quarks, the W+ boson is boosted in

the direction of the u quark. The lepton decay product `+ (antiparticle) must be in a right-

handed helicity state due to V-A coupling. Therefore, to conserve angular momentum, the lepton

is produced in the direction of the incoming d̄ antiquark and follows an angular dependence ∝

(1− cos θ∗) with maximum decay amplitude at θ∗ = π i.e. `+ is produced in the opposite direction

of W+. Conversely, for the process dū → W− → µ−ν̄, the W− boson is boosted in the direction

of the d quark. The particle `− is left-handed and thus is also produced in the direction of the d

quark. The angular dependence is ∝ (1 + cos θ∗) with maximum amplitude at θ∗ = 0 i.e. `− is

boosted in the direction of the W− boson. The angular dependence of the lepton and neutrino in

the rest frame of the W is presented schematically in Figure 2.15.

The rapidity of the charged lepton is a convolution of the V-A coupling and W rapidity. In

13Higher-order contributions to the cross section can alter the angular distribution [123]

14Alternatively, the amplitude may be expressed as ∝ (1 + cos θ∗)2 if θ∗ is defined with respect to the direction of

the down quark or antiquark [86]
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Figure 2.15: Schematic representation of the lepton angular dependence in qq̄
′ → W → µν

processes. The momentum and spin vectors are not drawn to scale. The angular dependence in

the qq̄
′ → µν system is expressed within the rest frame of the W . The decay distributions follow

the form (1± cos θ∗)2. Both W+ (Left) and W− (Right) processes are shown.

terms of the boson rapidity yW and rapidity of the lepton in the W rest frame y∗` [126]:

y` =yW ± y∗`

=
1

2
ln
x1

x2
± 1

2
ln

1 + cos θ∗

1− cos θ∗
(2.55)

where the upper sign is for yW > 0 and the lower for yW < 0. Thus, the accessible phase space in

x is restricted by the rapidity acceptance of the measurement. For negatively (positively) charged

leptons, cos θ∗ is most likely positive (negative), and therefore the lepton rapidity is shifted to more

forward (backward) rapidity relative to the parent W (i.e. |y`− | > |yW− | and |y`+ | < |yW+ |). This

behavior can be seen in Figure 2.16, which presents the W and lepton rapidities for each collision

system.

The relative contribution of the V-A coupling and W rapidity to the lepton rapidity distribution

depends on the kinematic phase space of the lepton. The kinematics of the W and decay lepton are

well described by using the narrow-width approximation 15. At LO in pQCD, the W is produced

15This assumes that the total decay width is much smaller than the mass MW .
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Figure 2.16: W boson rapidity and lepton pseudorapidity in simulated pp (Top), np (Middle), and

nn collisions. Predictions are made at NLO using the CT10 PDF sets. The distributions for W+

and W− are normalized by their respective cross sections predicted by POWHEG in each collision

system.
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with vanishing pT and thus [86]:

cos θ∗ =

(
1−

4p2
T,`

M2
W

) 1
2

(2.56)

and

1

σ

dσ

dp2
T,`

=
3

M2
W

(
1−

4p2
T,`

M2
W

) 1
2
(

1−
2p2

T,`

M2
W

)
(2.57)

This distribution peaks at pT,` = MW /2, which is referred to as the Jacobian peak.

Information from the neutrino can also be considered by defining the transverse mass:

M2
T = 2|~pT,`||~pT,ν |(1− cos ∆φ`ν) (2.58)

In the absence of any quark transverse momentum, |~pT,`| = |~pT,ν | and cos ∆φ`ν = π. Thus,

MT = 2pT,` and also has a Jacobian peak at MT = MW .

At fixed pT,` ≤ 1
2MW , the rapidities of the W and lepton are related by:

|yW − y`| = ln

MW

2pT,`
+

√(
MW

2pT,`

)2

− 1

 (2.59)

Thus, at pT,` = 1
2MW , the rapidities of the lepton and boson are equal and the contribution from

the V-A coupling is diminished. Using yW = ln x1
x2

, Equation 2.59 can be written as:

1

2

∣∣∣∣ln x1

x2

∣∣∣∣ =

∣∣∣∣∣∣y` ± ln

MW

2pT,`
+

√(
MW

2pT,`

)2

− 1

∣∣∣∣∣∣ (2.60)

which implies that for a given lepton rapidity, different values of the ratio x1/x2 are probed de-

pending on the lepton pT.

2.7 QCD Phase Transition

Since this thesis is concerned with W boson production in heavy-ion collisions, the following section

will discuss the QCD phase transition that takes place within this type of system. Rolf Hagedorn in

the late 1960s first posited the concept of a transition from ordinary nuclear matter to a deconfined

state of quarks and gluons [127, 128]. He developed a statistical bootstrap method to use in the
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analysis of particle production in high-energy collisions and observed that the number density of

resonance states ρ(m) increases exponentially with the mass of observed hadrons:

ρ(m) ∝ m−5/2em/TH (2.61)

This behavior implied a singularity in the equation of state of hadronic matter and was understood

to be representative of a limiting temperature at which hadrons “melt.” The melting point of

hadrons was called the Hagedorn temperature with empirical values within the range 150 < TH <

200 MeV. However, the statistical bootstrap model could not provide a physical interpretation for

the structure of matter at temperatures greater than TH .

The resolution came in 1975 when Perry and Collins [129] used the concept of asymptotic

freedom in QCD to argue that since the interaction strength of quarks at short distances is weak,

matter at high densities consists of freely interacting quarks. Later in that year, Cabibbo and

Parisi [130] interpreted the singularity in the equation of state as a phase transition from hadronic

gas to plasma of quarks and gluons. They argued that at sufficiently high temperature or density,

finite-size hadrons overlap and quarks and gluons are free to move over large space-time distances.

The Hagedorn temperature was considered the point at which the phase transition proceeds and

was thus coined the transition temperature Tc.

2.7.1 Phenomenology of the Phase Transition

To better understand the quark-hadron phase transition, several models have been proposed. The

MIT-Bag model [131] is one example. In this simplified model, a region of space which contains

hadron fields is called a “bag.” The bag has a radius R ∼ Λ−1
QCD ≈ 1fm and a constant energy

density. Quarks within the bag are massless, and hadron confinement is interpreted as the balance

of the outward pressure due to the kinetic energy of the quarks and the inward bag pressure from

the difference between the energy densities inside and outside the bag. The inward bag pressure

B is called the bag constant and ranges between 145 MeV to 235 MeV [132, 133]. When nuclear

matter is heated or the baryon density increases, the outward pressure from the quantum kinetic

energies of the quarks can overcome the inward bag pressure, thus creating a deconfined state of

matter.



CHAPTER 2. BACKGROUND 37

In the case of increasing the temperature at zero net baryon density, the total pressure and

energy density of a quark-gluon plasma is given by:

P = g
π2

90
T 4

ε = g
π2

30
T 4 (2.62)

where g = gg× 7
8(gq +gq̄) represents the degeneracy numbers of the gluons, quarks, and antiquarks.

For gluons, gg = 8 × 2 whereas for (anti)quarks gq = gq̄ = 3 colors × 2 spins × 2 flavors. The

critical temperature at which the quark-gluon pressure is equal to the bag pressure is given by (see

Ref. [134]):

Tc =

(
90

37π2

)1/4

B1/4 (2.63)

Above this temperature, the quark-gluon pressure exceeds the bag pressure, and the system is

comprised of a deconfined state of quarks and gluons.

In the case where the temperature is held constant and the baryon density increases, the quark-

gluon pressure increases as a result of the Pauli exclusion principle. Quarks are fermions and thus

cannot occupy the same state. Therefore, when the baryon density increases, the quarks occupy

different states by increasing their momentum. This increases the outward quark pressure and

energy density. In the case of a quark gas, these are given by:

Pq =
g

24π2
µ4
q

εq =
g

8π2
µ4
q (2.64)

The hadron-quark transition occurs when the pressure from the degenerate quark matter equals

the bag pressure, which occurs at:

µq =

(
24π2

g
B

)1/4

(2.65)

Though conceptually useful, the bag model has a number of limitations, of which most notable
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is chiral symmetry 16 violation at the bag boundary. In 1961, chiral symmetry and spontaneous

breaking in a vacuum was first hypothesized by Nambu and Jona-Lasinio (NJL), who formulated

a relativistic field theory for point-like interacting nucleons of vanishing mass. In the context of

QCD, the nucleons are replaced with nearly massless u and d quarks. Considering only the lightest

quarks, the fermionic part of the QCD Lagrangian reads:

L = ūi��Du+ d̄i��Dd−muūu−mdd̄d (2.66)

where ��D is the Dirac operator. In the limit of massless quarks, chiral symmetry is upheld. However

at low momentum scales (i.e. strong coupling αS), the QCD vacuum contains a condensate of

quark-antiquark pairs i.e. the vacuum expectation value 〈q̄LqR + q̄RqL〉 6= 0. The u and d quarks

thus acquire an effective mass as they move through the vacuum and the chiral symmetry is

spontaneously broken. This “constituent” mass is ≈ 300− 400 MeV and explains the mass scale of

nucleons. For the u and d quarks, almost 99% of the mass is dynamical and thus created through

the nonperturbative structure of the QCD vacuum. According to Goldstone’s theorem, spontaneous

symmetry breaking is accompanied by the production of massless bosons. The Goldstone bosons

of QCD are pions, which are the lightest hadrons. The nonzero mass of the pions is related to the

finite bare mass of the u and d quarks.

Since the NJL model incorporates spontaneous chiral symmetry breaking and mass generation,

it was widely used to model the QCD phase diagram in the 1980s and 1990s. It could also be

used to study chiral symmetry restoration at the critical temperature and quark chemical potential

where 〈q̄LqR + q̄RqL〉 vanishes and the quarks becomes massless. A prediction of the evolution of

the chiral condensate with temperature and quark-chemical potential for u and d quark masses is

shown in Figure 2.17. In this figure, a smooth restoration of chiral symmetry is observed along the

T−axis, whereas along the µq-axis, a first-order phase transition is apparent where the condensate

ratio increases discontinuously. The transition becomes weaker with increasing T until the critical

point is reached. The phase transition is second-order at temperatures above the critical point.

16Chiral symmetry implies rotating the left-handed and right-handed components independently does not affect

the theory.
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Figure 2.17: Evolution of the chiral-condensate ratio 〈q̄q〉T,µq/〈q̄q〉 as a function of temperature

and quark chemical potential. The region where the ratio jumps discontinously corresponds to a

first-order phase transition. The critical end-point (CEP) is also shown [6].

2.7.2 Lattice QCD

Since the phase transition takes place in the strong coupling regime of QCD, nonperturbative

methods must be applied to describe the transformation from hadronic to quark matter. The

bag model and NJL model described above provide a conceptual understanding of the deconfining

transition. However, determining the QCD equation of state (EoS) involves solving the QCD

equations in the strong coupling region, for which lattice gauge theory has proven useful [7, 135, 136].

The lattice QCD calculations relate the thermodynamic partition function to the path integral

formulation of quantum mechanics. Rather than using renormalization methods (applicable in

pQCD), lattice QCD avoids ultraviolet divergences by placing quark fields on lattice space-time

points linked by gauge fields in between sites. The lattice points are separated by a minimum

distance, thus defining the upper momentum threshold that renders the quantum field theory

finite. The lattice spacing is determined by the distance at which the lattice calculations agree
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with the behavior of the coupling constant αS as a function of the scale Q2. Lattice calculations

provide a theoretical means to understand the dynamics of a QCD plasma with quark and gluon

degrees of freedom.

The QCD partition function [7] on a hypercubic lattice of size N3
σNτ is obtained from the

relation between Feynman’s path integral formulism in imaginary time τ = it and the statistical

mechanics of a system with temperature T = 1/τ :

Z(β,Nσ, Nτ ) =

∫ ∏
dUx,µe

−S(U) (2.67)

where β represents the gauge coupling, Ux,µ ∈ SU(3) are the gauge field variables (labeled x and

µ) defined on the links between lattice points, and S(U) is the Euclidean action and includes gauge

and fermionic parts:

S(U) = βSG(U)− SF (U) (2.68)

The trace of the energy-momentum tensor (also referred to as the trace anomaly) Θµµ [137]

is the most convenient quantity to calculate on the lattice and is used to calculate the EoS. It is

defined as the total derivative of lnZ with respect to the lattice spacing a:

Θµµ = −T
V

d lnZ

d ln a
(2.69)

The trace anomaly is related to the pressure and energy density of the system by:

Θµµ(T )

T 4
=
ε− 3p

T 4
= T

∂

∂T
(p/T 4) (2.70)

The pressure of the system can be obtained by integrating Θµµ/T 5 over the temperature:

p(T )

T 4
=
p(T0)

T 4
0

+

∫ T

T0

dT
1

T 5
Θµµ(T ) (2.71)

where T0 is an arbitrary value that is usually chosen at low temperatures where the pressure and

other thermodynamic quantities are exponentially suppressed by Boltzmann factors associated to

pions.

Equations 2.70 and 2.71 may be used to calculate the energy ε and entropy s = ε+p densities as a

function of T . The appropriate second-order derivatives of the QCD partition function with respect



CHAPTER 2. BACKGROUND 41

to T can be used to obtain the specific heat and speed of sound of the system. Thermodynamic

quantities at low temperatures are well-described by the hadron resonance gas (HRG) model [138,

139], which is used in the continuum extrapolation of Θµµ. With these basic thermodynamic

observables, a parametrization of the QCD EoS may be obtained.

Continuum extrapolated estimates of the pressure, energy density, and entropy density are

shown in Figure 2.18 for recent lattice QCD calculations. In this figure, a sharp turn-on is observed

in a narrow temperature range, signifying the liberation of quark and gluon degrees of freedom.

The turn-on is described as a crossover from hadronic matter to quark-gluon plasma rather than a

true phase transition. The crossover is caused by a singularity in the QCD partition function that

is expected in the chiral limit (i.e. mq → 0).

Figure 2.18: Continuum extrapolation of the normalized pressure, energy density, and entropy

density as a function of temperature [7]. The horizontal line at 95π2/60 corresponds to the ideal gas

limit for the energy density and the vertical band indicates the crossover region Tc = (154±9) MeV.

The phase structure of QCD can also be studied by analyzing observables that at certain limits

become order parameters for chiral symmetry restoration (mq → 0) or deconfinement (mq → ∞).

The chiral condensate is used as an order parameter for spontaneous symmetry breaking in the

limit of vanishing quark masses. It can be written as:
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〈ψ̄ψ〉q =
T

V

∂ lnZ

∂mq
, q = l, s (2.72)

〈ψ̄ψ〉q is nonzero at T < Tc and vanishes above Tc. The chiral condensate is renormalized to

eliminate singularities and the result is unity at low temperatures and zero at Tc for ml = 0, as

shown in Figure 2.19.

Figure 2.19: The normalized chiral condensate: ∆l,s =
〈ψ̄ψ〉l,T−

ml
ms
〈ψ̄ψ〉s,T

〈ψ̄ψ〉l,0−
ml
ms
〈ψ̄ψ〉s,0

. The band corresponds to

the temperature range 185 ≤ T ≤ 195 MeV [8]

The deconfinement transition can be observed using the quark number susceptibilities χq, de-

fined in terms of the light and strange quark chemical potentials:

χq
T 2

=
1

V T 3

∂2 lnZ

∂(µq/T )2
, q = l, s (2.73)

The quark number susceptibilities are sensitive to the thermal fluctuations of the quark degrees

of freedom and change rapidly in the transition region. This can be seen in Figure 2.20, which

presents the light-quark number susceptibility.

The expectation value of the trace of the Polyakov loop, which is related to the free energy of

a static quark source in a hot gluonic medium, can also be used as an order parameter of the

deconfinement transition [140–143]:
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Figure 2.20: The light quark number susceptibility calculated on the lattice. The band corresponds

to the temperature range 185 ≤ T ≤ 195 MeV [8]

〈L〉 =
1

V

〈∑
~x

TrL(~x)

〉
(2.74)

where L(~x) denotes a closed line integral over gluon fields, representing a static quark source:

L(~x) = exp

[
−
∫ 1/T

0
dx0A0(x0, ~x)

]
(2.75)

Figure 2.21 shows the Polyakov loop as a function of the temperature. The variation in the tran-

sition region indicates a more effective screening of static quarks and reduction in the free energy.

The rapid variation of the chiral condensate in the same temperature range as for the bulk ther-

modynamic observables, chiral susceptibility, and Polyakov loop indicates that the chiral symmetry

restoration occurs in the same temperature region as deconfinement.

2.8 Nucleus-Nucleus Collisions

Results from lattice QCD at low baryochemical potential and finite temperatures in combination

with empirical data can be used to construct a QCD phase diagram, as shown Figure 2.22. High-

energy nucleus-nucleus collisions provide a means to create matter at extremely high temperature
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Figure 2.21: Polyakov loop from lattice QCD calculations [8].

and/or baryochemical potential and thus enable exploration of the QCD phase diagram in the

laboratory. The high temperatures and densities are attainable partly due to the occurence of

multiple collisions. During a collision, a single nucleon may collide with many nucleons in the other

nucleus and in so doing deposit a large amount of energy into the colliding system. The amount

of energy deposited by the projectile nucleon depends on the thickness of the target nucleus, and

thus the larger the radius of the target nucleus, the larger amount of energy lost by the projectile

nucleon. This implies that the energy density in a Au + Au collision will not be the same as that

in a Pb+Pb collision at the same center-of-mass energy.

2.8.1 Ultrarelativistic Heavy-Ion Collisions and QGP Formation

In an ultrarelativistic heavy-ion collision, the nuclei are substantially Lorentz contracted in the

longitudinal direction and may be represented as two thin disks. Upon colliding, a large amount

of energy is deposited in a small region of space. The collision region has a large energy density

but small baryochemical potential. In the 1980s, Bjorken [144] posited that these conditions could

be conducive to QGP formation. In the Bjorken scenario, the plasma formation time is τf ∼

1/ΛQCD ∼ 1 fm/c. The plasma equilibrates at time τther and evolves according to the laws of

relativistic hydrodynamics. The expansion of the “fireball” results in a decrease in temperature
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Figure 2.22: QCD phase diagram as a function of T and baryochemical potential. Regions acces-

sible by the LHC are at low baryochemical potential and large T [9].

and conversion to a gas of hadron resonances (freeze-out). Final-state interactions are modelled by

a Boltzmann transport equation. The collision evolution is shown schematically in Figure 2.23.

The Bjorken formulism may be used to estimate the initial energy density:

ε =
1

τfπR
2
A

dET
dy
≈ 3

2

〈mT 〉
τfπR

2
A

dNch

dy
(2.76)

where y is the rapidity, ET is the transverse energy, πR2
A is the transverse area of the overlap region

between the two nuclei with RA ≈ 1.2A1/3[fm], and mT is the transverse mass of secondary particles.

To create QGP in the laboratory, the energy density must be in excess of ∼ 0.5 GeV/fm3 [145]. At

the LHC in central Pb+Pb collisions, ε ≈ 15 GeV/fm3 [146], well above the minimum threshold

for QGP formation and approximately three times higher than the energy density reported at

RHIC [147]. The increase in energy density corresponds to at least a 30% increase in temperature

to T ≈ 300 MeV using the conservative estimate that the formation time τf remains constant at
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Figure 2.23: Bjorken scenario for the formation of QGP in an ultrarelativistic heavy-ion collision [9].
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RHIC and the LHC.

The dynamics of a QGP starting at time τf are described by the energy density field ε, pressure

field p, temperature field T , and four-velocity field uµ = dxµ/dτ at different space-time points

during the evolution. The energy density, pressure, and temperature are related by the equation of

state ε = ε(p, T ). The energy-momentum tensor Tµν in the absence of viscosity and heat conduction

(i.e. an ideal fluid) is given by:

Tµν = (ε+ p)uµuν − gµνp (2.77)

The initial configuration of the system is approximately Lorentz invariant, thus making it more

feasible to study the hydrodynamics of the QGP. The equation of motion for the QGP is governed

by energy-momentum and charged-current conservation:

∂µ(Jµ) = 0, ∂µT
µν = 0 (2.78)

where Jµ = nuµ is the conserved charge current with number density n 17. The equations above

can be closed with the EoS and solved with a hydrodynamical solution in the functional form of ε,

p, T , uµ, and n [148–151].

Dissipative fluid dynamics require the inclusion of higher-order terms in the gradients. The

most widely used theoretical framework for viscous relativistic fluid dynamics is the Israel-Stewart

theory [152]. At the LHC, the main transport coefficients controlling the collective dynamics are

the bulk ζ and shear η viscosities and relaxation times for the bulk and shear viscous pressures.

These are usually reported with the entropy density s as specific viscosities: η/s and ζ/s. These

quantities are difficult to extract from QCD and thus alternative approaches are used that exploit

the AdS/CFT correspondence relating strongly-coupled conformal field theories (CFT) to classical

gravity in Anti-de-Sitter (AdS) space-time geometries [153]. This method has established a strong-

coupling limit for η/s ≈ 1/(4π) [154, 155], which is significantly below the pQCD estimate [156].

Experimentally, the transport properties of a QGP are studied in collisions with an initial-state

spatial anisotropy in the overlap region of the colliding nuclei [157–159]. The spatial anistropy

gives rise to a final-state momentum anisotropy of emitted particles. This momentum anisotropy is

17In the strong interaction, the conserved charge currents are isospin, strangeness, and baryon number
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sensitive to the viscous properties of the system and provides information of the expansion history.

By determining the azimuthal anisotropy coefficients of the measured angular distributions for

charged particles (i.e. the charged-particle vn), hydrodynamic models can be used to extract

empirical η/s and ζ/s values.

2.8.2 Glauber Model

In nucleus-nucleus collisions, final-state observables may be affected by the size of the interaction

region. The size and shape of the interaction region are correlated with the distribution of nucleons

within the incoming nuclei. The geometric configuration of colliding nuclei may be modeled using

the Glauber Model [11, 160]. The model is formulated in the optical limit, in which the overall

phase shift of the incoming wave is taken as the summation over all possible bi-nucleon phase

shifts [161, 162]. At high energies, it is assumed that the nucleons carry sufficient momentum

such that they pass through the nucleus undeflected and independently of the other nucleons.

The baryon-baryon cross section is assumed constant during the collision 18. These assumptions

allow for construction of analytic expressions for the nucleus-nucleus cross section in terms of the

more basic nucleon-nucleon cross section. Below, the main geometric quantities obtained from the

Glauber model will be discussed using the notation from Ref. [134].

Let the probability for a baryon-baryon collision within a transverse area element db at impact

paramter b be defined as t(b)db, where t(b) is the baryon-baryon thickness function. Since the

collision occurs at some impact parameter, integrating over all impact parameters gives
∫
t(b)db =

1. In the collision process, diffractive and elastic collisions result in little or no energy loss of

the baryon and therefore only the non-diffractive inelastic component of the nucleon-nucleon cross

section is considered. The probability of one baryon at impact parameter b to interact with another

is then t(b)σinel.

The collision of a beam nucleus B with target nucleus A is shown schematically in Figure 2.24.

The probability to locate a baryon in volume element dbB(A)dzB(A) in nucleus B(A) at position

bB(A), zB(A) is given by ρB(A)(bB(A), zB(A))dbB(A)dzB(A), where ρ is the number density function

divided by the number of baryons in the nucleus. The probabilities are normalized to unity. The

18In principle a baryon can be excited during the collision, thus changing the cross section. However, assuming the

cross section to be constant provides an understanding of many of the geometrical concepts in the collision process.
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total probability for a baryon-baryon interaction in an A + B collision at impact paramter b can

then be represented as the product:

T (b)σinel =

∫
ρA(bA, zA)dbAdzAρB(bB, zB)dbBdzBt(b− bA − bB)σinel (2.79)

where the first (second) term represents the probability for finding a baryon from nucleus A(B)

in volume element dbB(A)dzB(A) in nucleus B(A) at position (bB(A), zB(A)) and the last term is

the probability for a baryon-baryon inelastic collision. Equation 2.79 defines the nuclear thickness

function T (b) for the collision A+B:

T (b) = ρA(bA, zA)dbAdzAρB(bB, zB)dbBdzBt(b− bA − bB) (2.80)

The thickness function can also be expressed in terms of the individual thickness functions for

nuclei A and B:

T (b) =

∫
dbAdbBTA(bA)TB(bB)t(b− bA − bB) (2.81)

Figure 2.24: The collision of projectile nucleus B with target nucleus A at impact parameter b

viewed from the side (left) and along the beam axis (right).

Given the thickness functions, the probability for n inelastic baryon-baryon collisions at impact

parameter b out of AB possible collisions is a binomial distribution:
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P (n,b) =

AB
n

 [T (b)σinel]
n [1− T (b)σinel]

AB−n (2.82)

Integrating Equation 2.82 over the impact parameters gives the total inelastic cross section for an

A+B collision:

σABinel =

∫
db(1− [1− T (b)σinel]

AB) (2.83)

The probability for n inelastic baryon-baryon collisions in Equation 2.82 can be used to obtain

the mean number of binary nucleon-nucleon collisions at impact paramter b:

Ncoll(b) =

AB∑
n=1

nP (n, b) = ABT (b)σinel (2.84)

The number of nucleons in nucleus A and B that interact inelastically at least once are called

“participants” or “wounded nucleons.” The number of participants at impact parameter b is given

by [163, 164]:

Npart(b) =A

∫
TA(bA)(1− [1− TB(bB)σinel]

B)d2bA

+B

∫
TB(bB)(1− [1− TA(bA)σinel]

A)d2bA (2.85)

where the terms represent the number of wounded nucleons from nucleus A passing through nucleus

B and vice versa and the integration runs over a plane orthogonal to the collision axis.

2.8.2.1 Inputs to Glauber Calculations

To calculate the geometric quantities described above using the Glauber formulism, the model

requires the nuclear charge densities and energy dependence of the inelastic nucleon-nucleon cross

section determined from experimental data. The nuclear charge density can be taken from low-

energy electron scattering experiments and is parametrized by a Fermi distribution:

ρ(r) = ρ0
1 + w(r/R)2

1 + exp
(
r−R
a

) (2.86)

where ρ0 and is the nuclear density at the center of the nucleus, R is the nuclear radius, a is the

“nuclear skin thickness,” and w accounts for deviations from a spherical geometry. Relevant for
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this work is the lead nucleus,208
82Pb, which has a radius R = 6.62 ± 0.06 fm and skin thickness

a = 0.546± 0.01 fm [165]. Figure 2.25 presents an idealized nuclear charge density for Pb.

Figure 2.25: Woods-Saxon potential for 208
82Pb [10]

The inelastic nucleon-nucleon cross section σNNinel can be obtained either from direct measure-

ments [166, 167] at a given
√
s or indirectly from the total cross section σtot and elastic cross

section σelastic extracted from fits to the world data (see Figure 2.26). At
√
sNN= 2.76 TeV,

σNNinel = 64± 5mb. The uncertainty in this value constitutes a major systematic uncertainty in the

calculation of Glauber quantities.

2.8.2.2 Glauber Monte Carlo

In the optical limit approximation, terms that describe event-by-event local density fluctuations

are neglected [11, 164], implying that the projectile “sees” the target as a smooth density. These

effects can be included using a Monte Carlo method [168] in which the nucleons are stochastically

distributed event-by-event and geometric quantities are obtained by averaging over multiple events.

The optical and Monte Carlo Glauber calculations give similar results for Npart and b but deviate

for quantities sensitive to event-by-event fluctuations (e.g. event eccentricity).

The Glauber Monte Carlo (GMC) approach allows for relating experimental (e.g. charged

particle multiplicity) to geometric quantities. The GMC distributes the nucleons in nucleus A and

nucleus B in a three-dimensional coordinate system according to ρ(r)A and ρ(r)B. An impact
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Figure 2.26: Total and elastic cross section for pp collisions as a function of laboratory beam

momentum and total center-of-mass energy [2].

parameter b is sampled from the distribution dσ/db = 2πb. The nucleons in each nucleus travel

on straight-line trajectories (eikonal approximation), and the nucleons either undergoe a collision

(i.e. are wounded) or are tagged as “spectators.” The collision process is treated as a sequence of

independent binary nucleon-nucleon collisions. A binary collision occurs if the distance between

the nucleons d in the transverse (x− y) plane satisfies the condition:

d ≤
√
σNNinel/π (2.87)

where the right-hand term is called the “hard-disk radius.” If a nucleon interacts inelastically at

least once, it becomes a participant. The total number of participants and binary nucleon-nucleon

inelastic interactions in a collision are designated by Npart and Ncoll, respectively. The mean number

of participating nucleons 〈Npart〉 and binary nucleon-nucleon collisions 〈Ncoll〉 are determined by

simulating many nucleus-nucleus collisions and averaging over events. An example of a GMC event

for a Au+Au collision with b = 6 fm is shown in Figure 2.27.
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Figure 2.27: Example of Glauber MC event with b = 6 fm along the transverse plane (left) and

along the beam direction (right). Participants are shown as darker disks [11].

2.8.2.3 Mapping the Glauber Model to Experimental Data

〈Npart〉 and 〈Ncoll〉 cannot be measured directly, and therefore distributions from experimental data

must be mapped to corresponding Glauber quantities. Measureable quantities with distributions

similar to Npart and Ncoll distributions (e.g. total charged particle multiplicity or total transverse

energy) are typically chosen for the mapping procedure. The mapping is performed by defining

centrality classes in both the measured and Glauber distributions.

The construction of centrality classes assumes that the impact parameter b (and thus Npart

and Ncoll) is monotonically related to the particle multiplicity. Events with large b are expected to

have low multiplicity and are referred to as peripheral collisions, whereas events with small b are

expected to have high multiplicity and are referred to as central collisions. Suppose some final-state

observable ξ is used to determine the centrality classes and the integral of the distribution of ξ is

known. Then by binning the distribution, the fraction of total events within each bin can be used

to define the centrality classes.

When defining the centrality classes, the integration is typically performed from large to small

values of ξ, and the centrality is typically reported as a percentage. In this manner, the a − b%

centrality class is defined by bin boundaries na to nb in the distribution of ξ such that:
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100

(∫ na
∞

dNevt
dξ dξ∫ 0

∞
dNevt

dξ dξ

)
= a[%] and 100

(∫ nb
∞

dNevt
dξ dξ∫ 0

∞
dNevt

dξ dξ

)
= b[%] (2.88)

This methodology is illustrated in Figure 2.28.

Once the centrality classes in the data have been determined, Glauber quantities must then be

related to each centrality class. This is performed using the “two-component” model [169, 170]. In

this model, nuclear collisions are segmented into two components: a “soft” component, which is

assumed to be proportional to Npart, and a “hard” component, which is proportional to Ncoll. The

Glauber quantity ξG can then be described by the linear combination:

ξG = (1− x)
Npart

2
+ xNcoll (2.89)

where 0 < x < 1 and is determined from fitting the distribution dNevt/dξG from a Glauber MC

sample to the measured dNevt/dξ. The distribution of ξG can be divided into centrality classes

using the same procedure as applied in the data. The 〈Ncoll〉 and 〈Npart〉 for each centrality class

in the data can then be determined by averaging over the Ncoll and Npart in the same centrality

class from the Glauber MC sample.

2.9 Nuclear Modification to Parton Distribution Functions

Free nucleon parton distribution functions were introduced in the preceding sections (see Sec. 2.4).

However, in the 1980s it was discovered that the momentum distributions for quarks and gluons

in bound nucleon systems were different than those in free or loosely bound nucleons [171]. This

implied that the nuclear structure functions are not simply the superposition of the structure func-

tions from each individual nucleon. Later measurements of the ratio between the structure function

of various nuclei FA2 (x,Q2) and of deuterium FD2 (x,Q2) revealed deviations from unity [172]. This

garnered interest among nuclear physicists to accomodate nuclear effects into pre-existing PDFs,

resulting in sets of nuclear PDFs (nPDFs) [12, 173–175].

The nPDFs are assumed to evolve according to the same DGLAP equations as in the free

nucleon PDFs but with a modified initial parametrization. Given the trivial modification due

to the presence of both protons and neutrons in a nucleus, which have different valence quark
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Figure 2.28: Schematic of the mapping of experimental observables (here the number of charged

particles Nch) with Glauber quantities (b,〈Npart〉) [11].

distributions, the nPDF for a bound nucleon within a nucleus with mass number A, proton number

Z, and neutron number A− Z may be expressed as [13, 176]:

fAi (x,Q2) =
Z

A
f
p/A
i (x,Q2) +

A− Z
A

f
n/A
i (x,Q2) (2.90)

where i designates the parton flavor, and the bound neutron PDF f
n/A
i is obtained from the bound

proton PDF f
p/A
i using isospin symmetry (see Eqn. 2.38). Eqn. 2.90 implies that observables

sensitive to valence quark distributions (e.g. W → `ν` charge asymmetry) are expected to be

modified in bound nucleon systems. This sensitivity stems from the difference in the valence quark

distributions in the proton and neutron at large x values and is typically referred to as isospin
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effects.

Additional nuclear modifications can be quantified by the ratio between the bound and free

proton PDFs:

RAi (x,Q2) =
f
p/A
i (x,Q2)

fpi (x,Q2)
(2.91)

The nuclear PDFs can be obtained from a global analysis [173] that imparts a nuclear A-dependent

parametrization for f
p/A
i (x,Q2) at some energy scale Q0 or from a parametrization of RAi (x,Q2)

at an initial scale using a well-established free proton PDF set as a baseline [12]. The latter is

more widely used and takes into account the following nuclear effects in different regions of x

(Figure 2.29):

• Shadowing at x . 0.01; RAi < 1; In most models, the origin is related to the hadronic

behavior of the virtual photon [177]. A destructive interference effect reduces the flux and

interactions in the interior and back face of the target nucleus. The target nucleon sees less of

an incoming flux and is shadowed by elastic interactions on the front face of the nucleus [178],

thus reducing the effective nucleon cross section.

• Antishadowing at x ∼ 0.1; RAi > 1; This effect is usually explained on the basis that anti-

shadowing is required to restore the momentum sum rule in nuclei, thereby compensating for

the shadowing and EMC-effects [179].

• EMC-effect 19 at 0.3 . x . 0.7; RAi < 1; A parton model interpretation ascribes this effect to

valence quarks within the nucleus carrying a smaller momentum fraction than those within

a free nucleon.

• Fermi-motion at x → 1 and beyond; RAi > 1; This effect stems from nonstationary nucleons

within the nucleus.

These nuclear effects are empirically observed and at present have no unique theoretical description.

An overview of several models to describe these effects may be found in Refs. [172, 180, 181].

The nuclear modifications obtained from the EPS09 nuclear PDF set for valence quark, sea

quark, and gluon density functions in Pb at two different energy scales are presented in Figure 2.30.

19EMC stands for European Muon Collaboration
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Figure 2.29: Schematic of RAi (x,Q2) as a function of x and the different nuclear effects in each x

region [12]. In this figure, y0 is the height at which shadowing levels out as x → 0, xa and ya are

the position and height, respectively, at which antishadowing is maximum, and xe and ye are the

position and height at which the EMC-effect is a minimum.

The errors are calculated using the Hessian method (Eqns. 2.37) and are weighted by the proton

and neutron number in the Pb nucleus.

2.9.1 Spatial dependence of nPDFs

Since the nuclear thickness depends on the transverse position in the nucleus, the nuclear modifica-

tion depends on the point at which it is probed. This so-called “spatial dependence” corresponds to

a centrality dependence in the nPDFs, and thus impact-parameter dependent nPDF sets have also

been proposed [13]. The spatial dependence is introduced into the nPDFs by defining a spatially

dependent nuclear modification rAi (x,Q2, s) for parton flavor i that is assumed to be a function of

the nuclear thickness TA(s):

RAi (x,Q2) ≡ 1

A

∫
d2sTA(s)rAi (x,Q2, s) (2.92)

where TA is the thickness function and is normalized to A. The case where RAi = rAi = 1 corresponds

to no nuclear effects. Using Eqn. 2.92, the number distribution of an observable k in an A + B
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Figure 2.30: Nuclear modifications at initial scales Q0 = 1.69 GeV2 and 100 GeV2 in Pb. The black

lines indicate the best-fit results and the dotted-green lines are the error eigensets. The shaded

bands are calculated from 31 nPDF sets using the Hessian method [12].
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collision at impact parameter b is given by:

dNAB→k+X(b) =TAB(b)dσAB→k+X

=
∑
i,j,X′

∑
NA,NB

∫
d2s1TA(s1)rAi (x1, Q

2, s1)fNAi (x1, Q
2)⊗

∫
d2s2TB(s2)rBj (x2, Q

2, s2)fNBj (x2, Q
2)⊗ dσ̂ij→k+X

′
δ(s2 − s1 − b) (2.93)

where NA(B) are the number of nucleons in nucleus A(B). The x and spatial dependence for the

EPS09s NLO nuclear modification for the valence and sea u quark and for the gluon is shown in

Figure 2.31.

2.9.2 W Bosons as a Tool for Detecting Nuclear Modification

Earlier in this chapter, it was shown that W bosons provide an excellent tool for constraining free

nucleon PDFs. It should therefore come as no surprise that they should, in principle, provide a

powerful means to study nuclear modifications. W bosons at
√
sNN=2.76 TeV probe the region

10−3 < x < 10−1 at |y| < 2.5, and thus measurements of W production at the LHC can potentially

detect effects related to shadowing/antishadowing.

Rapidity distributions of the W in Pb+Pb collisions have already been determined from the-

ory [14]. Figure 2.32 shows the absolute rapidity distribution for W± bosons with and without

EPS09 nuclear effects at
√
sNN= 2.7 and 5.5 TeV 20. These distributions are normalized to the in-

tegrated cross section over all rapidity at the corresponding collision energy. The differences between

the distributions with and without EPS09 corrections are small but noticeable and demonstrates

that the W is indeed sensitive to nuclear effects.

2.10 W Bosons as Benchmarks for Jet Energy Loss

In addition to providing a method for studying parton distribution functions and nuclear modifica-

tion thereof, W bosons can also be used to benchmark strongly-interacting processes in a QGP. W

20These are the two collision energies available at the LHC for the Pb+Pb runs periods. This thesis presents the

result from 2.76 TeV. Collisions at 5.5 TeV are anticipated in November 2015.
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Figure 2.31: The x and spatial dependence of the EPS09s NLO nuclear modification for u valence

(upper left), sea (upper right), and gluon (lower) PDFs at Q2 = 1.69 GeV2 for Pb [13].
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Figure 2.32: Predicted W± rapidity distributions in Pb+Pb collisions at
√
sNN= 2.7 and

5.5 TeV [14]. The cross sections are normalized to the integrated cross section over all rapid-

ity. The green band is the prediction without nuclear effects, whereas the gray-shaded distribution

applied EPS09 nuclear corrections. σtot indicates the cross section integrated over the rapidity.

bosons and their leptonic decay products are not expected to interact with a strongly-coupled QGP,

and thus W production rates should scale with the number of binary nucleon-nucleon collisions.

One of the goals of this thesis is to show that binary scaling holds in the case of W production, thus

implying that Glauber calculations accurately model the geometry of nucleus-nucleus collisions.

A hallmark signature for QGP formation is the interaction of jets with the medium. This

phenomenon is referred to as jet quenching and has received widespread attention in the heavy-ion

community. The concept is that back-to-back jets produced in a heavy-ion event may experience

different path lengths as they traverse the medium. A highly energetic jet close to the edge of the

fireball may emerge from the medium while its partner travels a longer distance and thus loses

a large fraction of its energy from multiple interactions and gluon radiation. Jet-quenching has

been directly observed at the LHC [36, 182, 183] and indirectly at RHIC [184, 185]. An in-depth

description of jet-quenching is outside the scope of this thesis. However, a nice discussion of the

physics models for parton energy loss in a QGP may be found in Ref. [10] and the references therein.

The exact mechanism of jet-quenching remains to be elucidated. One of the limiting factors
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is the inability to determine the initial energy of the jet since, in principle, the leading jet may

experience some degree of quenching. Wang et al. [15] proposed a resolution to study jet-quenching

in events where an electroweak probe (i.e. W,Z, γ) is produced in the opposite direction of the jet.

The initial energy of the produced jet could then be approximated as the energy of the electroweak

boson after correcting for initial-state radiation i.e. Ejet,initialT ≈ EbosonT . Measurements of the

momentum imbalance in boson+jet events have already been conducted at the LHC [186–188].

To relate parton energy loss to single particle measurements, a fragmentation functionDh
i (z,Q) [2]

is used. Dh
i (z,Q) is defined as the probability that a hadron of type h carries longitudinal momen-

tum fraction z of the momentum pi of parent parton type i. Pertubative QCD calculations have

shown that the pT spectrum of charged hadrons with moderate pT in the direction opposite the

electroweak boson is a good approximation of the jet fragmentation function:

dN jet
ch

dyd2pT
=
∑
i,h

ri(E
boson
T )

Dh
i (pT/ET)

pTET

C(∆y,∆φ)

∆y∆φ
(2.94)

where C(∆y,∆φ) is the acceptance factor for finding jet fragments in a given kinematic range. The

summation is over the jet-type and hadron species and ri(E
boson
T ) is the fractional production cross

section of jet type i associated to the electroweak boson. The averaged inclusive fragmentation

function in a boson-tagged event can then be extracted from the relation:

Dboson
AA (z) =

∫
d2rT 2

A(r)

TAA(0)

∑
i,h

ri(E
boson
T )Dh

i (z,∆L) (2.95)

where ∆L is the distance traveled by the scattering parton before escaping from the medium,

TAA(0) is the nuclear overlap function in A + A collisions at zero impact parameter, and TA(r) is

the nuclear thickness function for nucleus A at impact parameter r.

Equations 2.94 and 2.95 imply that measurements of the pT spectra of charged particles pro-

duced in the opposite direction of the W boson in W + jet events (e.g. qq̄′ → Wg or gq → Wq)

can be used to reliably extract inclusive jet fragmentation functions. The fragmentation functions

can then be compared to (unmodified) fragmentation functions measured in pp, pA, or peripheral

A+A collisions to determine modification due to jet quenching. An example of this procedure from

simulation is presented in Figure 2.33 for photon-tagged jets. This type of measurement can help

constrain jet energy loss in a QGP and discriminate against different parton energy loss formulisms.
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However, unlike for photons and Z bosons, the pT for W bosons must be reconstructed from the

missing energy of the event (a proxy for the neutrino), which will introduce additional experimental

uncertainties.

Figure 2.33: Ratio of inclusive fragmentation function of a photon-tagged jet with and without

energy loss in central Au + Au collisions as a function of longitudinal momentum fraction z from

simulation [15]. Energy loss is observed for larger jet energies (large z). dEq/dx designates the

energy loss of the parton in the medium and λq indicates the mean-free path.
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Chapter 3

The Large Hadron Collider and the

ATLAS Detector

This chapter begins with an overview of the operation of high-energy colliders. This is followed

by a description of the Large Hadron Collider at CERN. The chapter concludes with a detailed

discussion about the ATLAS detector and the components used to collect the data presented in

this work.

3.1 High-Energy Colliders

Particle accelerators are a fundamental tool for understanding the physics of sub-atomic processes.

According to the de Broglie equation λ = h/|~p|, larger beam energies correspond to shorter wave-

lengths and thus provide access to a smaller length scale. The utility of particle accelerators was

first observed in 1911, when Rutherford discovered the nucleus by scattering α-particles off alu-

minum foil. In the 1930s, scientists were able to further study the inner structure of matter at the

MeV scale. Today, technologic advances and collaboration have allowed scientists to probe deeper

into the structure of the nucleus than ever before, constructing machines capable of accelerating

particles up to several TeV. This has opened up exciting opportunities for new physics discoveries.



CHAPTER 3. THE LARGE HADRON COLLIDER AND THE ATLAS DETECTOR 65

3.1.1 Beam Dynamics

A beam of particles may be collided in two ways: collision with another beam or collision with a

fixed target. In the latter, the center-of-mass energy ECM =
√

2mc2Einc, where m is the mass of

the beam-target system and Einc is the energy of the incident beam. In the case of a collision with

two counter-rotating beams, ECM = 2Einc. Therefore, higher energies are much more attainable

using a colliding beam configuration.

The most basic way to accelerate a particle is by using an electrostatic field between two

electrodes. The energy gain by the particle is given by q∆V , where q is the charge on the particle

and ∆V is the voltage potential. However, at high energy scales, insulation problems limit the

maximum amount of energy a particle can gain. These limitations can be overcome by using radio-

frequency (RF) acceleration, in which an RF oscillator supplies voltages to a series of drift tubes

separated by gaps. While a particle is within a tube, it is shielded from the electric field. Reversing

the polarity of the field causes the particle to accelerate at each gap.

This technique is used in circular accelerators, of which the first was the cyclotron. In a

cyclotron, a constant magnetic field ~B is applied across two hollow D-shaped electrodes connected

to an RF electric voltage generator, as shown in Figure 3.1.

Figure 3.1: Schematic of the particle trajectory in a cyclotron [16].

Particles generated by a source at the center may be accelerated between the electrode gap if

the frequency of the RF oscillation ωRF is synchronous with the angular frequency of the particle

ωs:
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ωRF = ωs =
qB

m
(3.1)

This condition holds as long as the velocity of the particle v << c. However, as the particle

approaches the speed of light, its frequency is no longer independent of its velocity, and thus to

remain in phase the cyclotron frequency must depend on the relativistic Lorentz factor γ(t) of the

particle:

ωRF (t) = ωs(t) =
qB

mγ(t)
(3.2)

Equation 3.2 shows that synchronization of the particle and RF oscillator can be achieved by

decreasing the radio frequency during the acceleration cycle according to γ(t). This type of system is

called a synchrocyclotron and generates pulsed beam bunches. The synchrocyclotron can accelerate

protons up to ∼500 MeV but the energy attainable is limited by the size of the magnet [16].

In 1945, E.M. McMillan [189] and V. Veksler [190] discovered a phase focusing principle that

evolved the cyclotron into an accelerator that could guide the particle orbit while tuning the RF

system and magnetic field to synchronize with the revolution frequency of the particle. This type

of machine is called a synchrotron. In a synchrotron, the nominal particle trajectory is held at a

constant radius. Synchronism occurs when a particle’s angular revolution frequency is in phase with

the RF system and remains so after a complete turn. To achieve this, the angular radio frequency

ωRF must be a multiple of the angular revolution frequency ωr:

ωRF = hωr (3.3)

where h is the harmonic number. Equation 3.3 means that the number of synchronous particle

locations is equal to the harmonic number and are equally spaced around the accelerator ring.

High-energy accelerator facilities consist of an ion source that produces the beam in bunches,

which are groups of particles oscillating around a (hypothetical) synchronous particle. The bunches

are accelerated at RF cavities located around the ring. The synchronous particle by definition is

in phase with the RF system and thus experiences no voltage kick at the cavities. However, other

particles in the bunch may arrive with slightly higher or lower energy than the energy of the

synchronous particle, experiencing a decelerating or accelerating force that returns their energy to
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that of the synchronous particle (see Figure 3.2). The shape of the bunch can be circular or elliptic,

depending on the size of the restoring force and the voltage of the cavity. The bunch is contained

in what is called an RF bucket or separatrix (Figure 3.3). The separatrix is a region of phase-space

which corresponds to stable motion of the bunch.

Figure 3.2: Schematic of a bunch. Particles in the bunch will revolve around the synchronous

particle in the bunch [17].

The horizontal displacement of particles around the synchronous particle is called betatron

oscillation and forms the basis for transverse motion in a bunch. The beam dynamics are influenced

by accelerator magnets that are classified by field type. Dipole magnets provide beam orbit control,

and quadrupole magnets control the beam size. Sextupole and higher-order multipole magnets

control for chromatic and geometric aberrations.

The bending angle θ in a dipole field with bending radius ρ may be derived from the Lorentz

force:

θ =
e

p0

∫ s2

s1

Bdl =
1

Bρ

∫ s2

s1

Bdl (3.4)

where p0 is the momentum of the beam. The term Bρ = p0/e represents the magnetic field strength

required to bend a particle at a given radius and energy and is called the momentum rigidity of

the beam. The total bending angle for a circular accelerator is 2π, and thus the integrated dipole
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Figure 3.3: Schematic of a bucket or separatrix. Buckets may or may not be filled with bunches [17].

field along the design orbit is:

∮
Bdl = 2πp0/e = 2πBρ (3.5)

The magnetic field of an ideal quadrupole is given by:

B = ∂xBy(yx̂+ xŷ) (3.6)

Charged particles passing through the center of a quadrupole experience no magnetic field or force.

However, at a displacement (x, y) from the center, a gradient field is generated and the Lorentz

force for a particle of charge e and velocity v along the azimuthal direction φ̂ is:

~F = ev∂xByφ̂× (yx̂+ xŷ) = −ev∂xByyŷ + ev∂xByxx̂ (3.7)

with equations of motion:

1

v2

d2x

dt2
=
e∂xBy
γmv

x,
1

v2

d2y

dt2
= −e∂xBy

γmv
y (3.8)
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Therefore, it can be seen from Equation 3.8 that the quadrupole acts as a focusing lens in the

horizontal plane and defocusing lense in the vertical plane (or vice versa if the quadropoles are ro-

tated). The focusing and defocusing quadrupoles are commonly setup in focusing-orbit-defocusing-

orbit (FODO) patterns separated by non-focusing drift spaces [191]. These patterns are referred

to as lattice points on the ring. This arrangement focuses diverging particles back to the central

trajectory, as illustrated in Figure 3.4.

Figure 3.4: Schematic of a FODO cell with quadrupole focusing (QF) and defocusing (QD) mag-

nets [17].

The magnetic fields are normalized to the momentum of the particles. For a dipole field, the

bending angle from Equation 3.4 becomes:

θ =
1

Bρ

∫
Bds =

1

ρ
Leff (3.9)

where Leff is called the effective magnetic length and 1/ρ is the normalized bending strength of

the dipole. Similarly, for the quadrupole, Equation 3.6 is normalized to the momentum rigidity of

the beam and is given by:

k =
1

Bρ
∂xBy (3.10)

The equation of motion for particle trajectories under the influence of dipole and quadrupole

fields may be written as [192]:
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x′′ +Kx = 0 (3.11)

where x′′ is taken with respect to orbit coordinate s, x is the horizontal coordinate of the particle

with respect to the beam orbit (see Figure 3.5), and K is a combination of the focusing strength k

from Equation 3.10 and 1/ρ from Equation 3.9:

K = −k + 1/ρ2 (3.12)

Horizontal (de)focusing occurs when k < 0 (k > 0). Equation 3.12 in the vertical plane is slightly

different. Since generally no vertical bending strength is present in most accelerators, the 1/ρ2

term vanishes. Moreover, the sign of the gradient changes (k → −k) due to the geometry of the

quadropole field lines. Thus, K = k in the case of vertical displacement [18].

Figure 3.5: Coordinate system for the orbit of an ideal particle in cirular motion [18].

Equation 3.12 can be solved using a linear approximation and the general solution for the

position and angle of the trajectory for a focusing lens with initial conditions x0 and x′0 are:

x(s) = x0 cos(
√
Ks) +

x′0√
K

sin(
√
Ks) (3.13)

x′(s) = −x0

√
K sin(Ks) + x′0 cos(

√
Ks) (3.14)
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or equivalently, x
x′


s

= M

x
x′


0

where M is called the transfer matrix and depends on the properties of the magnet. Using this

relation, the amplitude x0 and angle x′0 before the lattice element may be used to determine their

values after.

Equations 3.13 and 3.14 can be extended to describe many turns around the ring using the

periodicity of the focusing elements. The lattice elements (FODO) result in periodically repeating

focusing properties. Therefore, the restoring force K in Equation 3.11 becomes a function of the

orbit coordinate s:

x′′(s) +K(s)x(s) = 0 (3.15)

Since K(s) = K(s + L), Equation 3.15 becomes the Hill equation [193] and may be solved using

Floquet’s theorem, resulting in a solution of the form:

x(s) =
√
ε
√
β cos(ψ(s) + φ) (3.16)

x′(s) =
−
√
ε√

β(s)
sin(ψ(s) + φ) + α(s) cos(ψ(s) + φ) (3.17)

The β-function depends on the position and angle of the transverse oscillation of the beam and

ε is the beam emittance, which represents the beam volume in the six dimensional phase space

(x, x′, y, y′, φ, δ) that contains 98% of the beam particles; x, y are the transverse positions, x′, y′ are

the transverse angles, φ is the relative phase of the beam, and δ is the relative beam energy. ψ(s)

describes the phase advance of the oscillation and is found by inserting Equation 3.16 into the Hill

equation:

ψ(s) =

∫ s

0

ds

β(s)
(3.18)

A large β implies that the beam has a large transverse dimension and the phase advance is small.

Integrating 3.18 around the closed ring results in the number of betatron oscillations per revolution,

or tune Q:
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Q =
1

2π

∮
ds

β(s)
(3.19)

Equations 3.16 and 3.17 describe a mono-energetic synchronous particle. Since the actual beam

contains particles with a distribution of momenta and energies, a dispersion term is included of

the functional form D(s) = xi(s)/(∆p/p) where ∆p/p is relative to the synchronous particle and

is typically ∼ 10−3 [194]. D(s) vanishes at the collision point, however.

The tune dependence on the beam energy is described by what is called the chromaticity

ξ = ∆Q/(∆p/p), where ∆Q is the tune shift. ∆Q is induced by the finite energy spread of the

beam and can be minimized by keeping the chromaticity close to zero.

The size of the beam is given by the envelope of the overlapping trajectories and is represented

by x̂ =
√
εβ(s), as shown in Figure 3.6. The transverse particle density typically follows a Gaussian

distribution and the beam size is represented by one standard deviation σ =
√
εβ. The beams must

be extremely focused at the point of a collision, and thus the β-function is minimized here. This

minimum is called β∗. Figure 3.7 illustrates the beam squeeze at the collision interaction point.

Figure 3.6: Overlapping trajectories of particles, defining the beam cross-section [18].

3.1.2 Luminosity

The production rate of an event increases with the center-of-mass energy. Therefore, the energy

available for particle production is of utmost importance in high-energy nuclear and particle physics
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Figure 3.7: Illustration of a beam squeeze at the collision interaction point. The β-function is

minimized here.

experiments. This is particularly important for the study of rare processes with a small cross-

section (for example, Higgs boson production). The ability of a particle accelerator to produce the

required number of interactions to study such processes can be evaluated using the luminosity L.

The instantaneous luminosity is defined as the particle flux per unit time and is stated in units of

cm−2s−1. For a process with cross-section σ and event rate dN/dt, L can be expressed as:

dN

dt

1

σ
= L (3.20)

For a collider operating at a revolution frequency f with Nb bunches crossing at the interaction

point, L can also be written as:

L =
µNbf

σ
(3.21)

where µ is the average number of interactions per bunch crossing. The luminosity can be determined

by measuring the fraction of bunch crossings in which a specified detector registers an event.

Equation 3.21 can then be rewritten as:
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L =
µNbf

σ
=
µvisNbf

εσ
=
µvisNbf

σvis
(3.22)

where ε is the efficiency of the detector to register an event and µvis ≡ εµ is the average number

of interactions per bunch crossing actually registered by the detector. The visible cross-section

σvis ≡ εσ relates the measurable quantity µvis to L. For small µvis, the average number of visible

interactions per bunch crossing is ≈ N/NBC , where N is the number of events detected and NBC is

the number of bunch crossings in the same time interval. For larger µvis, multiple interactions can

occur per bunch crossing (pileup) and µvis is no longer linear with the number of detected events.

In this case, the number of interactions per bunch crossing follows a Poisson distribution, and this

is used to determine σvis (see, for example, Ref. [195]).

In a colliding beam experiment, the luminosity is a convolution of the 3-D beam density distri-

bution functions ρ, as illustrated in Figure 3.8. The overlap integral depends on the longitudinal

Figure 3.8: Schematic of a colliding beam interaction [19].

position of the bunch and the distance of each bunch to the interaction point s0. The overlap

integral is proportional to the luminosity and can be written as:
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L ∝
∫ ∫ ∫ ∫ +∞

−∞
ρ1(x, y, s,−s0)ρ2(x, y, s, s0)dxdydsds0 (3.23)

where ρ1(x, y, s,−s0) and ρ2(x, y, s,−s0) are the time-dependent beam density distribution func-

tions. For beams moving towards one another, the kinematic pre-factor K is [196]:

K =
√

(~v1 − ~v2)2 − (~v1 × ~v2)/c2 (3.24)

For head-on collisions, it is assumed that ~v1 = −~v2 and that all densities are uncorrelated in all

planes. The luminosity then becomes:

L = 2N1N2fNb

∫ ∫ ∫ ∫ +∞

−∞
ρ1(x)ρ1(y)ρ1s(s− s0)ρ2(x)ρ2(y)ρ2s(s+ s0)dxdydsds0 (3.25)

where N1 and N2 are the number of particles per bunch, f is the revolution frequency, and Nb is

the number of colliding bunches. Assuming Gaussian beam profiles in all directions:

ρiz(z) =
1

σz
√

2π
exp

(
− z2

2σ2
z

)
, i = 1, 2; z = x, y (3.26)

ρs(s± s0) =
1

σs
√

2π
exp

(
−(s± s0)2

2σ2
s

)
(3.27)

For equal beams (σ1x = σ2x, σ1y = σ2y, σ1s = σ2s), as the bunches approach the speed of light

K → 2. The integral in Equation 3.25 becomes:

L =
2N1N2fNb

(
√

2π)6σ2
sσ

2
xσ

2
y

∫ ∫ ∫ ∫
e
− x

2

σ2x e
− y

2

σ2y e
− s2

σ2s e
− s20
σ2s0 dxdydsds0 (3.28)

Integrating Equation 3.28 results in the luminosity for a head-on collision with Gaussian beam

profiles:

L =
N1N2fNb

4πσxσy
(3.29)

This relationship implies that the luminosity depends on the size of the beam and the number of

particles per bunch.

Equation 3.29 assumes an ideal head-on collision with Gaussian beam profiles. In practice,

however, there are additional effects that need to be taken into consideration. For instance, the

crossing-angle of the beams can affect the luminosity. The transverse beam sizes may depend
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on its longitudinal position (hourglass effect) and thus the densities may become correlated in

different dimensions. Dispersion at the interaction point may increase the beam size and decrease

the luminosity. The β function may not be minimized at the interaction point, modifying the beam

size. Each of these effects are important but will not be discussed in detail here. A good discussion

may be found in Ref. [19] and references therein.

An accurate calculation of σvis requires a proper luminosity calibration. The horizontal σx and

vertical σy beam profiles in Equation 3.29 can be determined by recording the interaction rate as

a function of the transverse beam separation. This method is called a Van Der Meer scan [197].

In this method, the overlap integrals from Equation 3.25 can be calculated from the luminosity at

a beam separation distance δ and from the luminosity at zero beam separation. In the case of a

horizontal beam displacement, the overlap integral becomes:

∫
ρ1(x)ρ2(x)dx =

Lx(0)∫
Lx(δ)dδ

(3.30)

from which the width of the beam profile σx may be extracted:

σx =
1√
2π

∫
Lx(δ)dδ

Lx(0)
(3.31)

In practice, the σx(y) are determined from fitting the luminosity distribution as a function of the

beam separation. An example of this is shown in Figure 3.9. As discussed previously, the exact

form of the beam profiles may deviate from a Gaussian, and thus the distribution may be fit with

various functional forms (e.g. double Gaussian) to achieve accurate parameter estimation. Once

the beam profiles are determined, L can be calculated from Equation 3.29, and thus σvis can also

be calculated from Equation 3.22 with the measured µvis.

The integrated luminosity is typically the quantity reported in high-energy experiments. It has

units of inverse cross-section (e.g. µb−1 or nb−1) and is defined as:

Lint =

∫ T

0
L(t)dt (3.32)

and is directly related to the number of observed events Nev by:

Lintσ = Nev (3.33)
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Figure 3.9: Fits to the Van Der Meer luminosity scan in the x and y direction. Distributions are

fitted to a double Gaussian [20].

The luminosity exponentially decays with time:

L(t)→ L0exp

(
− t
τ

)
(3.34)

where τ is the lifetime and may depend on the decay of the beam intensity, transverse emittance,

and bunch length. The performance of a collider depends on maximizing the average luminosity

〈L〉.

3.2 The Large Hadron Collider

The Large Hadron Collider (LHC) [21] is a two-ring superconducting synchrotron designed to

reveal physics within and beyond the Standard Model. Currently, this machine is the largest

and most powerful accelerator ever built, measuring 26.7 km in circumference and capable of

accelerating protons and heavy ions to center-of-mass energies of 14 TeV and 5.5 TeV per nucleon

pair, respectively. The LHC rings consist of eight arc regions and eight straight sections with

beams circulating in opposite directions (Figure 3.10). The beams in each ring are guided in

the horizontal plane using 1,232 dipole magnets and are focused in the vertical plane using 392
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Figure 3.10: Schematic of the LHC rings and interaction regions [21].
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quadrupole magnets. The superconducting magnets use NbTi Rutherford cabling technology and

are maintained at a temperature below 2 K using superfluid helium cryostats to maximize the field

strength. A cross-section of the dipole magnetic system is shown in Figure 3.11.

Figure 3.11: Cross-section of the dipole magnetic system in the LHC ring [21].

The beams collide at four interaction regions (IRs) between the straight segments of the ring

where seven experimental detectors are located. The ATLAS (A Toroidal LHC ApparatuS) [22] and

CMS (Compact Muon Solenoid) [198] detectors are general-purpose detectors located at IR1 and

IR5, respectively. They are intended to allow for high precision measurements of QCD, electroweak

interactions, and flavor physics at high luminosity in both pp and Pb+Pb collisions. ALICE (A

Large Ion Collider Experiment) [199] is located at IR2 and is designed to explore strongly interacting

matter produced in Pb+Pb collisions. LHCb (Large Hadron Collider Beauty) [200] is located at

IR8 and is dedicated to measurements of CP violation and rare B hadronic decays. There are also
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smaller detectors at the LHC that share IRs with the larger experiments. LHCf (Large Hadron

Collider Forward) [201] is located at IR1 and is specialized for cosmic ray astrophysics. MoEDAL

(Monopole and Exotics Detector at the LHC) [202] shares IR8 and is primarily designed to search

for the magnetic monopole and other highly ionizing stable massive particles. TOTEM (TOTal

Elastic and diffractive cross section Measurement) [203] shares IR5 and its primary purpose is to

measure total cross sections, elastic scattering, and diffractive processes.

3.2.1 LHC Injection Chain

Heavy ions are supplied to the LHC by an injection chain [204] consisting of a Linac, Low-Energy

Ion Ring (LEIR), Proton Synchrotron Booster (PSB), Proton Synchrotron (PS), and Super Proton

Synchrotron (SPS), as shown in Figure 3.12. In the Linac 3, Pb27+ ions are stripped into Pb+54 ions

using a thin carbon foil and are accelerated to 4.2 MeV/nucleon. The ions are further accelerated

in the LEIR to 72 MeV/nucleon. At the PS, the ions reach an energy of 6 GeV/nucleon and are

fully stripped into the Pb+82 state using an aluminum foil before entering the SPS. In the SPS, the

ions are accelerated to 177 GeV/nucleon before entering the LHC. Beams are injected into Ring-1

at IR2 and into Ring-2 at IR8. The beam abort systems are located at IR6, where the beams are

kicked into an iron septum magnet that steers them into graphite absorbers in a separate tunnel.

A Radio Frequency (RF) system consisting of 8 cavities per ring is used to accelerate the

beams. In order for the beam particles to experience an accelerating voltage at each cavity, (as

mentioned in Sec. 3.1.1) the RF frequency must be an integer multiple (the harmonic number) of

the beam revolution frequency. The LHC operates using a 400 MHz cavity system, corresponding

to a harmonic number of 35640. The 400 MHz RF system corresponds to a bucket size of 2.5 ns.

However, due to boundary conditions imposed by the beam requirements, the design configuration

for the bunch spacing is limited to 25 ns (40 MHz). For a beam traveling at ≈ c, this corresponds

to 3564 buckets. Empty buckets are used to allow the magnetic system time to inject beams into

the next part of the injection sequence, ultimately resulting in 39 injections of 72 bunches (called

bunch trains) from the PS. This is shown schematically in Fig 3.13. During the runs, bunches are

designated by a bunch-crossing identifier (BCID).
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Figure 3.12: Schematic of the LHC injection chain. Heavy ions are stripped of their electrons in

the Linac3 and between the PS and SPS lines.

3.3 The ATLAS Detector

The ATLAS detector was used to collect the data in this work. The detector requirements [205]

were defined to enable the observation of new physics signatures at the TeV scale such as the

Standard Model Higgs boson, new heavy-gauge bosons, supersymmetric particles, and graviton

emission. To achieve these goals, the detector is capable of withstanding high radiation doses while

efficiently reconstructing charged particles, electrons, photons, jets, and muons. The detector is

also able to measure missing energy and to identify seconday vertices for τ -lepton tagging.

ATLAS is forward–backward symmetric with respect to the interaction point and is comprised

of three main regions: an inner detector (ID), calorimeter, and muon spectrometer (MS). The ID
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Figure 3.13: Schematic of the bunch filling scheme in the PS, SPS, and LHC ring. One LHC ring

is filled in ∼3 minutes. The filling scheme is described using filled (b) and empty (e) buckets [21].

is surrounded by a thin superconducting solenoid and the calorimeters are encompassed by three

superconducting toroids arranged in an eight–fold azimuthal symmetry. A layout of the detector

is shown in Figure 3.14.

3.3.1 Kinematic Variables

ATLAS uses a right-handed coordinate system with the nominal interaction point defined as the

origin. The beam axis is defined as the z-axis, and the x − y plane is transverse to the beam.

The x-axis is in the direction of the LHC ring center and the y-axis points directly upward. The

azimuthal angle φ is measured around the beam axis in the x − y plane, and the polar angle θ is

measured in the y − z plane from the beam axis.

The kinematics of a particle are typically described by its transverse (x − y) and longitudinal

(z) components. This segmentation is useful in collider physics since an unknown amount of energy

of the incoming hadrons escapes down the beam–pipe, and thus the net momentum of a particle
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Figure 3.14: Transverse view of the ATLAS detector [22].

can only be constrained in the transverse plane. Variables used to describe the kinematics of a

particle in the transverse plane include the transverse momentum pT, transverse energy ET, and

missing transverse momentum pmiss
T or energy Emiss

T . The missing transverse variables are used to

identify particles that cannot be detected (e.g. neutrinos) and are calculated from the sum of the

transerve momentum vectors from all visible final states:

~Emiss
T = −

∑
i

~pT (i), (3.35)

The mass of heavy particles whose decay products include invisible final state particles can be

constrained using the transverse mass mT. If the daughter particles have mass m1 ≈ m2 ≈ 0, mT

can be written as [206]:

mT =

√
2piTp

j
T(1− cos ∆φi,j), (3.36)

where ∆φi,j is the difference between the direction of the visible and invisible particles in the
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azimuthal plane. The mT values possess an end-point at the true mass of the mother particle (i.e.

mT ≤ m).

The amount of energy a particle has in the longitudinal direction is quantified using the rapidity:

y =
1

2
ln

(
p0 + pz
p0 − pz

)
(3.37)

where p0 is the energy of the particle and pz is the longitudinal momentum. However, in practice,

it is more feasible to measure the angle of the particle relative to the beam axis θ and characterize

the detected particle using the pseudorapidity defined by:

η = −ln tan

(
θ

2

)
=

1

2
ln


√

(m2 + p2
T) cosh2 y −m2 +

√
m2 + p2

T sinh y√
(m2 + p2

T) cosh2 y −m2 −
√
m2 + p2

T sinh y

 , (3.38)

When the momentum of a particle is much larger than its mass, the momentum is approximately

equal to the energy and thus η ≈ y [134].

3.4 Inner Detector

The ATLAS inner detector (ID) is the component closest to the beam axis and is contained within

a cylindrical envelope of length z ± 3512 mm and radius 1150 mm. A layout of the ID is shown in

Figure 3.15. The ID is immersed in a 2 T axial magnetic field generated by the central solenoid

(Figure 3.16), which extends a length of 5.3 m and a diameter of 2.5 m. The ID provides hermetic

pattern recognition and excellent momentum resolution for charged tracks above 0.5 GeV within

a pseudorapidy range |η| < 2.5. The detector component is designed to provide a pT resolution

of
σpT
pT

= 0.05% pT ⊕ 1%. There are three complementary sub-detectors: the silicon pixel layer,

semiconductor tracker (SCT), and transition radiation tracker (TRT). An illustration of charged

tracks traversing the ID layers at small and large η is shown in Figure 3.17. At inner radii, the pixel

layer and SCT provide high-resolution pattern recognition capabilities using discrete space-points.

At larger radii, the TRT is comprised of many layers of gaseous straw tube elements interleaved

with transition radiation material. The properties of each of these subregions will be discussed

below.
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Figure 3.15: Dimensions and major elements of the ATLAS inner detector [22].

3.4.1 Silicon Pixel Layer

The pixel layer [207] is the innermost ID layer. It consists of 1744 sensors and modules, which are

arranged in three concentric barrel layers and in three disk layers at each endcap (Figure 3.15).

The barrel layers are z ± 400.5 mm in length and are situated at radial distances R = 50.5, 88.5,

and 122.5 mm. The end-cap disks are located at z± 495,±580, and ±650 mm and extend a radial

distance 88.8 < R < 149.6 mm. The layers typically provide three measurement points for particles

originating from the interaction point.

The pixels operate as semiconductor detectors with double-sided sensors: n+-implants placed

in n-bulk material in the outer region and the p-n junction and multi-guard rings on the back side.

This setup allows the 250 µm thick sensors to operate when the voltage has been depleted. The

sensors are kept at -5◦C to -10◦C in order to decrease the leakage current induced by large radiation

doses. Each sensor contains 47232 pixels with most pixel sizes 50×400 µm2, resulting in a total of
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Figure 3.16: R- and z-dependence of the radial (Br) and axial (Bz) magnetic field components in

the inner detector cavity at fixed φ [22].

∼80.4 million readout channels in the pixel detector. If a signal exceeds a tunable threshold, the

hits in a pixel are read out. The intrinsic accuracies are 10 µm (R − φ) and 115 µm (z) in the

barrel and are 10 µm (R− φ) and 115 µm (R) in the end-cap disks.

3.4.2 Silicon Microstrip Detector (SCT)

The silicon microstrip (SCT) layer [208] surrounds the pixel layer. It consists of 4088 modules of

silicon-strip detectors arranged in four coaxial cylindrical layers in the barrel region and in nine

disk layers in each end-cap. The barrel layers are located at R = 299, 371, 443, and 514 mm and

extend z ± 749 mm. The end-cap disks are located at 839 < |z| < 2735 mm and have a radial

extension of 275 < R < 560 mm.

As with the pixel layer, the SCT is a semiconductor detector. However, the sensors are single-

sided and use p-in-n technology with AC-coupled readout strips. The sensors are 280 µm thick and

each contain 768 active microstrips. Tracks typically cross eight strip layers (four space-points), and
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Figure 3.17: (Top) A charged track with η = 0.3 traversing the ID layers. (Bottom) Two charged

tracks with η = 1.4 and 2.2 traversing the ID layers. The TRT extends only to |η| = 2 [22].
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a hit is registered if the pulse height exceeds a preset threshold.. In the barrel, modules contain two

daisy-chained rectangular sensors per side. The four sensors are rotated by ±20 mrad to measure

R−φ and z coordinates. In the end-cap regions, the modules are radially oriented and each contain

two sets of trapezoidal sensors glued back-to-back and rotated by ±20 mrad to give space-point

information. The intrisic accuracies are 17 µm (R−φ) and 580 µm (z) in the barrel and are 17 µm

(R− φ) and 580 µm (R) in the end-cap disks.

3.4.3 Transition Radiation Tracker (TRT)

The transition radiation tracker (TRT) covers radial distances 554 < R < 1004 mm and |z| < 2710

mm. The detector has 298304 polyimide drift tubes (straws), each 4 mm in diameter, filled with a

gas mixture of 70% Xe, 27% CO2, and 3% O2 that allows good X-ray absorption, increased electron

drift velocity, and photon-quenching. In the barrel, straws are cylindrically arranged around the

beam axis and are 144 cm long. In the end-caps, the straws are arranged radially and are 37 cm

long.

Straws act as cathodes and are kept at high voltage of negative polarity. In the center of the

straws are gold-plated tungsten wires that act as anodes. The TRT contains 73 layers of straws

interleaved with polypropylene fibers in the barrel and 160 straw planes interleaved with foils in

the end-cap region. The fibers and foils provide transition radiation that is used for electron

identification. This is possible because the energy of transition photons is proportional to the

Lorentz factor of the charged particle [209]. Thus, electrons will radiate transition photons with

energies much higher than those emitted by particles with smaller Lorentz factors (e.g. pions). The

particle separation is achieved with a high-threshold discriminator in the front-end electronics. All

charged tracks with pT > 0.5 GeV and |η| < 2.0 will traverse > 30 straws except in the barrel-to-

end-cap transition region 0.8 < |η| < 1.0, where the tracks traverse as low as 22 straws. The TRT

only provides R− φ information and has an intrinsic accuracy of 130 µm per straw.

3.5 Calorimeters

The ATLAS calorimeter system is shown in Figure 3.18. It covers a range of |η| < 4.6 and

utilizes various techniques that are suited for different physics processes and radiation levels. The
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calorimeters provide good containment of electromagnetic and hadronic showers, limiting punch-

through into the muon system.

Figure 3.18: Cut-away view of the ATLAS calorimeter system [22].

3.5.1 Electromagnetic Calorimeters

The electromagnetic (EM) calorimeter has a total thickness of > 22 radiation lengths X0 in the

barrel and > 24 X0 in the end-cap regions. The EM is divided into a barrel (|η| < 1.475) and

two end-cap (1.375 < |η| < 3.2) components housed in separate cryostats. The electromagnetic

calorimeters are lead-liquid argon detectors with accordion-shaped kapton electrodes and lead ab-

sorber plates. This geometry allows for complete azimuthal φ coverage and several active layers

in depth: three in the precision-measurement region 0 < |η| < 2.5, two in the forward region at

2.5 < |η| < 3.2, and two in the barrel/end-cap overlap region. Presamplers – an instrumented

argon layer – at 0 < |η| < 1.8 are used to correct for energy lost by electrons and photons upstream

of the calorimeter.
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3.5.2 Hadronic Calorimeters

The hadronic calorimeters consist of the tile calorimeter, liquid-argon (LAr) hadronic end-cap

calorimeter (HEC), and liquid-argon forward calorimeter (discussed below). The tile calorimeter is

a sampling calorimeter that uses steel as the absorber and scintillator as the active medium. It is

located at |η| < 1.7 and is behind the LAr EM calorimeter. The detector thickness is approximately

7.4 interaction lengths λ.

The HEC consists of copper plates interleaved with LAr as the active medium. It covers

1.5 < |η| < 3.2. The HEC is located behind the electromagnetic end-cap calorimeter and shares

two LAr end-cap cryostats with the electromagnetic end-cap and forward calorimeters.

3.5.3 Forward Calorimeters

The Forward Calorimeters (FCal) can be used to calculate the total transverse energy of an event

and are used to determine the centrality of a heavy-ion collision. They are located in end-cap

cryostats at ∼ z ± 4.7 m from the interaction point and provide coverage over the region 3.1 <

|η| < 4.9. Each FCal consists of three modules with a total depth of ∼ 10 interaction lengths: an

electromagnetic module (FCal1) and two hadronic modules (FCal2 and FCal3). This is illustrated

in Figure 3.19. FCal1 uses copper as the absorber to optimize resolution and heat removal. FCal2

and FCal3 use tungsten to minimize the spread of hadronic showers. In addition, a copper alloy

shielding plug is located behind FCal3 to reduce background in the muon end-caps.
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Figure 3.19: Schematic of the three FCal modules in the end-cap cryostat [22].
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The FCal uses liquid-argon as the ionization medium. Electrodes are formed by inserting

absorber rods (anode) into copper tubes (cathode), which are parallel to the beam axis. The LAr

is located in gaps within the tubes. The sizes of these gaps are smaller than those in traditional

LAr calorimeters to accomodate the high particle fluxes at large η. The anode and cathode are

separated by a radiation-hard plastic fiber that maintains the narrow LAr gap.

FCal1 is closest to the interaction point and is made up of copper plates perpendicular to

the beam axis with holes where the electrodes are inserted. Each electrode consists of a co-axial

copper rod and tube. This structure is shown in Figure 3.20. In this figure, the Molière radius is

also shown, representing the size of the electromagnetic shower initiated by an incident electron

or photon. FCal2 and FCal3 are geometrically similar to FCal1 except they use tungsten as the

absorber material in the rods. The modules consist of two 2.35 cm thick copper end-plates that

span the electrode structures. The space between the end-plates and copper tubes is filled with

tungsten slugs.

R

LAr gap

Beam-
pipe
Warm
wall

Super-
insulation
Cold
wall

Figure 3.20: Electrode structure of FCal1. The matrix is made up of copper plates with copper

tubes and rods with a LAr gap [22].

3.5.4 Zero Degree Calorimeters

The Zero Degree Calorimeters (ZDC) [210] detect neutral particles (mainly spectator neutrons) at

|η| > 8.3 and are used in heavy-ion collisions for triggering on minimum bias events. The ZDCs are
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located at ±140 m from the interaction point. They consist of four modules: one electromagnetic

(EM) module about 29X0 deep and three hadronic modules about 1.14λ thick. The EM and

hadronic modules are made of 11 tungsten plates perpendicular to the beam axis. A total of 96

quartz rods penetrate the plates and run parallel to the beam direction. Incident particles impinge

on the tungsten plates and produce a shower of particles. The rods pick up the Cerenkov light

generated by the shower and transmit it to multi-anode phototubes at the top of the module. The

intensity of the light corresponds to the energy of the incident particle.

3.6 Muon Spectrometer

The outermost part of the ATLAS detector is the muon spectrometer (MS). Positioning the MS

behind the calorimeter system is advantageous since dE/dx for muons in the calorimeter is small and

in the minimum ionizing region, below where radiative effects become important [2]. In contrast,

photons and electrons have a short radiation length and interact with the calorimeter by producing

a cascade of pair production and Bremsstrahlung (electromagnetic showering). Moreover, hadrons

interact with the calorimeter through strong interactions and fragment into various electromagnetic

and secondary hadronic components (hadronic showering) [211]. This ultimately screens the MS

from unwanted particles produced in the collision and allows for precise measurements of muon

parameters.

The MS is designed to detect muons in the range |η| < 2.7 and to measure muon momenta with

resolutions < 2.5% at 3 < pT < 200 GeV and < 10% up to 1 TeV. This unprecedented performance

is attributed to large superconducting air-core toroid magnets, low multiple scattering in the toroid

material, high precision measurements of the muon trajectory, and alignment of the muon chambers

with respect to the overall detector. A diagram of the MS is shown in Figure 3.21 and a summary

of its main parameters is listed in Table 3.1.

There are three toroids that generate the magnetic field for the MS: two in the end-cap region

(1.05 < |η| < 2.7) and one in the barrel region (|η| < 1.05). Precision-tracking chambers in the

barrel region are located between and on the toroid coils. The end-cap chambers are in front of and

behind the end-cap toroids. The chamber system consists of eight octants that are symmetrically

arranged in azimuth φ. Each octant is subdivided into two sectors (large and small), resulting in φ
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overlap regions. The overlap regions minimize gaps in the detector coverage. The chambers in the

barrel region are arranged in three cylindrical layers around the beam axis at ∼ 5 m, 7.5 m, and 10

m. The end-cap chambers form large wheels perpendicular to the z-axis and are located at |z| ≈ 7.4

m, 10.8 m, 14 m, and 21.5 m from the interaction point. At the center of the detector (|η| ≈ 0)

gaps exist to allow for services to the solenoid magnet, calorimeters, and ID. The size of the gaps

differ in each sector, but the largest gaps measure 1-2 m. Additional gaps due to the detector

support structures (feet) also exist. These poorly covered areas affect the muon reconstruction and

momentum resolution.

Figure 3.21: Cut-away of the ATLAS muon system [22].
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Table 3.1: Summary of the main parameters of the muon spectrometer.

Monitored Drift Tubes MDT

- Coverage |η| < 2.7 (innermost layer: |η| < 2.0)

- Number of chambers 1150

- Number of channels 354000

- Function Precision tracking

Cathode Strip Chambers CSC

- Coverage 2.0 < |η| < 2.7

- Number of chambers 32

- Number of channels 31000

- Function Precision tracking

Resistive Plate Chambers RPC

- Coverage |η| < 1.05

- Number of chambers 606

- Number of channels 373000

- Function Triggering, second (φ) coordinate

Thin Gap Chambers TGC

- Coverage 1.05 < |η| < 2.7 (2.4 for triggering)

- Number of chambers 3588

- Number of channels 318000

- Function Triggering, second (φ) coordinate

3.6.1 Toroid Magnets

The MS magnet system comprises of two end-cap toroids inserted at each end of the barrel toroid.

Each toroid consists of eight coils assembled radially and symmetrically around the beam axis. The

end-cap coil system is rotated by 22.5◦ with respect to the barrel toroid to provide radial overlap

and to optimize the magnetic bending power at the interface. The end-cap coils are assembled as a

single cold mass and are housed in one large cryostat. This allows the internal forces of the toroids
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to be taken by the cold supporting structure. The barrel toroid coils are housed in eight individual

cryostats with linking elements that provide mechanical stability.

The performance of the magnetic bending power is characterized by the field integral
∫

Bdl

where B is the field component normal to the muon direction and the integral is over the (infinite-

momentum) muon trajectory between the innermost and outermost chamber planes. The barrel

toroids provide a bending power of 1.5 to 5.5 Tm in the region 0 < |η| < 1.4. In the end-cap toroids,

the bending power is 1 to 7.5 Tm in the region 1.6 < |η| < 2.7. The bending power is lower in the

barrel/end-cap transition region (1.4 < |η| < 1.6) where the two magnets overlap (Figure 3.22).
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Figure 3.22: Predicted field integral at different φ as a function of |η| from the inner to outer layer

of the MDT in one toroid octant [22].

3.6.2 Monitored Drift Tube Chambers

The monitored drift tube chambers (MDTs) provide precise coordinate information and momentum

measurements in the bending direction of the air-core toroid magnets. They cover a pseudorapidity
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range |η| < 2.7 except in the innermost end-cap layer, where the coverage is only up to |η| = 2 and

chambers are replaced by CSCs (discussed below) at 2 < |η| < 2.7. There are 1150 MDT chambers

that cover an area of 5500 m2. The chambers consist of three to eight layers of drift tubes operating

with Ar/CO2 drift gas (97%/7%) at an absolute pressure of 3 bar and diameter 29.970 mm. This

operating pressue achieves an average spatial resolution of 80 µm per tube (35 µm per chamber).

Muon tracks typically cross three MDT stations. Figure 3.23 depicts a low pT (4 GeV) and high

pT (20 GeV) muon traversing the inner, middle, and outer layers of the MDTs.

Figure 3.23: Trajectories of a low pT (4 GeV) and high pT (20 GeV) muon in the bending (R− z)

plane of the barrel. The tracks are crossing the inner, middle, and outer layers of the MDTs [22].

Muons traversing the drift tube chambers ionize the gas mixture, and the resulting electrons

collect at a central tungsten-rhenium wire. The wire has a 50 µm diameter and is at a potential

of 3080 V. The cylindrical structure of the drift tubes results in a radial electric field. Therefore,

the measurement accuracy depends only weakly on the angle of incidence of the muon with respect
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to the chamber plane, and the track coordinate is determined from the radius of the circle around

the anode wire to which the muon is tangential (Figure 3.24). However, segments far from the

tangential point may produce several hits per track, possibly resulting in an inflation of data volume.

To prevent this from occuring, the front-end electronics are implemented with an adjustable dead-

time.

µ

29.970 mm

Anode wire

Cathode tube

Rmin

Figure 3.24: Cross-section of a MDT [22].

The MDT chambers are rectangular in the barrel and trapezoidal in the end-caps. This geometry

optimizes solid angle coverage while avoiding spatial conflicts with the magnetic coils and support

structures. The tubes in the barrel and end-cap regions run along the φ direction. The chambers

are named based on their location in the barrel (B) or end-cap (E) as well as their chamber layer:

inner (I), middle (M), outer (O). The chambers are also given a large (L) or small (S) sector

designator over a total of 16 sectors. These designators define chamber stations. For example,

the 72 chambers in the BOS station are located in a small sector in the outer layer of the barrel

(see Figure 3.25). Sectors 12 and 14 in the barrel have special chambers designed to minimize

acceptance losses due to the support structures (feet). These special chambers replace the sector

designator with a feet designator (e.g. BOS becomes BOF). There are also special chambers called

BEE (Barrel End-cap Extra) chambers that are used to measure tracks passing from the barrel to

end-cap region. Figure 3.25 also shows areas where the EI chambers do not overlap with the EO

chambers. Thus, intermediate ring chambers (EES and EEL, where ”E” is extra) are introduced

with an offest of 3-3.6 m to allow for momentum measurements in this region.
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Figure 3.25: (Left) Cross-section of the barrel muon system perpendicular to the beam axis (non-

bending plane). (Right) Cross-section of the muon system in the plane containing the beam axis

(bending plane) [22].

All MDT chambers consist of two groups of tube layers called multi-layers. The number of tube

layers in each group vary. In the innermost part of the MS, each group in the multi-layer consists

of four tube layers, whereas in the middle and outer portions, there are only three tube layers per

group. This is illustrated in Figure 3.26.

Figure 3.26: Illustration of the mechanical structure of a MDT chamber [22].
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3.6.3 Cathode-strip Chambers

The Cathod Strip Chambers (CSCs) in the muon system are used to detect tracks at large pseu-

dorapidities (|η| > 2). The CSCs can tolerate counting rates up to ∼ 1000 Hz/cm2, whereas in

the MDTs the rate cannot exceed ∼ 150 Hz/cm2. The CSCs are segmented into large and small

chambers in φ, as in the case of the MDTs. The CSCs consist of two disks with eight small and eight

large chambers each, as shown in Figure 3.27. Each chamber contains four CSC planes, resulting in

four independent measurements of η and φ. The CSCs are located 7 m from the interaction point

and are titled towards the interaction point to reduce the effect of inclined tracks and the Lorentz

angle on the spatial resolution. They are mounted with the MDTs and TGCs (see below) to form

the ”small wheel” of the detector. The CSCs cover a radial space between 881 mm and 2081 mm,

corresponding to a coverage region 2.0 < |η| < 2.7. Figure 3.28 presents an η − φ map of coverage

areas in the MS.

Figure 3.27: Depiction of a CSC with eight small and eight large chambers [22].

The CSCs are multiwire proportional chambers that measure ion pairs produced in Ar/CO2

gas chambers. A track typically produces 90 ion pairs while traversing the CSCs. The anodes have

a diameter of 30 µm and are made of gold-plated tungsten with 3% rhenium. The cathodes are
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Figure 3.28: η − φ map of the different detector regions [23].

made of copper and are segmented into strips perpendicular to the radially directed wires and into

strips parallel to the wires. The perpendicular strips provide precision coordinates in the bending

(η) direction by measuring the charges induced on adjacent strips from the avalanche. The parallel



CHAPTER 3. THE LARGE HADRON COLLIDER AND THE ATLAS DETECTOR 101

cathode strips provide transverse coordinates of the track. The position of the muon is obtained

by an interpolation between the charges induced on neighboring cathode strips, where the signal

is directly connected to the front-end boards. This procedure results in a spatial resolution of

60 µm in the bending direction per CSC plane. In the non-bending (φ) direction, the cathode

segmentation is not as fine, resulting in a resolution of 5 mm. Figure 3.29 shows an illustration of

the structure of a CSC cell and the segmentation in the CSC cathodes.

The CSCs are well-suited for handling high particle densities for several reasons. First, they

provide good two-track resolution by allowing unambiguous η/φ assignments of the tracks. Next,

the electron drift times are small (< 40 ns), resulting in a good time resolution of 7 ns per plane.

Lastly, the small gas volume in the chambers and absence of nuclides with a high neutron cross-

section (e.g. hydrogen) [212] make the CSCs insensitive to neutrons, which could interfere with the

muon measurements.

3.6.4 Alignment System

In order to measure the muon momentum at the desired accuracy of 10% for pT = 1 TeV, the

precision chambers (MDTs and CSCs) must be aligned such that the measurement error due to

the alignment contribution is less than the intrinsic measurement error of the chamber. It is

not possible to obtain the required resolution by stabilizing the geometry and position of the MS

components. Rather, optical alignment systems are used to correct for movements in the detector

elements offline.

The alignment schemes are based on optical straightness monitors (RAS-NIK and MPA-ALMY

systems). The optical elements are mounted on the precision chambers. The schemes are different

in the barrel and end-cap regions due to geometrical constraints. To reduce cost, only the three-

layered (triplet) chambers are equipped with optical systems in the barrel.

The alignment system in the MS is shown in Figure 3.30. The system relates the position of each

chamber to its neighbors. In the barrel, MDT chambers are related to each other using chamber-

to-chamber alignment sensors (praxial and axial systems). The inner, middle, and outer layers use

a projective system, which simulates the trajectories of infinitie momentum tracks originating from

the interaction point. In conjuction with a track-based alignment system, the optical sensors in the

barrel can detect relative chamber movements to within 30 µm.
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Figure 3.29: (Top) The structure of a CSC cell look down the anode wires and also in the perpen-

dicular (bending) direction. The anode-cathode spacing is d = 2.5 mm. (Bottom) Segmentation

of the CSC cathodes and charge distribution of the avalanche on the wires. The strip width is

b = 1.519 mm and 1.602 mm for the small and large chambers, respectively. The distance between

the centers of two strips (pitch) is a = 5.308 mm and 5.567 mm [22].

In the end-caps, light traveling from the inner to middle layers are obstructed by the toroid

cryostats. Thus, alignment bars are used as an intermediate reference. They are installed in each EI,

EM, and EO layer and are connected by polar optical lines. The chambers are optically connected
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to the alignment bars by proximity sensors. This arrangement allows relative chamber positions in

the end-caps to be located to within 40 µm.

Figure 3.30: Schematic of the alignment system in the MS. See text for details [22].

3.7 Trigger and Data Acquisition Systems

The ATLAS detector is equipped with a system that decides whether to record an event. This

system is called a trigger. The trigger system is based on precisely defined criteria that enable

ample information storage for data analysis while maintaining the amount of data stored within

capacity. This is particularly useful in analyses concerned with low-rate physics processes. As an

example, the event rate at the LHC is 109 Hz for the design luminosity of L = 1034cm−2s−1. The

Higgs boson is produced at a rate of ∼ 10−2 Hz [213]. Thus, the ideal trigger would select 1 in

1011 events while discarding the others from the dataset. This example illustrates the importance

of using a trigger for event selection.

In ATLAS, the Trigger and Data Acquisition (TDAQ) systems have three distinct levels: Level-

1 (L1), Level-2 (L2), and the event filter (EF). Each successive level refines decisions made by

the previous level and, when necessary, applies additional selection criteria. The data acquisition
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system receives and buffers the event data from the detector-specific readout electronics at the L1

acceptance rate.

The L1 trigger searches for physics signatures (trigger chains) from muons, electron/photons,

jets, and τ -leptons. It can also select events with large missing energy. Decisions are made at

L1 using a limited amount of detector information from the calorimeters and MS. The decision is

reached within < 2.5 µs after the bunch-crossing and reduces the event rate to 75 kHz. In each

event, the L1 trigger will define detector regions in η − φ space where the interesting feature was

identified. These regions are referred to as Regions-of-Interest (RoIs; see Figure 3.31). The RoI

data include information on the coordinates, energy, and type of signature and constitute ∼ 1−2%

of the full event data.

The overall L1 decision is made by the Central Trigger Processor (CTP). The CTP receives

information from the calorimeter and muon trigger processors, which consist of multiplicities1 of

physics objects (e.g. muon, electrons, jets, etc.) and of flags indicating which energy thresholds

were passed. The trigger conditions for each object are formed from look-up tables – for example,

a condition that the muon multiplicity be ≥ 1 for a particular pT threshold. If the conditions are

satisified, the CTP sets the trigger condition to true. The maximum number of trigger conditions

at any one time is 256. The trigger conditions are combined to form trigger items. Several trigger

conditions may contribute to a single trigger item. For example, a trigger item may consist of two

conditions that there be at least one muon and two jets that pass particular thresholds in the event.

Each trigger item is given an eight-bit trigger word that is turned on when the trigger conditions

are satisfied. The CTP also contains pre-scaling factors to reduce frequent physics processes from

consuming too much bandwidth. Once the event is accepted by the L1 trigger, the CTP transfers

the trigger decision information to the DAQ/HLT system via point-to-point Readout Links (ROLs).

Readout system (ROS) units contain Readout Buffers (ROBs) of event fragments, which are stored

and provided to the DAQ/HLT upon request.

The readout data from the CTP contains information on the luminosity block, which is the

shortest time unit in which the integrated luminosity can be determined. Storing the luminosity

block allows for the rejection of data in the case of detector failures. The CTP increments the

luminosity block by temporarily pausing trigger generation, registering the block, and releasing the

1The multiplicity is the total number of particles produced in a collision.
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trigger. The luminosity block numbers stored in the readout data are used to construct good run

lists (GRLs).

At L2, the full detector information in the RoI is used to either accept or reject the event

according to an hypothesis algorithm that determines whether the identified feature meets specific

criteria (e.g. pT threshold). This reduces the trigger rate to 3.5 kHz with an average event processing

time of 40 ms. Once the L2 accepts the event, all the event data is sent to an event-building node

(called SFI). The SFI collects the event data from the ROSs and assembles the event into a single

event data structure. These events are then transmitted by the DAQ system to the EF.

At the EF, offline ATLAS event reconstruction and analysis procedures are implemented to

further select events, reducing the event rate to 200 Hz. The average EF processing time for an

event is ∼ 4 seconds. Events that pass the EF decision are classified by a predetermined set of

ATLAS physics streams (e.g. muons) and are sent to the output nodes (SFOs) of the DAQ/HLT

system. Events received by the SFOs are categorized by their physics streams and stored in a local

file system. The files are then moved to permanent storage at the CERN computer center. A block

diagram of the ATLAS TDAQ is shown in Figure 3.32.

Areas selected by
First Level Trigger

Regions of Interest (RoI)

Figure 3.31: Illustration of ATLAS Regions-of-Interest (RoIs).
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Figure 3.32: Block diagram of the ATLAS trigger and data acquisition systems [24].

3.7.1 Muon Triggers

The muon trigger system consists of Resistive Plate Chambers and Thin-Gap Chambers that have

the ability to discriminate events based on muon pT requirements, identify bunch-crossings, provide

fast and coarse tracking information to be sent to the HLT, determine coordinate information in the

non-bending (φ) plane to complement MDT measurements, and provide robustness against random

triggering from background particles. These sub-detectors provide triggering up to |η| = 2.4 and

over the full φ range. Figure 3.33 shows a schematic of the muon trigger system in the barrel

(|η| < 1.05) and end-cap (1.05 < |η| < 2.4) regions. Because muons at large η have a large

pz component and the magnetic bending power at large η is only twice the value at η = 0, the

technologies in the barrel and end-cap are different in order to keep the resolution the same in each

region.

3.7.1.1 Resistive Plate Chambers

The trigger system in the barrel uses Resistive Plate Chambers (RPCs). The RPCs consist of three

concentric cylindrical layers around the beam axis (trigger stations). Figure 3.34 provides a bird’s
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Figure 3.33: Schematic of the muon trigger systems in the barrel (RPC) and end-cap (TGC)

regions [22].

eye cross-section of the RPCs. The two inner layers (RPC1 and RPC2) are located on both sides of

the MDT BM at a radial distance of ∼ 7.5 m from the interaction point. RPC1 and RPC2 trigger

on muons with 4 ≤ pT ≤ 9 GeV. The outer layer (RPC3) is mounted on the inside of the large

sector and outside of the small sector MDT BO stations at ∼ 10 m from the interaction point. The

RPC3 triggers on muon tracks in the range 9 ≤ pT ≤ 35 GeV. Each trigger station consists of two

independent detector layers that measure η and φ, resulting in a total of six η − φ measurements

for a track crossing all three stations. This redundancy enhances fake rejection and improves the

trigger efficiency. The η-strips are parallel to the MDT wires whereas the φ-strips are perpendicular

and provide a second coordinate measurement.

The RPCs are gaseous parallel electrode-plate detectors, using a gas mixture of C2H2/Iso− C4H10/SF6

(94.7/5/0.3%). They consist of two resistive plates made of phenolic-melaminic plastic laminate

and are separated by 2 mm with an insulating spacer. An electric field of 4.9 kV/mm allows

avalanches to form as the tracks ionize the gas. Standard RPCs are assembled together with a

MDT, however special RPCs are located in regions where the MDTs cannot be installed. This

minimizes the trigger acceptance loss.

The trigger algorithm requires that a signal from a RPC be compared with the other RPCs along
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Figure 3.34: Bird’s eye cross-section of the RPCs (colored). The MDTs are also shown. [22].

the trajectory of the particle. For low-pT triggers, if a track is generated in RPC2, the algorithm

searches for a corresponding hit in RPC1 along a road with a center defined by the straight line

trajectory between the hit in RPC2 and the interaction point. The width of the road is a function

of the pT requirement on the track: smaller widths are used for higher pT cuts. The algorithm is

performed in η and φ projections to reduce the fake rate. Of the four layers in RPC1 and RPC2,

a 3-out-of-4 coincidence is required. The high-pT algorithm operates in a similar manner, except

that in addition to a 3-out-of-4 coincidence in RPC1 and RPC2, a 1-out-of-2 coincidence is required

in RPC3. Both the low-pT and high-pT trigger algorithms can operate using three pT thresholds

simultaneously, resulting in six thresholds reported to the central trigger logic. A schematic of the

barrel muon trigger readout chain is shown in Figure 3.35.

3.7.1.2 Thin Gap Chambers

The muon trigger system in the end-caps uses Thin Gap Chambers (TGCs). Figure 3.36 presents a

schematic of the TGCs as well as the MDT small (S) and large (L) sectors for reference. TGCs are
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Figure 3.35: Schematic of the trigger signal and readout chain of the L1 barrel muon trigger [22].

located in the inner layer (I) at |z| ∼ 7 m and middle layers (EM-wheels M1-M3 corresponding to

TGC1-3) at |z| ∼ 14 m. The middle layers consist of seven TGC layers. The inner layer has only

two TGC layers and is segmented into two non-overlapping end-cap (EI) and forward (FI) regions.

The TGCs are proportional chambers filled with a CO2/n-pentane (55/45%) gas mixture. They

operate in units of triplets or doublets. A triplet has three chambers whereas a doublet has two

(Figure 3.37). The triplet and doublet modules consist of anode wires arranged in the φ direction

that provide R information for the track and of copper readout strips orthogonal to these wires

that provide φ information. Both the wires and strips are used for the muon trigger. The trigger

detectors are mounted in two concentric rings: an end-cap ring covering 1.05 < |η| < 1.92 and a

forward ring covering 1.92 < |η| < 2.4. TGCs in the big wheel (EM) are segmented into 12 sectors

of 30◦ in φ. Each sector in the forward ring consists of four modules of 7.5◦, whereas each sector in

the end-cap ring is comprised of two modules of 15◦. This segmentation results in 1704 chambers

in the big wheel. In the inner layer, the TGC wheel contains only 90 chambers on each side.

The trigger algorithm operates in a similar manner as for the RPCs, except that R and φ

coincidence signals are generated independently. A 3-out-of-4 coincidence is required for the doublet

modules at M2 and M3 for both the R and φ directions. For the triplet modules at M3, a 2-out-

of-3 coincidence is required in the R direction and a 1-out-of-2 coincidence in the φ direction.
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Figure 3.36: Longitudinal cut of the muon end-cap TGCs. MDTs in the small (S) and large (L)

sectors are also shown for reference. The EM wheels are marked M1-3, corresponding to TGC1-

3 [22].

The final trigger decision is made by merging the R − φ coincidences with information from the

EI/FI chambers. A detailed schematic of the end-cap trigger signal and readout chain is shown in

Figure 3.38. High-pT muon candidates are identified with trigger signals from both the doublets

and triplets. For low-pT candidates, the triplet station may be omitted to retain high efficiency.

3.8 Minimum Bias Trigger Scintillators

The Minimum Bias Trigger Scintillators (MBTS) [214] are used to select minimum bias collision

events with low out-of-time beam background. The detector consists of 32 polystyrene scintillator

counters organized into two disks, one on each side of the ATLAS detector (sides A and C). The

scintillators are installed on the inner surface of the end-cap calorimeter cryostats at z ± 3560 mm

and the disks are perpendicular to the beam axis. Each disk is comprised of an inner ring that
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Figure 3.37: Cross-section of a TGC triplet (left) and doublet (right) module [22].

covers 2.82 < |η| < 3.84 and an outer ring that covers 2.09 < |η| < 2.82. Each ring is segmented

into eight sectors symmetric in φ, resulting in a total of 16 sectors.

Light emitted from the scintillators is collected by wavelength-shifting optical fibers and guided

to a photomultiplier tube (PMT). The signal is read out by the calorimeter – specifically Tile

Calorimeter or TileCal – electronics. The TileCal shapes and amplifies the MBTS signals and feeds

them into a leading-edge discriminator. If the MBTS hit is above the discriminator threshold, the

signals are sent to the CTP (discussed above).

At the CTP, 32 MBTS signals are used to calculate the event multiplicity. The multiplicity is

calculated for each side independently. L1 items are built using the multiplicity and are designated

L1 MBTS N N, where N signifies the number of hits on each side of the MBTS.

Additionally, the MBTS is used for offline timing selections. Timing measurements for the A

(tA) and C (tC) sides can be made with respect to the LHC clock. The difference ∆tMBTS = tA−tC

may be used to reject out-of-time background.

3.9 LUCID

ATLAS is equipped with a Cerenkov detector called LUCID (LUminosity measurements using

Cerenkov Integrating Detector) [215] to provide online monitoring of the instantaneous luminosity
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Figure 3.38: Schema of the trigger signal and readout chain for the L1 end-cap muon trigger [22].

and beam conditions. Its main purpose is to detect inelastic pp scattering in the forward direction

but may also be used for studies involving diffractive events [216]. Determination of the luminosity

is based on the principle that the number of interactions per bunch crossing is proportional to the

number of particles measured in the detector.

LUCID detectors are located on both end-caps at a distance ±17 m from the interaction point

and are radially positioned approximately 10 m from the beam pipe at |η| ≈ 5.8. Each detector

consists of twenty aluminum tubes surrounding and pointing toward the interaction point. The

tubes are filled with C4F10 gas at a constant pressure of 1.2-1.4 bar, providing a Cerenkov threshold

of 2.8 GeV for pions and 10 MeV for electrons. The Cerenkov light emitted by a particle is measured

by photomultiplier tubes (PMTs) and the signal amplitude from these PMTs are used to distinguish

the number of particles per tube. The fast timing response (∼ 5 ns) allows for unambiguous
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measurements of individual bunch crossings.

A hit is registererd if the PMT pulse height in the analog signal is above a preset threshold. A

charge-to-digital converter allows offline analysis of the signal amplitudes. Digital outputs are sent

to a readout card and are used to calculate the luminosity for each bunch crossing.
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Chapter 4

Muon Identification and Tracking

The purpose of the muon spectrometer (MS) is to measure the momentum of muons passing through

the fiducial volume with excellent precision and resolution. The first step in this process is using the

MS detectors discussed in Chapter 3 to recognize hits created by a muon along its trajectory (i.e.

pattern recognition). These patterns provide an initial estimate of a muon’s position, direction, and

momentum, which are used as initial parameters during the next step of muon reconstruction: track

fitting. Track fitting provides the best estimation of the muon’s parameters. Once a trajectory has

been determined, the track purity can be improved by associating the muon with corresponding

hits in the inner detector (ID).

However, there are several challenges to muon reconstruction. Measurements are typically

made in the inner, middle, and outer layers of the MS. Therefore, reconstructing tracks involves

extrapolations over large distances, increasing measurement errors. The inhomogeneity in the toroid

magnetic field also contributes to extrapolation uncertainties. The detector material needs to be

well described to understand how it affects the muon’s energy and trajectory. The background rate

is high, particularly in the forward (large η) region. Also, the lack of an accurate φ measurement in

the precision chambers requires a matching φ measurement in the trigger chambers (RPCs, TGCs).

These difficulties are overcome by using several sophisticated, independently operating, iden-

tification algorithms. The algorithms employ strategies that differ based on how they combine

data from different subdetectors. During the 2011 heavy-ion run, the algorithms were grouped into
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two 1 families: Staco [217] 2 (Chain 1) and Muid [218] 3 (Chain 2). A CaloMuon family also exists,

however it will only be discussed briefly and the reader is directed to Ref. [219]. For each strategy,

the reconstruction chains employ different algorithms, as summarized in Table 4.1.

Table 4.1: Summary of the muon reconstruction families in ATLAS.

Strategy Muid Staco CaloMuon

StandAlone Moore Muonboy

Combined Muid/Mugirl Staco

Tagging Mugirl/MutagIMO Mutag CaloMuonTag

The choice of which reconstruction chain to use depends mainly on the goals of the analysis.

Both chains have excellent performance, however Staco is typically more robust against background

whereas Muid has a slightly higher efficiency [41]. This work uses muons reconstructed with Muid,

and therefore the reconstruction algorithms in this family will be discussed. For more information

on the Staco chain, the reader is directed to Appendix A and the references therein.

The aim of this chapter is to provide the reader with an understanding of muon reconstruction in

ATLAS. The following sections will give a general overview of each identification strategy, followed

by a more exhaustive discussion of the Muid algorithms. This will enhance the understanding and

appreciation of the analysis methods that will be presented in subsequent chapters.

4.1 Muon Identification Strategies

Muons can be identified using three strategies: standalone (SA) reconstruction from MS infor-

mation alone; combined (CB) reconstruction from a combination of information from the ID and

MS; and a strategy called tagging, which extrapolates ID tracks to segments in the MS stations

(segment tagging) or energy deposits in the calorimeters (calorimeter tagging). These strategies are

1It should be mentioned that a third reconstruction chain has been developed that merges the MuiD and Staco

chains. This third chain is simply called the Muon chain and has been used in 2012 data.

2STAtical COmbination

3Muon Identification
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summarized schematically in Figure 4.1. Muon types are defined by which identification strategy

is used. Both Muid and Staco use each identification strategy. However, as mentioned previously,

these reconstruction chains differ on the specific algorithms used to define each muon type.

Figure 4.1: Different muon identification strategies used in ATLAS: (a) Standlone (b) Combined

(c) Segment-tagged (d) Calorimeter-tagged [25]. The ID is in yellow, the calorimeters in green, and

the MS stations in blue.

4.1.1 Standalone

Standalone muon reconstruction begins by searching for hit patterns in the MS. Clusters of hits

in each chamber are fitted to produce segments. A segment is a straight-line track within a single

MDT or CSC station. The segments from each of the three MS stations are used to perform a

global fit for the entire track. The global fit extrapolates back to the interaction point (IP), taking
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into account energy loss and multiple scattering in the calorimeters and inhomogeneities in the

magnetic field (discussed in Sec. 4.2 and 4.3).

The SA strategy has the advantage that it can reconstruct muons at larger η (|η| < 2.7) than

the ID system (|η| < 2.5). However, the MS has coverage deficiencies at η ≈ 0 and 1.05 < η < 1.3,

as can be seen in Figure 4.2. Moreover, the efficiency is poor for very low-pT muons since they do

not penetrate the outermost MS stations.

Figure 4.2: η − φ map of the number of MDT/CSC detector stations traversed by muons passing

the MS.

4.1.2 Combined

The combined reconstruction strategy starts from standalone tracks and matches them with re-

constructed tracks in the ID. CB muons are the highest quality type of muon. The quality of the

combination is given by a match χ2 (discussed in Sec. 4.6).
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4.1.3 Segment-Tagged

The segment-tagging algorithms propagate ID tracks with sufficient momentum to the first MS

station and search for nearby segments. If segments are sufficiently close to the predicted track

position, the ID track is tagged as a muon.

Muons may also be identified using calorimeter measurements. The calorimeter-tagging algo-

rithm identifies ID tracks by searching for energy deposition patterns in the calorimeter consistent

with minimum ionizing particles [219]. Muon identification in the calorimeters can be used to locate

low-pT muons with marginal activity in the MS layers.

Tagging ID tracks with MS or calorimeter measurements has the advantage that it is less

sensitive to Coulomb scattering and energy loss. Therefore, this strategy can recover muons with

low pT in MS regions with limited coverage (e.g. the gap region at η ≈ 0). ST muons are only used

in cases where CB muons cannot be reconstructed.

4.2 Track Extrapolation

Track reconstruction in both the ID and MS relies heavily on extrapolation techniques [30] for

local pattern recognition, track fitting, and track matching. Extrapolation is the transport of track

parameters and covariances to a destination detector surface, as illustrated in Figure 4.3. During

the extrapolation, it is important to take into account interactions with the detector material.

Extrapolations are used in ID reconstruction to extend tracks from the silicon layers to the TRT

and in MS reconstruction to extend muon trajectories to the interaction point or to match muon

segments with ID tracks.

Particles follow a helix in the presence of a homogenous magnetic field. For these types of tra-

jectories, the extrapolation can be solved analytically. However, in ATLAS, tracks are extrapolated

through the magnetic fields of the toroid and solenoid magnets, which have highly inhomogenous

fields (see Figure 3.16 and 3.22). Therefore, to evaluate the equations of motion of a particle,

numerical methods must be used. The numerical propagation of the track parameters through the

detector is conducted by:

• Evaluating the equation of motion, defined by the Lorentz force, without multiple scattering

and energy loss effects:
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Figure 4.3: Transporting the track parameters and covariances from one surface to another [26].

d2~r

ds2
=
q

p

[
d~r

ds
× ~B(~r)

]
(4.1)

where ~r is the position of the particle along path s and ~B is the magnetic field.

• Applying an energy loss at each integration step. Equation 4.2 is then extended with an

energy loss function:

d2~r

ds2
=
q

p

[
d~r

ds
× ~B(~r)

]
+
d(q/p)

ds
(4.2)

where d(q/p)
ds = − qE

p3

(
dE
ds

)
and dE

ds is the total mean energy loss per unit distance.

These equations are solved using the Runge-Kutta-Nystrøm [220, 221] integration formulism

with adaptive step estimation. The last step of the numerical iteration is reached when the distance

to the destination surface is below a certain value. The final propagation to the destination surface

is performed using a Taylor expansion. Figure 4.4 illustrates the extrapolation process.
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Figure 4.4: Illustration of the extrapolation process. Track parameters from Module 1 are propa-

gated through the material layer to the destination surface in Module 2, where the track parameters

are updated. The material layer is associated with the uncertainties on the track parameters. The

weighted mean between prediction and measurement updates the track parameters and builds a

starting point for the next step [27].

4.3 Material Effects

Muons traverse the ID and calorimeters before reaching the MS, corresponding to > 100 radiation

lengths (X0), as shown in Figure 4.5. Over 80% of the material is in the calorimeters. As they

pass through the detector, muons are subject to both energy loss (ionization, bremsstrahlung,

pair production, and photonuclear interactions) and directional scattering (Coulomb or multiple

scattering). It is important to understand the effects of these processes in order to accurately

determine the muon trajectory.
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Figure 4.5: Material distribution in front of the ATLAS EM calorimeter (pre-sampler), hadronic

calorimeter, and MS as a function of η expressed in radiation lengths X0 [28].

4.3.1 Ionization and Radiative Losses

Energy loss effects include ionization, bremsstrahlung (radiation of photons), pair production (ra-

diation of virtual photons which convert to e+e− pairs), and photonuclear interactions (radiation

of virtual photons which directly interact with a nucleus). These mechanisms contribute to both

changes in the track trajectory and parameter uncertainties. To take these effects into account,

tracking algorithms require that the energy loss be calculated and added back to the track. This

requires the use of parametrizations.

At energies up to a few hundred GeV, ionization is the dominant energy loss process for muons,

as shown in Figure 4.6 for different materials. Thus, these muons can be treated as minimum

ionizing particles whose energy loss dE/dx in Equation 4.2 can be estimated. The expected mean

energy loss per unit length x due to ionization is described by the Bethe-Bloch formula [222]:

dE

dx
= α22πNaλ

2
e

Zme

Aβ2

[
ln

2meβ
2γ2E′m

I2(Z)
− 2β2 +

E′2m
4E2

− δ
]

(4.3)
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where α ≈ 1/137 is the fine structure constant, Na is Avagadro’s number, Z and A are the number

of protons and mass number of the medium, m and me are the rest masses of the muon and electron,

β = p/E, λe is the Compton wavelength of an electron, I(Z) is the mean ionization potential of

the medium, δ is the density correction [29], and

E′m = 2me
p2

m2
e +m2 + 2me

√
p2 +m2

(4.4)

is the maximum energy transferred to the electrons of the medium.

Equation 4.3 only describes the expected mean energy loss due to ionization. However, in

reality, ionization loss is a stochastic process with fluctuations around the most probable value

(MPV), which can be much different than Equation 4.3. Thus, the Landau [223, 224] MPV (∆L
p )

is more appropriate to use in estimating the energy loss of muons. ∆L
p is expressed as:

∆L
p = ξ

[
ln

2mc2γ2

I
+ ln

ξ

I
− β2 − δ(βγ) + 0.200

]
(4.5)

where ξ = 2πNAr
2
emec

2(Z/A)(x/β2) MeV for a detector of thickness x.

In ATLAS reconstruction, the most probable value and width parameter for the Landau dis-

tribution can be parametrized as a function of the material thickness x and muon momentum pµ

with the following function [225]:

E
mpv/σ
loss (pµ, x) = a0x+ a1x ln(x/X0) (4.6)

where

ai = bi,0 + bi,1 lnBpµ + bi,2pµ (4.7)

with the first term corresponding to ionization, the logarithmic term to the relativistic rise, and

the linear term to radiative effects [226]. Figure 4.7 shows Empvloss as a function of η for a single

muon with 10 GeV and 1 TeV traversing the ATLAS detector. The energy loss is propagated to

the entrance and exit of the hadronic calorimeters, illustrating that a muon typically loses ∼ 3 GeV

before reaching the MS stations.

Because Equation 4.6 is most valid in the peak region of the Landau distribution for energy loss,

measurements from the calorimeters are also used to describe energy loss in the tails, where the

energy deposition is significantly larger than the most probable value [28]. This ”hybrid method” is
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Figure 4.6: (Top) Stopping power (〈−dE/dx〉) for muons in copper as a function of momentum

p = Mβcγ. The solid curve indicates overall stopping power [2]. (Bottom) Mean energy loss for

muons in silicon, LAr, and iron from Refs. [29] and [30].



CHAPTER 4. MUON IDENTIFICATION AND TRACKING 124

η
-3 -2 -1 0 1 2 3

10 GeV(G
e
V

)
lo

s
s

m
p

v
E

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

η
-3 -2 -1 0 1 2 3

1 TeV(G
e
V

)
lo

s
s

m
p

v
E

0

1

2

3

4

5

6

7

8

9

10

Figure 4.7: Most probable energy loss Empvloss obtained from the parametrization in Equation 4.6

as a function of η for a muon with (left) 10 GeV and (right) 1 TeV [28]. The shaded histogram is

the energy loss propagated to the entrance of the hadronic calorimeters, whereas the non-shaded

histogram is propagated to the exit of the hadronic calorimeters.

used in the muon reconstruction algorithms to provide reliable track transport through the detector

material.

4.3.2 Multiple (Coulomb) Scattering

A particle traversing material will undergo small deflections in its trajectory caused by multiple

(Coulomb) scattering. According to the central limit theorem, it can be assumed that the sum of

these small angular variations is Gaussian and symmetric about zero. Large scattering angles cause

deviations from a Gaussian and add non-Gaussian tails, however the Gaussian assumption of the

probability density function is valid to 98% and is limited to the core of the distribution [30].

Multiple scattering effects for muons are treated using the Highland formula [227], which is an

empirical adoption of the Molière solution [228] of the transport equation starting from the classical

Rutherford cross-section of a single scattering process. The Highland formula adds an empirical

logarithmic correction term to the original Molière expression for the root mean square σprojms of

the projected scattering angle θproj , giving larger weight to the screening of the nucleus Coulomb

potential in materials with lower Z. This results in the expression of the RMS of the scattering

angle:



CHAPTER 4. MUON IDENTIFICATION AND TRACKING 125

σprojms =
13.6 MeV

βcpµ
Z
√
t/X0[1 + 0.038 ln(t/X0)] (4.8)

where t is the pathlength, X0 the radiation length, and Z and pµ are the charge and momentum

of the incident muon, respectively. Equation 4.8 assumes the magnitude of the momentum does

not change. This is valid for muons but not for electrons (see Ref. [30]). Figure 4.8 illustrates an

example of a multiple scattering process.

Figure 4.8: Example of a multiple scattering process [30].

4.4 ID Track Reconstruction

ATLAS reconstruction of ID tracks [32] combines the concepts of pattern recognition and track

fitting. The reconstruction begins with a global pattern search, followed by local pattern recognition

and track fitting. Pattern recognition involves using the reduced output from the global search to

select hits along the trajectory of the track. This pattern provides an initial estimate of the track’s

position, direction, and momentum at each point. The estimate of the track parameters [229] is

refined by using the hits from the pattern recognition to perform a track fit. ID track reconstruction
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can be performed using an inside-out and outside-in approach.

The inside-out reconstruction begins with three-dimensional representations (space points) of

measurements in the pixel and SCT layers. These serve as seeds for track candidates. The hits in

the pixel layer are used to perform a fast primary vertex reconstruction, which further constrains the

seeds and allows for three or more hits to be associated with them. The trajectory is then followed

through a window of successive silicon hits in the SCT and a global χ2 [230] fit is performed. The

fit yields scattering angle information.

Since the seed search results in a high multiplicity of track candidates, many fake tracks and

overlapping segments exist (Figure 4.9). In order to remove ambiguities, track candidates are

ranked by their likelihood of describing real trajectories. This is performed by refitting the track

candidates using more accurate information of the detector material and assigning a score based on

the fit quality. The scoring uses the χ2 probability, number of measurements, and number of holes4.

Precision measurements in the pixels are given a larger weight than non-precision measurements in

the SCT strips. Track scores exceeding a predefined threshold or χ2 are rejected.

Track candidates in the silicon layers are then used as seeds to define narrow roads in the TRT

(Figure 4.10). A fit combining TRT, SCT, and pixel layer measurements is performed with scoring

criteria as described above. Interactions with the detector material are taken into account during

the fit. If the TRT extension improves the quality of the fit, the TRT measurements are associated

to the track. Otherwise, the original fit is used.

The inside-out approach has limitations, however. For example, photon conversions or bremm-

strahlung electrons may not have enough hits in the silicon layers to form seeds. In these cases, an

outside-in strategy is employed where seeds from the TRT are back-tracked to silicon hits. In this

approach, a global pattern search is conducted to find TRT segments. Tracks with pT > 500 MeV

are treated as straight lines. A Hough transform [231] (discussed below) along with a Kalman-

fitter-smoothing procedure [27] is used to find these straight-line patterns. The TRT segments are

extrapolated to the silicon layers and a global fit is performed. Ambiguities are resolved as in the

inside-out approach, and the track is refit.

Reconstructed tracks are typically expressed as a vector of parameters and their covariance

matrices are determined with respect to a reference surface (see Figure 4.11). The reference surface

4A hole is a sensor passed by a track without a measurement
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Figure 4.9: Illustration of the track ambiguity-solving process in the SCT. Tracks a, b, and c share

several hits [31].

can be a detector element or material layers. The track parameters are expressed at the perigee

(point of closest approach to the interaction point), as shown in Figure 4.12, and consist of:

• transverse impact paramter d0

• longitudinal impact parameter z0

• azimuthal angle φ of the track at the IP

• polar angle θ of the track at the IP

• signed ratio of the charge to momentum q/p

4.5 Standalone Muon Tracking

The strategy for reconstructing muons in the MS is comprised of four main steps [232]:
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Figure 4.10: Tracks seeds in the silicon layers extending to the TRT (red). Also shown are TRT

segments (black) [32].

• The identification of roads and patterns in the muon system starting from hits in the trigger

chambers (RPCs/TGCs)

• Reconstruction of local segments within the muon stations of each road

• A combination of segments from different muon stations to form muon candidates using

three-dimensional tracking in the magnetic field

• A global track fit of the muon candidate trajectories using the full system and individual hit

information

The reconstruction algorithm used by the Muid chain is called Moore (Muon Object Oriented

REconstruction) [233]. Each step of the algorithm will be described below.
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Figure 4.11: Illustration of a track-state-on-surface (TSOS). The state of the track is represented

at each surface [33].

Figure 4.12: The perigee representation in the track parametrization [30].
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4.5.1 Pattern Recognition

Pattern recognition in Moore begins by searching for hits within roads extending from regions of

activity in the trigger chambers. The process is conducted in two steps: two-dimensional searches in

the bending (R− z) and non-bending (x− y) planes followed by three-dimensional reconstruction.

Roads in the bending plane consist of η patterns in the MDT+CSC/RPC/TGC. Roads in the

non-bending plane consist of φ patterns from the CSC/RPC/TGC. The η and φ patterns are then

combined using Hough transforms [231], resulting in a three-dimensional road of hits.

A Hough transform is a technique to identify multidimensional shapes and patterns. As an

example, consider the case for finding lines in two-dimensional space. The line may be written as:

x cosφ+ y sinφ = r (4.9)

which specifies a line perpendicular to the line drawn from the origin to point (r, φ) in polar

coordinates, as depicted in Figure 4.13.

Figure 4.13: (Left) Normal form of a two-dimensional line. (Right) Representation of points 1, 2,

and 3 in Hough space. The intersection represents the original two-dimensional line [34].

However, an infinite number of lines may be drawn through a point (x, y), resulting in an infinite

number of corresponding perpendicular lines with polar coordinates (r, φ). Therefore, every point

(x, y) in Equation 4.9 describes a curve in (r, φ) space, which is called Hough space. Figure 4.13
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shows points 1, 2, and 3 in Hough space where the intersection of the curves represents the original

two-dimensional line.

In practice, the intersecting points are found by binning the Hough space into a Hough his-

togram and locating the maxima (Figure 4.14). Any trajectory can be found using the appropriate

transformation. In general, a Hough transform is a function fH that transforms points in Rn to

Hough space H:

fH : Rn → H (4.10)

For pattern recognition in the MS, a straight-line R − φ transformation is used for finding

patterns in the non-bending (x− y) plane. A curved R− θ transformation is used to find patterns

in the bending (R − z) plane of the barrel and inner part of the end-caps, and a straight-line

R−θ transformation is used to find hit patterns in the bending (R−z) plane of the outer end-caps.

Figure 4.15 shows the regions in the bending plane where these transformations are performed. The

combined patterns provide an initial estimate of the position and direction of the muon candidate

track. Refs. [34] and [35] provide more details on this procedure.

Figure 4.14: Representation of a Hough histogram. Maxima correspond to intersection points in

Hough space [34].
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Figure 4.15: Regions in the bending (R − z) plane where different Hough transformations are

performed [34].

4.5.2 Segment Finding

A muon segment is defined as a locally reconstructed three-dimensional track segment within a

muon station. The Moore algorithm searches for segments in both the CSCs and MDTs. Segments

in the CSCs are locally reconstructed using clusters formed by fitting the charge depositions on

the η and φ strips within a chamber. The η and φ clusters are fitted independently, resulting in

η and φ segments. The segments from each of the four CSC layers are then combined to form

three-dimensional segments and to provide information on the position and direction of the muon

candidate.

Segments in the MDT chambers are located within roads given by the Hough transformations.

The search is conducted in the y − z (precision) plane, and the algorithm uses MDT hits together

with hits in the trigger chambers as inputs to the segment finding. The MDT hits form pairs in

each chamber multilayer. For each pair, tangent lines to the drift circles are used as seeds for

segment finding, as shown in Figure 4.16. Hits in the chamber are associated to the seed lines

to form segment candidates (Figure 4.17). At least three hits-on-track are required for a segment
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(Figure 4.18), where a hit-on-track is defined as a sufficiently small difference (1.5 mm) between

the measured and predicted drift radius. The algorithm also checks for the following scenarios:

δ-electrons5 passing closer to the wire than the muon, resulting in a drift radius too small; out-

of-time hits that result in unphysical drift times that are too large; and empty tubes crossed but

without a hit (i.e. holes). A cut on the sum of the number of empty crossed-tubes Nempty, the

number of δ-electrons Nδ, and the number of out-of-time hits Nout is used to reject fake segments.

Figure 4.16: Drift circle seeds with possible tangets (lines) [35].

Figure 4.17: Road formed from hits associated to seed lines [35].

Segment candidates which pass these criteria are fit to a straight line. The fit minimizes:

χ2 =

n∑
i=1

(∆i − ri)2

σ2
i

(4.11)

where ∆i is the distance between the track and the anode wire, ri is the drift radius, and σi is the

error [35]. Hits are dropped if the χ2 is larger than ten and the fit is reperformed. If the number of

5δ-electrons are energetic electrons resulting from ionization by the passing muon
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Figure 4.18: Schematic of four different classifications for MDT hits: a) hit-on-track b) δ-electron

c) out-of-time d) tube crossed by the seed line but no hit [35].

hits-on-track drops below three, the segment is rejected. Otherwise, the fit is performed until the

χ2 < 10.

The algorithm then improves the quality of the segment by matching with TGC/RPC hits in

the viscinity of the MDT chamber. An example of a segment reconstructed in the BML chamber

with seven MDT hits associated with five RPC η-hits is shown in Figure 4.19. Ambiguities are

resolved by sorting the segments based on the following priority list: (1) most hits-on-track (2)

smallest Nδ + Nout + Nempty (3) most trigger hits (4) smallest χ2. Segments that share hits with

higher-ranked segments are removed. In the final step of the segment search, the φ coordinate is

recalculated. The segment is refitted in three dimensions if it can be associated with at least two

trigger hits. If only one hit in the trigger chambers is available, φ and position information in the

non-bending plane are calculated by extrapolating the segment back to the interaction point.

4.5.3 Track Finding

The final step in SA muon reconstruction is track finding. The track-finding algorithm proceeds

according to the following steps:

• Selection of seed segments

• Track building

• Track fitting

• Hit recover and final fit
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Figure 4.19: A muon segment reconstructed in the BML. The segment has seven MDT hits (filled

circles) and five RPC hits (rectangles) [35].

• Hole searching

• Ambiguity solving

A muon track candidate is a set of MS segments compatible with a curved trajectory. Segments

in a road are categorized by station layer and are sorted by quality. Segments that pass the criteria

discussed above and that are not already part of a track are used as seeds. The seed segments are

combined with segments in another station layer. This begins with a loose matching procedure that

compares the positions and angles of the segments from each station in the bending (R− z) plane.

Poor combinations are rejected. If the match succeeds, a fit is performed and used to compare the

momenta of the segments at each station, further rejecting poor segment combinations. Segments

that are successfully fit are considered muon candidates. The candidates are then matched with
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segments in all other stations to form full tracks. The track segments are fit using the same global

χ2 method as is used in ID track reconstruction [230].

In the final stage of muon track finding, unassociated hits in layers crossed by the track are

added to the track. Holes (tubes passed by a track but without a measurement) are located along

the track trajectory. Ambiguities are resolved by removing duplicate tracks, overlapping tracks, or

tracks that share hits with higher quality tracks. A refit is then performed, and if the refit fails,

the track is rejected. Accepted tracks are extrapolated to the beam line and the muon parameters

are evaluated at the perigee, as depicted in Figure 4.20. The extrapolation corrects for energy loss

and multiple scattering in the detector material (Sec. 4.3). Muon track parameters are available at

three points: the entrance to the MS, the entrance to the calorimeter, and the perigee.

4.6 Combined Muon Reconstruction

The previous sections have described tracking in the ATLAS ID and MS. This section will discuss

how these measurements are combined using the Muid Combined algorithm. As previously men-

tioned, standalone muons are extrapolated to the perigee. This process involves having a good

description of material effects on the muon trajectory and introduces a source of uncertainty. Un-

certainties are reduced and the track parameters are improved by matching measurements in the

MS with those in the ID.

The method by which the combined track parameters are obtained differs in the Staco (Ap-

pendix A) and Muid algorithms. In brief, Staco uses a statistical combination of the corresponding

covariance matrices of the ID and MS tracks to calculate combined track parameters. Muid performs

a global refit of the muon track using hits in the ID and MS.

The Muid algorithm begins by matching the Moore tracks with ID tracks using a match χ2.

The match χ2 is defined as the difference between the MS and ID track vectors, weighted by their

combined covariance matrix:

χ2
match = (TMS −TID)T(CID + CMS)−1(TMS −TID) (4.12)

where TID(MS) denotes the vector of five track parameters expressed at the perigee and CID(MS)

are the covariance matrices from the ID and SA track fits.
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Figure 4.20: Event display of a muon extrapolated to the interaction point. The track is shown

crossing three MDT stations.

For matches with a χ2 probability above 0.001, a combined fit is performed. The fit uses

ID tracks as seeds and iteratively adds measurements from the MS. During the combined fit,

interactions with the calorimeter are taken into account by five additional track parameters: η

and φ measurements at two scattering centers and an energy loss parameter. The energy loss is

estimated from the observed calorimeter energy deposition or from Equation 4.6. The combined

fit is performed until the χ2 is below a given value. If this criterion cannot be satisfied, the fit is

attempted within a road around the SA track. All matches that give a satisfactory combined fit

are classified as combined muons. Figure 4.21 provides an event display of two combined muons
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from a H → ZZ∗ → eeµµ simulated event.

Figure 4.21: Event display of H → ZZ∗ → eeµµ after full reconstruction. The two combined

muons are shown as the orange tracks traversing the MDT and ID layers. The energy lost in the

tile calorimeter is also shown in purple [28].

4.7 Segment-Tagging

Segment-tagging uses ID tracks as seeds to search for muon segments in the MS stations (see

Figure 4.22). Extrapolation to the MS results in a prediction of where the ID track would be

located under the hypothesis that it is a muon. Since a muon typically loses ∼ 3 GeV in the

calorimeters, tracks with momentum less than this are not extrapolated.
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Tagged muons complement combined muons in regions where the MS has poor coverage. This is

particularly useful in the barrel-to-end-cap transition region (|η| ≈ 1.05) and the gap region (η ≈ 0).

Tagging also recovers low-pT muons that do not traverse all three layers of the MS stations. In

comparison to the other muon reconstruction strategies, segment-tagging does not require fully

reconstructed tracks in the MS.

The segment-tagging algorithms in the Muid family are called MuGirl [234] and MuTagIMO [33].

MuGirl extrapolates the ID track to the entrance of the MS. Hits are collected within a narrow

road around the extrapolated trajectory and are used to create segments in the inner, middle, and

outer layers of the MS. The algorithm uses an artificial neural network (ANN) to define a muon

discriminant [235]. If the ANN determines the track is a muon, a full track refit is performed. If the

refit is successful, a MuGirl muon becomes a Muid Combined muon. Otherwise, a segment-tagged

muon is made.

MuTagIMO extrapolates ID tracks to surfaces corresponding to positions in the inner, middle,

and outer layers of the MS. The algorithm searches for nearby Moore segments by performing a

loose matching between η and φ of the track and segment parameters, as shown in Figure 4.23.

Ambiguities (e.g. multiple segments in the same muon station associated with the same ID track)

are resolved by segment cleaning, track cleaning, and final cuts on the track and segment. The best

MS segment will have the smallest distance to the extrapolated track. Multiple ID tracks sharing

MS segments are resolved by using the likelihood that the track is a muon. Non-muon background

is reduced by requiring at least one associated MDT segment and a cut on the number of MDT

holes. In addition, since non-muon background generally has lower momenta, a cut on the pT is

also applied to improve the quality of the match.
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Figure 4.22: Example of a segment-tagged muon. The ID seed is shown in red and the extrapolation

to the MS in purple. MS segments are in orange. Also shown is a standalone muon (blue).

Figure 4.23: Schematic of η and φ matching of ID tracks to MS segments in the barrel non-bending

(left) and bending (right) planes [33].
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Chapter 5

Data Analysis

This chapter details the analysis chain for measuring W → µνµ events in heavy-ion collisions. The

first section discusses the different datasets used and the global event selection requirements. The

next section provides a discussion on the muon selection requirements and includes a description of

each cut applied in the analysis. This is followed by an explanation of the background estimation

procedure for different background sources. The next sections introduce the muon efficiencies and

correction factors. The chapter concludes with a discussion on the systematic uncertainties.

5.1 Datasets

5.1.1 Data Samples

The data used in the measurements presented in this work were collected during the 2011 heavy-

ion run period from November to December 2011 at a center-of-mass energy
√
sNN=2.76 TeV.

During the run, luminosity blocks with stable operating conditions in the ID, calorimeters, and

MS were used to construct a ”Good Run List” (GRL). Table 5.1 presents the run numbers from

the GRL and the corresponding luminosities. The run numbers range from 193211 to 194382. The

cumulative integrated luminosity and peak luminosity per day during the run period are presented

in Figure 5.1.

During data collection, the triggers were segmented into four streams in order to enrich the

data samples with pertinent physics information and facilitate end-user analysis. These streams

include:
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Figure 5.1: (Left) Cumulative integrated luminosity (before GRL selection) as a function of day in

the November/December 2011 Pb+Pb run period. (Right) Peak instantaneous luminosity during

the same time period.

• A Hard Probes (HP) stream containing events associated with high-pT jets, photons, electrons,

and muons. This stream contains 54M events after GRL selection and is the primary stream

used in this work.

• A Minimum Bias (MB) stream that collected events over a range of multiplicities and physics

processes. This stream was prescaled in order to allow sufficient bandwidth for the other

streams. The average prescale factor during the run period was 15.6, resulting in 68.7M MB

events. For this thesis, the MB stream is used for performance studies, efficiency calculations,

and the centrality determination.

• An Ultra Peripheral stream that recorded information from peripheral Pb+Pb collisions. This

stream consists of 7.3M events and is not used in this work.

• An Overlay stream containing MB events for embedding data into simulated samples. Embed-

ding real data into simulation allows for better modeling of the actual heavy-ion environment.

This stream contains 3M events and will be referred to hereafter as “data overlay.”

Each stream used various triggers. In the MB stream, two complementary triggers were used:

EF L1TE50 NoAlg and EF mbZdc a c L1VTE50 trk. TE represents the total transverse energy ET of

the event as measured in the calorimeters. L1TE50 implies that the ET > 50 GeV, whereas L1VTE50
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Table 5.1: Summary of run number and integrated luminosity for runs from the GRL.

Index Run Lint(µb−1) Index Run Lint(µb−1)

1 193211 0.014 23 193687 0.043

2 193270 0.126 24 193718 5.299

3 193291 1.286 25 193795 5.303

4 193295 0.083 26 193823 0.757

5 193321 3.949 27 193825 5.985

6 193403 2.766 28 193826 5.152

7 193412 3.607 29 193834 6.578

8 193447 3.809 30 193890 1.751

9 193463 4.117 31 194017 5.438

10 193481 4.886 32 194060 3.139

11 193491 2.505 33 194061 5.150

12 193492 0.062 34 194121 4.908

13 193493 0.969 35 194160 2.522

14 193494 0.582 36 194163 6.453

15 193546 5.428 37 194179 3.600

16 193558 4.202 38 194192 5.338

17 193599 0.385 39 194193 6.168

18 193604 5.504 40 194370 1.774

19 193641 3.160 41 194374 0.923

20 193655 4.200 42 194382 2.077

21 193662 5.244

22 193679 5.308

(“V” stands for “veto”) means that the event ET < 50 GeV. This trigger combination was used to

sample events over the entire multiplicity spectrum. mbZdc a c is a coincidence trigger requirement

in which at least one neutron is required in both the A and C sides of the ZDC. This reduces
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photonuclear 1 [236] background events, which are typically asymmetric and occur in events with

impact parameter b > 2R, where R is the nuclear radius. The suffix NoAlg implies that no further

event processing is performed from L1 to the HLT, and the trk suffix signifies that the online

tracking is used to search for tracks within the triggered event.

During the run, high-pT muon triggers in the HP stream were used to construct samples with

a high concentration of W → µνµ events. Since the muon has 〈pT〉 ≈ 1
2mW = 40.183 GeV,

events were required to contain at least one muon with pT > 10 GeV. This selection used the

following set of muon triggers: EF mu10 MSonly EFFS L1ZDC, EF mu10 MSonly EFFS L1TE10, and

EF mu10 MSonly EFFS L1TE20. L1ZDC and L1TE50 have the same meaning and serve the same

purpose as for the MB triggers. The integer number after “mu” indicates the lower muon pT

threshold (in this case, 10 GeV). EFFS stands for “event filter full scan” and signifies that rather

than starting reconstruction from Regions of Interest (RoI) determined at previous trigger levels

(“seeded mode”), the EF uses the entire MS to perform full event reconstruction (“full-scan mode”).

The full-scan method allows the EF to locate additional muons missed at the previous levels and is

less affected by the coverage deficiencies in the muon barrel region (e.g. gap region, feet structures).

MSonly implies that the trigger decision is based only on MS reconstruction rather than on a

combination with ID information [237, 238].

5.1.2 Simulated Samples

Simulated event samples are used for efficiency studies, background estimations, and model com-

parisons. The samples were generated using the Monte Carlo (MC) method (see Refs. [235],[239]),

which is a numerical technique for providing the probability density functions (pdfs) of functions

of random variables. The MC method is performed in two stages: event generation and detector

simulation. The event generator can predict and use the probability (i.e. cross section) of an event

to simulate the sequence of hard scattering processes to final-state particle production. In this

work, two event generators are used: POWHEG [240] and PYTHIA [241]. In brief, PYTHIA is a general-

purpose, standalone event generator capable of running with LO and NLO parton distribution

functions (PDFs). Moreover, PYTHIA can be interfaced with any external program that generates

1These are events in which photons are exchanged between the nuclei, typically resulting in the production of a

vector meson. The number of photons scale with Z2.
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a Les Houches Event file [242]. The POWHEG algorithm implements a matrix element reweighting

procedure in the cross-section calculation and is used to interface NLO calculations with parton

shower generators (e.g. PYTHIA) [243, 244].

Final-state particles produced from the event generation step are interfaced with detector sim-

ulation. The detector response in ATLAS is simulated using the GEANT4 simulation toolkit [245].

This software emulates the digitization, reconstruction, and geometric configuration (e.g. align-

ment) that exists during actual data-taking conditions. The detector response in all the simulated

samples used in this work are modeled using GEANT4. Table 5.2 summarizes the simulated

datasets.

Table 5.2: Summary of signal and background MC samples used in this work. W → µνµ, W → τντ ,

and Jxµ are embedded into MB events (i.e. data-overlaid). Z → µµ are embedded into HIJING

(see text). p̂T represents the average pT of the outgoing partons involved in the hard scattering

process before initial-state or final-station radiative corrections.

Process Generator PDF Set σX× B.R. (nb) Nev

W → µνµ POWHEG+PYTHIA8 CT10

pp 3.354 130K(×2)

pn 3.320 205K(×2)

np 3.320 205K(×2)

nn 3.345 315K(×2)

Jxµ PYTHIA6 MRST LO*

J1µ (17 < p̂T < 35 GeV ) 1.877× 105 1M

J2µ (35 < p̂T < 70 GeV ) 8.279× 103 1M

J3µ (70 < p̂T < 140 GeV ) 2.943× 102 1M

Z → µµ PYTHIA6+HIJING MRST LO* 0.2629 1.1M

W → τντ PYTHIA6 MRST LO* 2.817 1M

A description of the signal and background samples is provided below:

• W → µνµ events are generated at NLO using POWHEG with parton showering provided by

PYTHIA8. CT10 [246] is used as the PDF set. Simulated events are embedded into MB data
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from the data-overlay stream. To take into account isospin effects on physical observables –

particularly η – the sample includes all nucleon combinations and is weighted according to

the relative number of nn, pn(np), and pp interactions in a Pb+Pb collision:

1

A2
· (Z2 + 2Z(A− Z) + (A− Z)2) (5.1)

where A is the mass number and Z the atomic number. In Pb, A = 208 and Z = 82. This

corresponds to a collision rate of 15.5% for pp, 47.8% for pn+np, and 36.7% for nn. The di-jet

and Z → µ+µ− background processes described below are insensitive to the isospin of the

nucleus, and thus this weighting procedure is not performed on these samples. The charged

current interaction mediating the process τ → µνν̄ follows the V −A structure [247], and thus

this sample is sensitive to isospin effects. However, rather than performing the reweighting,

a charge inclusive sample is used in the background estimation. This may result in a slight

overestimation of the background in particular pseudorapidity intervals, however this is the

smallest background source and the effects from not reweighting are expected to be negligible.

• Jxµ events are defined as a di-jet event in coincidence with a muon. The muons are primarily

from b and c decays within the jet and constitute a major portion of the total background. The

integer number x in Jx indicates the range of p̂T used in the generation, where p̂T represents

the average pT of the outgoing partons in the hard scattering process. These ranges are

presented in Table 5.2. Generating each range separately maximizes the statistics in each

region of phase space. The Jxµ samples are generated with PYTHIA6 and are embedded into

MB events from the data-overlay stream. The generation uses the MRST LO* [248] PDF

set, which is a modified version of the LO PDF set in that it uses a NLO definition of the

coupling αS .

• Z → µ+µ− events are also a significant background source. These events are simulated using

the MRST LO* PDF set with PYTHIA6. Z → µ+µ− events are embedded into HIJING (Heavy

Ion Jet INteration Generator) [249] since the overlay stream was unavailable at the time of

production. HIJING emulates a heavy-ion environment by modeling initial-state interactions,

multi-jet production with associated semihard and soft background enhancement, impact
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parameter dependence of inelastic processes, nuclear shadowing, and jet energy loss in a

nuclear medium.

• W → τντ events are the smallest, yet non-negligible, background source. The background

stems from the tau decay mode: W → τντ → µνµντντ . These events are generated using

the MRST LO* PDF set with PYTHIA6 and are embedded into MB events from the overlay

stream.

5.2 Event Selection

Collision events within the GRL are required to satisfy specific selection criteria. These include:

• A hit on both the A and C sides of the MBTS (see Section 3.8) with a timing coincidence

that satisfies |∆tMBTS | < 3 ns. This reduces background from out-of-time pile-up events.

• At least 3 reconstructed tracks with pT > 500 MeV associated with the primary vertex. The

tracks are required to fulfill heavy-ion track selection requirements [250]:

– |ηtrk| < 2.5

– A minimum number of hits in the pixel and SCT layers (Npixel ≥ 2, NSCT ≥ 8, 1 hit in

the innermost pixel layer (B-layer))

– A B-Layer measurement if expected from the interpolated track trajectory (i.e. NB−LayerHitsExpected =

0 or NB−LayerHits = 1)

– No holes in the pixel layer and no more than 1 SCT hole if hits are expected from the

interpolated track trajectory

– Transverse and longitudinal impact parameter requirements: |d0|, |z0 sin θ| < 1 mm (see

Figure 4.12)

• A trigger selection that depends on the sample (Section 5.1.1):

– At least one muon with pT > 10 GeV (Hard Probes)

– An event with ET > 50 GeV or ET < 50 GeV with a coincidence in the ZDCs (Minimum

Bias)
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The event selection samples (98± 2)% [251] of the total inelastic cross section. After correcting

for the prescale (Section 5.1.1), 1.03 × 109 minimum bias Pb+Pb events (hereafter denoted as

Nevents) are sampled, corresponding to an integrated luminosity of approximately 0.14 nb−1.

5.3 Centrality Determination in ATLAS

The centrality definition and its relation to the Glauber model was discussed in Section 2.8.2. In

that section, the general method by which measurable quantities are mapped to Glauber parameters

was discussed. This section will describe how the centrality is determined in ATLAS specifically.

In ATLAS, the centrality is determined from the total transverse energy measured in the FCal

ΣEFCal
T . Since the detector is located at very forward pseudorapidity (3.2 < |η| < 4.9), there is less

risk of centrality-dependent processes biasing the measurement. Furthermore, ΣEFCal
T is strongly

correlated with the total energy deposited in the calorimeters at |η| < 3.2 (See Figure 5.2) and thus

serves as an excellent indicator of global event activity.
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Figure 5.2: Correlation between the total energy in the electromagnetic calorimeter (|η| < 2.8) and

the ΣEFCal
T (3.2 < |η| < 4.9) [36].
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The ΣEFCal
T distribution is shown in Figure 5.3. The distribution is fit with the two-component

model given by Equation 2.89. Centrality classes are determined by categorizing Pb+Pb events

into percentiles from large to small ΣEFCal
T (see Equation 2.88). Smaller percentiles correspond to

central events (i.e. small b) and larger percentiles correspond to peripheral events (i.e. large b).

Figure 5.3: Measured ΣEFCal
T distribution divided into 10% centrality bins. The distribution is fit

with the two-component model given by Equation 2.89.

The ΣEFCal
T distribution is divided into 6 centrality classes in this work. A summary of each

centrality class is presented in Table 5.3. The 〈Npart〉 and 〈Ncoll〉 are determined by averaging over

the events in each centrality class of the Glauber MC. The uncertainties arise primarily from the

Glauber model parameters and include uncertainties in σNN
inel, the nuclear density profile (Equa-

tion 2.86), and the uncertainty in the sampled fraction of inelastic events. Correlations in the

uncertainties between different centrality intervals are appropriately accounted for. The uncer-

tainty in 〈Npart〉 is less than that of the corresponding 〈Ncoll〉 since a single participant can interact

inelastically with several nucleons in a collision. Due to the large uncertainties in 〈Ncoll〉, the

80-100% centrality class is ignored in this work.
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Table 5.3: Average number of participating nucleons 〈Npart〉 and binary collisions 〈Ncoll〉 for the

centrality classes used in this analysis. Relative uncertainties δ are also shown.

Centrality [%] 〈Npart〉 δ〈Npart〉 [%] 〈Ncoll〉 δ〈Ncoll〉 [%]

0–5 382 0.5 1683 7.7

5–10 330 0.9 1318 7.5

10-15 282 1.3 1035 7.4

15-20 240 1.6 811 7.4

20-40 158 2.6 441 7.3

40–80 46 6.0 78 9.4

0–80 140 4.7 452 8.5

5.4 Selection of W → µνµ Events

This section explains the muon selection cuts applied to the data sample. The selection chain

proceeds by applying what are referred to as preselection cuts. The preselection requirements are

intended to yield only the highest quality muons for further analysis. Once a sample of preselected

muons has been obtained, further cuts are applied to select for muons from W → µνµ events. These

types of muons are referred to as signal candidates. The specific criteria of both the preselection

and signal candidate selection will be discussed in the following sections.

5.4.1 Muon Preselection

Preselection cuts are required to reduce non-collision (e.g. cosmic, beam halo) [252] muons as well

as to reduce “fake” muons from hadronic sources. Beam halo muons arise from protons striking

limiting aperatures, producing pions and kaons π/K that decay into muons. The global event cuts

introduced in Section 5.2 are effective at reducing non-collision muons. Cosmic muons are generally

asynchronous with collision events. Therefore, these types of muons can be rejected by selecting

only muons that can be associated to events that satisfy the MBTS coincidence requirement and

that have a reconstructed vertex with at least three associated ID tracks. Furthermore, non-

collision muons do not originate from the interaction point and thus their trajectories are typically
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different from those originating from the collision. For example, the |z0| and |d0| for combined

muons originating from the collision are a few mm from the IP, whereas cosmic muons are several

tens of cm. Therefore, placing requirements on the impact parameters |z0|, |d0| with respect to the

IP can be effective at further reducing non-collision muons in coincidence with a collision event.

Fake muons arise from misidentification of sail-through hadrons that pass through the calorime-

ters without showering, misidentification of punch-through hadrons that emerge from hadronic

showers, and π/K decays-in-flight. These processes are difficult to model with Monte Carlo meth-

ods and become an increasingly important background source at muon pT < 15 GeV or in muon

channels with a small cross section (e.g. tt̄) [253]. False reconstruction of sail-through and punch-

through hadrons occurs rarely and is neglected in this work. π/K decays-in-flight are mainly

considered in analyses concerned with semileptonic decays of b and c quarks. However, a small

percentage of muons from π/K decays in the tails of the pT distribution could leak into the signal

region of this analysis (Figure 5.4). Therefore, a method of reducing this muon source was adopted

from Ref. [37]. This method utilizes two discriminants that are used to reduce muons from π/K

decays within different regions of the detector.

The decays fall into three categories: early decays before the ID (R = 50.5 mm from the beam

line), late decays after the ID (R = 1082 mm from the beam line), and intermediate decays between

ID measurements. Early decays cannot be distinguished from prompt muons originating from the

IP, however given the short distances, this type of event has a low probability of occuring. Late

decays are reduced using a discriminant called the momentum balance. When π/K’s decay, they

lose a fraction of their energies to neutrinos. The track parameters measured in the ID correspond

to the π/K before the decay, whereas the MS measures the muon from the decay. Therefore, for

late decays, there will exist a significant difference between the momentum measurement in the ID

and in the MS. This can be quantified with the momentum loss parameter:

∆ploss
pID

=
pID − (pMS + pparam)

pID
(5.2)

where pID and pMS are the momenta measured in the ID and MS, respectively, and pparam is the

parametrization of the energy loss discussed in Section 4.3.

The second discriminant reduces the contribution from intermediate π/K decays. This dis-

criminant locates sudden changes in the direction (i.e. “kinks”) of the reconstructed muon track
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Figure 5.4: Reconstructed muon momentum for π/K decays-in-flight in a simulared di-jet sam-

ple [37].

trajectory within the ID. As discussed in Section 4.2, track parameters are evaluated at detector

surfaces, which are used to perform a χ2 track fit. The fit yields scattering angle information at

each detector surface (see Figure 4.8). Scattering angles due to multiple scattering are typically an

order of magnitude less than the decay angle of a π/K, and generally the decay will take place in

between measurements at two detector surfaces. Therefore, a scattering angle outlier in the track

fit could indicate the presence of a decay-in-flight. The variable used to locate outliers is called

the scattering angle significance. The expected change in angle in the bending plane from detector

surface i to i + 1 (∆φmsi ) can be determined from the Highland formula described in Section 4.3.

Let the measured change in angle between detector surface i and i + 1 be written as ∆φi. Then

the signed residual from the track fit is defined as:

si ≡ q
∆φi

∆φmsi
(5.3)

where q is the charge of the track. The scattering angle signficance S of a track traversing n detector
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surfaces is measured at every surface. So at surface k:

S(k) ≡ 1√
n

(
k∑
i=1

si −
n∑
k+1

sj

)
(5.4)

The surface k that gives the largest |S(k)| is used as the scattering angle significance of the track.

If there is no decay, the measured angular deviations will be similar to the expected value due to

multiple scattering and |S(k)| will be small. However, if there is a π/K decay-in-flight, the large

change in angle between measurements will result in a large |S(k)|.

In addition to those cuts already discussed, further selection requirements are imposed to yield a

high-quality muon sample. Reconstructed offline muons are required to match online trigger objects

within a cone radius ∆R =
√

∆η2 + ∆φ2 = 0.2. This reduces the probability of introducing muons

into the sample that did not trigger the event readout(“random benefit”). All muons are required

to be matched to an ID track (i.e. all muons are combined muons). Cuts on the ID components of

the muon track are imposed (e.g. pixel hits/holes, SCT hits/holes) to improve the track quality. In

addition, the pT of the ID component of the muon track is required to be greater than 3 GeV (the

minimum energy to reach the MS) to reduce associated ID tracks unlikely to be muons. A selection

on the χ2/n.d.o.f. is imposed to ensure a good track fit. Finally, the |η| of the muon is required

to be within the coverage of the trigger chambers and excludes the MS gap region at η ≈ 0. The

preselection cuts are summarized in Table 5.4.

The number of preselected muons per unit luminosity as a function of the run number is

presented in Figure 5.5. This shows a stable muon multiplicity over the entire run period. The

average number of preselected muons per nb−1 is ≈ 1.2. The total number of preselected muons in

each run is presented in Table 5.5.

5.4.2 Signal Candidate Selection

The preselection affords a sample of high-quality muons produced from the collision event. However,

the sample still contains a large fraction of muons produced from processes other than W → µνµ

events. These background sources include muons from b and c quarks, Z bosons, and τ leptons and

can be reduced by selecting events with signatures inherent to W decays. The methods by which

these signatures are located are discussed below.
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Table 5.4: Preselection cut-flow for muons. Each muon is given an index equal to the number of

cuts passed.

Muon Preselection Cuts

Quality Index Applied Cut

1 Offline muon matched to online muon trigger object within ∆R < 0.2

2 Combined muon

3 Npixel > 0 (pixel hits) and NSCT > 6 (SCT hits)

4 NB−Layer > 0 (B-Layer hits if expected)

5 Npixel
holes +NSCT

holes < 2

6 |d0| < 5.0mm

7 |z0| < 5.0 mm

8 pµ,IDT > 3.0 GeV (ID component of muon track)

9 0.1 < |η| < 2.4 (trigger chamber coverage, excluding gap region)

10 χ2/n.d.o.f. < 10

11 ∆ploss
pID

< 0.5 (momentum loss corrected for energy loss)

12 |S(k)| < 4 (scattering angle significance)

5.4.2.1 Isolation

The production of muons from open heavy-flavor quarkonium states constitutes a significant fraction

to the background in the soft kinematic region of signal events. These muons primarily come from

semileptonic decays of bottom and charm mesons via the B → µ + X and D → µ + X modes,

where X is any decay product in accordance with charge and momentum conservation. Muons

from Z → µ+µ−, W → τντ → µνµντντ , and W → µνµ events are typically isolated. However,

muons produced from b and c quarks are generally in close proximity to collimated jets. Therefore,

imposing an energy or spatial requirement around the muon can drastically reduce these types of

background events.

Methodology Two methods for separating isolated from non-isolated muons were studied. The

first involves using muon-jet correlations in ∆R space to locate muons in the viscinity of a jet.
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Figure 5.5: Preselected muon per unit luminosity as a functin of the run number.

The muon is considered isolated if a jet cannot be located within some ∆R value around the muon

trajectory (Figure 5.6). Figure 5.7 shows the ∆R between muons from W → µνµ events and

reconstructed jets in MC simulation. The left panel presents the ∆R for different lower jet ET

thresholds with pµT > 4 GeV and the right panel for different lower pµT thresholds with EjetT >

30 GeV. Ideally, all the jets would be located beyond some ∆R threshold so that a cut can be

effectively applied to reduce the multi-jet background. However, Figure 5.7 clearly shows an excess

of µ+jet correlations at ∆R ≈ 0. This excess is attributed to photons from final-state radiation

(i.e. muon bremmstrahlung) that shower in the EM calorimeter and emulate a jet. This is further

supported by Figure 5.8, which shows the ∆R for bremmstrahlung photons from W → µνµ events.

The number of signal events affected by bremmstrahlung radiation is non-negligible, and it is

experimentally difficult to disentangle signal muons from heavy-flavor muons in this ∆R region.

Therefore, a second isolation method was adopted that uses the total energy around the muon as

a discriminant. The total energy around an isolated muon, relative to its pT, will be small if the

muon is isolated – even for those muons that radiate photons. The total energy can be calculated

by summing the pT of all ID tracks within some ∆R around the muon, excluding the muon pT
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Table 5.5: Number of preselected muons per run.

Index Run Lint [µb−1] Preselected Nµ Index Run Lint [µb−1] Preselected Nµ

1 193270 0.126 153 22 193687 0.043 47

2 193291 1.286 1613 23 193718 5.299 6707

3 193295 0.083 99 24 193795 5.303 6772

4 193321 3.949 4993 25 193823 0.757 921

5 193403 2.766 3548 26 193825 5.985 7509

6 193412 3.607 4437 27 193826 5.152 6485

7 193447 3.809 4676 28 193834 6.578 8323

8 193463 4.117 5126 29 193890 1.751 2230

9 193481 4.886 6180 30 194017 5.438 6762

10 193491 2.505 3179 31 194060 3.139 3957

11 193492 0.062 81 32 194061 5.150 6484

12 193493 0.969 1213 33 194121 4.908 6280

13 193494 0.582 718 34 194160 2.522 3127

14 193546 5.428 6793 35 194163 6.453 8202

15 193558 4.202 5254 36 194179 3.600 4610

16 193599 0.385 453 37 194192 5.338 6716

17 193604 5.504 6850 38 194193 6.168 7696

18 193641 3.160 3970 39 194370 1.774 2150

19 193655 4.200 5343 40 194374 0.923 1172

20 193662 5.244 6686 41 194382 2.077 2565

21 193679 5.308 6684

itself:

iµ(∆R, ptrkT,min, 〈Ncoll〉) ≡
∑Ntrk

i=min p
trk
T,i − p

µ
T,trk

pµT
, (5.5)

where the isolation variable iµ is a function of ∆R, centrality (〈Ncoll〉), and the minimum track

transverse momentum ptrkT,min in the summation of ID tracks
∑Ntrk

i=min p
trk
T,i. In the summation, tracks
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Figure 5.6: Schematic of an isolated muon with a nearby jet.
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Figure 5.7: ∆R distribution between muons from W → µνµ events and reconstructed jets from MC

simulation. (Left) Different lower jet ET thresholds with muon pT > 4 GeV(Right) Different muon

lower pT thresholds with jet ET > 30 GeV.

are required to pass the stringent heavy-ion requirements presented in Section 5.2. Equation 5.5

neglects neutral particles. However, the majority of the jet energy is carried by charged particles

(mostly charged pions), and therefore this does not limit the ability of iµ to efficiently discriminate

between non-isolated muons from QCD multi-jet events and isolated muons from W bosons, Z

bosons, and τ leptons.

The dependence of iµ on ∆R, ptrkT,min, and centrality must be carefully evaluated to optimize
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Figure 5.8: ∆R distribution between bremmstrahlung photons and muons from W → µνµ events

in MC simulation.

the discriminating power of the isolation cut. The calculation of iµ is only concerned with locating

muons from b and c quarks, which originate from hard scattering processes. Therefore, other aspects

of the collision not identified with the hard process (i.e. the “underlying event” or UE) should not

be included in Equation 5.5. Since the UE is dominated by low-momentum QCD processes [254],

its effects on the isolation can be reduced by raising ptrkT,min. However, raising the track pT threshold

too high results in an insufficient number of tracks. Increasing ∆R increases the number of tracks

in the summation but also loosens the cut. Therefore, it is imperative to choose a value for both

ptrkT,min and ∆R that minimizes contributions from the UE while maintaining the discriminatory

power of the cut. This is achieved by studying the performance of iµ with several combinations of

ptrkT,min and ∆R.

Figure 5.9 presents the QCD multi-jet background rejection εB as a function of the signal

efficiency εS for various working points in (iµ, p
trk
T,min,∆R) space. εS(B) is defined as:

εS(B) =
N

Φ+iµ
S(B)

NΦ
S(B)

(5.6)

where Φ is the phase space of the muon samples and Φ+ iµ indicates the application of the isolation

requirement. The centrality dependence of iµ arises from the larger charged particle multiplicities in

central events, which is where the isolation is most difficult to apply. Therefore, the optimization of

iµ is conducted only in the most central (0-5%) centrality class (see Appendix B for other centrality
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classes). The background rejection and signal efficiencies are determined after all signal selection

cuts (discussed below) have been applied. This is performed in order to improve the optimization

by eliminating the effect that other cuts have on the background and signal muon samples.
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Figure 5.9: Background rejection (εB) as a function of signal efficiency (εS) in the 0-5% centrality

class using a sample of Jxµ and W → µνµ events. The working points are evaluated at different

(iµ, p
trk
T,min,∆R) in order to determine the most optimal analysis cut.

Optimization of iµ From the library of isolation definitions, the optimum working point is

determined from the combination of ptrkT,min and ∆R that minimizes εB and maximizes εS (i.e. the

lower right-hand corner of Figure 5.9). However, the statistical uncertainties of the actual number

of background and signal events in the data must also be taken into consideration. So to find an
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isolation definition that maximizes the signal to background ratio in the data, an “effective signal”

Neff is used. Neff is calculated by starting with the number of signal events in the data after final

selection:

NS = N −NB (5.7)

The relative error on NS is given by:

δNS

NS
=

√
N +NB

NS
(5.8)

where the total number of events in the data N is:

N = NS +NB = εS · ÑS + εB · ÑB (5.9)

where ÑS(B) is the number of signal (background) events before applying the isolation cut iµ and

εS(B) is the signal efficiency and background rejection as defined in Equation 5.6. Equation 5.8 can

then be written as:

δNS

NS
=

√
εS · ÑS + 2εB · ÑB

εS · ÑS

≡ 1

Neff
(5.10)

which is the inverse of the effective signal. Therefore, by maximizing Neff , the relative uncertainty

of the signal is minimized and the sample purity
(

= NS
NS+NB

)
is maximized. Figure 5.10 show

distributions of Neff as a function of iµ. Each point corresponds to an isolation definition in

(iµ, p
trk
T,min,∆R) space used in Figure 5.9.

Based on the studies of εS , εB, and Neff , the optimum upper threshold for the isolation cut in

Equation 5.5 is iµ < 0.1 using ptrkT,min = 3 GeV and ∆R < 0.2. Figure 5.11 shows the number of

muons per event in the data satisfying the isolation criteria. These events are before applying other

W boson selection requirements. Events with ≥ 1 isolated muon are most likely from Z → µ+µ−,

W → τντ → µνµντντ , or W → µνµ events.



CHAPTER 5. DATA ANALYSIS 161

µ
T

p

)trk

T
 R, p∆(trk

T
 pΣ

 = µi

0 0.2 0.4 0.6 0.8 1

ef
f

N

0

200

400

600

800

1000

1200

>2GeVtrk
T

p

0-5%

R<0.1∆
R<0.15∆
R<0.2∆

R<0.3∆
R<0.4∆
R<0.5∆

µ
T

p

)trk

T
 R, p∆(trk

T
 pΣ

 = µi

0 0.2 0.4 0.6 0.8 1

ef
f

N

0

200

400

600

800

1000

1200

>3GeVtrk
T

p

0-5%

R<0.1∆
R<0.15∆
R<0.2∆

R<0.3∆
R<0.4∆
R<0.5∆

µ
T

p

)trk

T
 R, p∆(trk

T
 pΣ

 = µi

0 0.2 0.4 0.6 0.8 1

ef
f

N

0

200

400

600

800

1000

1200

>4GeVtrk
T

p

0-5%

R<0.1∆
R<0.15∆
R<0.2∆

R<0.3∆
R<0.4∆
R<0.5∆

Figure 5.10: Effective signal Neff from Equation 5.10 as a function of the isolation variable iµ in

the 0-5% centrality class using ptrkT,min = 2, 3, 4 GeV and various upper ∆R thresholds. Each point

corresponds to a working point in Figure 5.9.

5.4.2.2 Invariant Mass mµµ

High-mass Drell-Yan (DY) processes [255] involve an s-channel exchange of a virtual photon or Z

boson and can produce µ+µ− pairs over a range of invariant mass mµµ, as shown in Figure 5.12.

These muon pairs are isolated and are produced with large pT, making them kinematically indis-

tinguishable from muons produced from W → µνµ events. Thus the most efficient way of reducing

their contribution to the signal sample is by reconstructing the mµµ distribution using muons of

opposite charge and rejecting pairs that fall within the Z mass window. This is performed by
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Figure 5.11: Distribution of the number of isolated muons per event in the data. Other than the

preselection requirements, no further cuts are applied to the sample.

testing all combinations of preselected (Table 5.4) muons in an event with all reconstructed muons

with pT > 20 GeV. If the mass combination results in mµµ > 66 GeV, both muons are vetoed.

The distribution of the number of isolated single muons per event in the data after applying

the Z boson veto is shown in Figure 5.13. It can be observed by comparing to Figure 5.11 that the

number of events with two isolated muons drops by approximately 60% while retaining almost 100%

of events with one isolated muon. This lends credence to the effectiveness of mµµ as a powerful

discriminant against Z boson events.

5.4.2.3 Muon pT

As mentioned in earlier sections, due to the large mass of the W and Z bosons, muons from

W → µνµ and Z → µ+µ− decays are produced with large pT. However, muons from W → τντ →

µνµντντ and QCD multi-jet processes typically appear in softer regions of the pT spectrum. This

is illustrated in Figure 5.14, which shows the muon pT spectra for simulated signal and background

samples at pT > 25 GeV after applying the isolation and mµµ requirements. The distributions are

normalized by their respective cross sections and are scaled to the number of binary collisions in
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Figure 5.12: The measured (points) and simulated (solid histogram) invariant mass distribution

of Z → µ+µ− events (Right) in Pb+Pb collisions. Z → e+e− events are also shown (Left) [38].

the data. The QCD multi-jet distribution is also scaled by an additional factor (discussed later in

Section 5.5) to take into account jet quenching.

It can be seen from the figure that at pT = 25 GeV, the QCD multi-jet background is ∼ 50%

of the signal, whereas the other background sources are at the level of ∼ 5− 7%. However, as one

moves to higher pT, the QCD multi-jet contribution drops exponentially and the signal increases.

Therefore, a pT cut at 25 GeV is used as part of the selection criteria for signal candidates.

5.4.2.4 Missing Transverse Energy pmiss
T

In W → µνµ events, the neutrino is undetectable. So the mass of the W boson cannot be recon-

structed in the same manner as for the Z boson (Figure 5.12). However, momentum conservation

is expected in the transverse plane (see Section 3.3.1), and thus the momentum vectors of unde-

tectable particles can be estimated by measuring the missing transverse momentum (Emiss
T ,pmiss

T ) of

the event. This observable is a powerful proxy for the kinematics of undetectable particles, and in

addition to its utility in detecting the presence of neutrinos, it has also proven useful in searches for

physics beyond the Standard Model (e.g. supersymmetric particles [256], additional heavy-gauge
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Figure 5.13: Distribution of the number of isolated muons per event in the data after applying the

Z boson veto (see text). Other than the preselection requirements, no further cuts are applied to

the sample.

bosons [257], and dark matter searches [258]).

The vector momentum imbalance in the transverse plane is calculated slightly differently in pp

and Pb+Pb collisions. The reason is that the resolution of Emiss
T using the same method as in pp

collisions is far worse in central Pb+Pb events and will be discussed in more detail below. This

section will begin with a description of the Emiss
T (pmiss

T ) reconstruction in both systems.

Emiss
T Reconstruction in pp Collisions In pp collisions [39], Emiss

T is calculated from the neg-

ative vector sum of the momenta of all detected particles in the event. The Emiss
T reconstruction

consists of contributions from energy deposits in the calorimeters and muons reconstructed in the

MS. The missing momentum is then calculated as:

Emiss
x(y) = Emiss,calo

x(y) + Emiss,µ
x(y) (5.11)

The magnitude of Emiss
T is calculated as:
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Figure 5.14: Muon pT distribution in simulated signal and background samples for preselected

muons with pT > 25 GeV after applying isolation and mµµ requirements. The distributions are

normalized by their respective cross sections and are scaled to the number of binary collisions in

the data. The QCD multi-jet distribution is rescaled to take into account jet quenching.

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2 (5.12)

and the azimuthal coordinate of the vector is given by:

φmiss = arctan

(
Emiss

y

Emiss
x

)
(5.13)

The Emiss
T calorimeter term is calculated from the negative sum of the cell energies corresponding

to each physics object and can be expressed as:
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Emiss,calo
x(y) = Emiss,e

x(y) + Emiss,γ
x(y) + Emiss,τ

x(y) + Emiss,jets
x(y)

+ Emiss,softjets
x(y) +

(
Emiss,calo,µ
x(y)

)
+ Emiss,CellOut

x(y) (5.14)

where the summation of cell energies is over |η| < 4.5. In Equation 5.14,

• Emiss,e
x(y) , Emiss,γ

x(y) , Emiss,τ
x(y) are associated to electrons, photons, and τ -jets from hadronically de-

caying τ leptons, respectively;

• Emiss,jets
x(y) is associated to jets with pT > 20 GeV;

• Emiss,softjets
x(y) is associated to jets with 7 < pT < 20 GeV;

• Emiss,calo,µ
x(y) is the contribution from muon energy loss in the calorimeters, which is only added

for non-isolated muons since the energy deposited in the calorimeters by the muon cannot be

resolved from the energy deposited by particles in a jet. In this case, the energy of the muon

in the MS before correcting for energy loss in the calorimeters is used.

• Emiss,CellOut
x(y) includes energies from cells not associated to the reconstructed objects mentioned

above. However, the deposited energy in the cell must still meet a lower threshold to be

included in the summation.

The Emiss
T muon term in Equation 5.11 is calculated from the momenta of muon tracks with

|η| < 2.7:

Emiss,µ
x(y) = −

∑
muons

pµx(y) (5.15)

The pT of combined muons, which is corrected for energy loss in the calorimeters, is used for isolated

muons. In this case, the Emiss,calo,µ
x(y) term is not included in Equation 5.14 to avoid double counting.

Otherwise, this term is included and Equation 5.15 uses the muon pT before energy-loss correction.

The distributions for Emiss
x(y) in minimum bias pp events in the data are shown in Figure 5.15. In

minimum bias events, no genuine Emiss
T is expected. The width of the distributions indicates the

effect of imperfections in the reconstruction process on the resolution. The (Emiss
x , Emiss

y ) resolution
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as a function of the total transverse energy of the event ΣET from data is shown in Figure 5.16. The

resolution is shown in Z → l+l−, QCD di-jet, and minimum bias events, which are not expected to

have any genuine Emiss
T . This allows the resolution to be measured from the width of the combined

Emiss
x(y) distributions (denoted (Emiss

x , Emiss
y ) in the figure) assuming that the true values of Emiss

x and

Emiss
y are zero. The distributions in Figure 5.16 are fit with the function σ = k ·

√
ΣET.
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Figure 5.15: Distribution of Emiss
x and Emiss

y in a data sample of minimum bias pp events. The

expectation from MC simulation is also included [39].

The same procedure for the Emiss
T calculation was conducted in a sample of Pb+Pb events. A

comparison of the resolution in Pb+Pb collisions and in pp collisions is presented in Figure 5.17.

It is evident from this figure that the (Emiss
x , Emiss

y ) resolution in the most central Pb+Pb events is

approximately a factor of 6 larger than in pp events. This is attributed to the enhanced multiplicities

in heavy-ion collisions, which result in large fluctuations of the terms in Equation 5.14. Therefore,

in this work, a new method for deriving the event Emiss
T is applied.

pmiss
T Reconstruction in Pb+Pb Collisions The poor resolution in central Pb+Pb events

makes the canonical method for calculating the Emiss
T untenable. Therefore, an alternative method [40,

259] is applied using only information from the ID. In this formulism, the missing momentum pmiss
T

(also referred to as �pT in the Feynman notation) is defined as the negative vector sum of the

momenta of all ID tracks:
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Figure 5.16: Emiss
x and Emiss

y resolution as a function of ΣET in pp collision data. The resolution

is fitted with the function σ = k ·
√

ΣET [39].
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CHAPTER 5. DATA ANALYSIS 169

pmiss
x(y) = −

∑
tracks

ptrack
x(y) (5.16)

where the summation is over high quality heavy-ion tracks (see Section 5.2) within |η| < 2.5. The

calculations of the magnitude of pmiss
T and the azimuthal angle φmiss are analogous to Equations 5.12

and 5.13.

Shortcomings of this method are that it neglects neutral particles in the vector summation

and is limited to the ID coverage. This contributes to the pmiss
x , pmiss

y resolution and the effects

are exacerbated by increasing the number of tracks in the summation of Equation 5.16. These

effects are in addition to other factors that contribute to the resolution: fake pmiss
T introduced

from dead material in the detector, finite detector resolution, and different sources of noise. To

better understand the dependence of the pmiss
x , pmiss

y resolution on the number of tracks in the

vector summation, several different lower track pT thresholds were studied. The resulting pmiss
x and

pmiss
y distributions in minimum bias Pb+Pb events are shown in Figure 5.18. The width of the

distributions are negatively correlated with the lower track pT threshold. However, at very high

thresholds, too many tracks are removed from the summation. This results in unbalanced tracks in

the event and is visible as peaks at the positive and negative ends of the pmiss
x , pmiss

y distributions.

The resolutions in pmiss
x , pmiss

y are determined from the widths of Figure 5.18 and are shown in

Figure 5.19. As in the case for the Emiss
x , Emiss

y resolution, it is assumed that the true pmiss
x , pmiss

y

is zero in minimum bias events. It is evident that even for the lowest track pT threshold, the

resolution is still better than that obtained using calorimeter cells. At the highest threshold, the

resolution is improved by a factor of four. However, as stated above, the highest threshold removes

too many tracks in the calculation of pmiss
T . Therefore, this work uses a lower track pT threshold of

3 GeV, and hereafter this threshold will be implied unless stated otherwise. The mean pmiss
x , pmiss

y

is plotted in Figure 5.20 to show the bias (i.e. deviation from zero) for each threshold. The bias

for the 3 GeV threshold is small, however it is subtracted before calculating the final pmiss
T of each

event.

Validation and Performance The correlation between pmiss
T and the true neutrino pT in a

simulated sample of W → µνµ events is shown in Figure 5.21. The figure demonstrates that the

correlation is better in more peripheral events, where smearing effects in the resolution are less
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Figure 5.18: Distribution of pmiss
x (Left) and pmiss

y (Right) in a data sample of minimum bias Pb+Pb

events. Distributions are shown for the most central 0-5% (Top) and peripheral 40-80% (Bottom)

classes. The set of pmiss
x , pmiss

y distributions in each panel are calculated using various lower track

pT thresholds in the vector summation of Equation 5.16. All distributions are normalized to unity.

pronounced. The difference between the azimuthal angle of pmiss
T and the azimuthal angle of the

neutrino as a function of the difference between the magnitude of the pmiss
T and neutrino pT vectors

is presented in Figure 5.22. Both central and peripheral events show a strong peak at zero, again
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Figure 5.19: pmiss
x and pmiss

y resolution as a function of ΣEFCal
T in a data sample of minimum bias

Pb+Pb events. The distributions in each panel are shown for various lower track pT thresholds

used in the vector summation of Equation 5.16.

with a tighter correlation in peripheral events. Overall, the correlation between the pmiss
T and

neutrino pT is strong enough to reliably reconstruct the transverse mass of W → µνµ events

in a heavy-ion environment.

The pmiss
T distributions from simulated W → µνµ, QCD di-jet, Z → µ+µ−, and W → τντ events

are shown in Figure 5.23. The distribution is plotted after applying the isolation, mµµ, and pµT

requirements discussed in Sections 5.4.2.1, 5.4.2.2, and 5.4.2.3. The distributions are normalized

by their respective cross sections and are scaled to the number of binary collisions in the data,

as in Figure 5.14. The figure shows that the number of background events declines rapidly with

increasing pmiss
T . Therefore, a pmiss

T cut at 25 GeV is used as part of the signal selection criteria to

increase the sample purity.

5.4.2.5 Transverse Mass mT

pmiss
T and pµT are used to reconstruct the transverse mass of the W boson:
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Figure 5.20: Mean pmiss
x and pmiss

y as a function of ΣEFCal
T in a data sample of minimum bias

Pb+Pb events. The distributions in each panel are shown for various lower track pT thresholds
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Figure 5.21: Correlation of pmiss
T with the true neutrino pT in a simulated MC sample of W → µνµ

events for the central 0-5% and peripheral 40-80% classes.
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Figure 5.22: Difference in the azimuthal angle of the pmiss
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T and pν,truthT vectors for the central 0-5% and peripheral

40-80% classes.

mW
T =

√
2pµTp

miss
T (1− cos ∆φµ,pmiss

T
) (5.17)

where cos ∆φµ,pmiss
T

is the azimuthal separation between the pµT and pmiss
T vectors. The mT distri-

butions for simulated signal and background samples are shown in Figure 5.24. The distributions

are normalized in the same manner as in Figures 5.14 and 5.23 and are plotted after all final selec-

tion cuts have been applied. The figure clearly shows that signal candidates start to dominate at

mT ≈ 40 GeV, which is the requirement used for selecting W → µνµ events in this work.

5.4.2.6 Signal Selection Chain

A summary of the final selection requirements is provided in Table 5.6. Also provided in the

same table are the number and percentage of events in the data surviving each selection cut. The

absolute percentage is calculated relative to the number of preselected muons, whereas the relative

percentage is calculated relative to the preceding cut. Table 5.6 shows that the majority of muons

are rejected after applying the pT selection. After final selection, only 3.7% of preselected muons
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Figure 5.23: Muon pmiss
T distribution in simulated signal and background samples for preselected

muons with pµT and pmiss
T > 25 GeV after applying isolation and mµµ requirements. The distri-

butions are normalized by their respective cross sections and are scaled to the number of binary

collisions in the data. The QCD multi-jet distribution is rescaled to take into account jet quenching.

are signal candidates.

Tables 5.7-5.10 present the same information as in Table 5.6 but for simulated W → µνµ, QCD

di-jet, Z → µ+µ−, and W → τντ events. Table 5.7 shows that ∼ 57% of W candidates survive

preselection to final selection. The pT cut removes the majority of QCD di-jet and W → τντ events,

with the pmiss
T and mT cuts also contributing. In the Z → µ+µ− sample, most of the Z candidates

are removed by applying the mµµ requirement. These data show that the analysis selection chain

is very efficient at eliminating background events while maintaining a large concentration of signal

candidates.

The distribution of W candidates per event in the data after final selection is presented in

Figure 5.25. Events with zero candidates include events without a muon. One observed event has

two W candidates. After final selection, the sample contains 3348 W+ and 3185 W− candidates.
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Table 5.6: Number of events in the data surviving each analysis cut.

Pb+Pb Data 2011

Cut Events absolute eff. (%) relative eff.(%)

Preselection 175792 - -

Isolation 133929 76.2 76.2

mµµ < 66 GeV 132219 75.2 98.7

pT > 25 GeV 10092 5.7 7.6

pmiss
T > 25 GeV 6856 3.9 67.9

mT > 40 GeV 6533 3.7 95.3

Table 5.7: Number of events in the W → µνµ MC surviving each analysis cut.

W → µνµ MC

Cut Events absolute eff. (%) relative eff.(%)

Preselection 355181 - -

Isolation 346657 97.6 97.6

mµµ < 66 GeV 346187 97.5 99.9

pT > 25 GeV 255648 72.0 73.8

pmiss
T > 25 GeV 201972 56.8 79.0

mT > 40 GeV 200706 56.5 99.4
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Table 5.8: Number of events in the QCD di-jet (Jx+1µ) MC surviving each analysis cut.

QCD Di-jet MC

Cut Events absolute eff. (%) relative eff.(%)

Preselection 4964700 - -

Isolation 4089730 82.4 82.4

mµµ < 66 GeV 4088680 82.4 100

pT > 25 GeV 4077 0.08 0.1

pmiss
T > 25 GeV 1197 0.02 29.4

mT > 40 GeV 566 0.01 47.3

Table 5.9: Number of events in the Z → µµ MC surviving each analysis cut.

Z → µµ MC

Cut Events absolute eff. (%) relative eff.(%)

Preselection 557980 - -

Isolation 543044 97.3 97.3

mµµ < 66 GeV 119509 21.4 22.0

pT > 25 GeV 60913 10.9 51.0

pmiss
T > 25 GeV 39423 7.1 64.7

mT > 40 GeV 37570 6.7 95.3
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Figure 5.24: Muon mT distribution in simulated signal and background samples for preselected

muons with pµT > 25 GeV, pmiss
T > 25 GeV and mT > 40 GeV after applying isolation and mµµ

requirements. The distributions are normalized by their respective cross sections and are scaled to

the number of binary collisions in the data. The QCD multi-jet distribution is rescaled to take into

account jet quenching.

5.5 Background Determination

After applying the final selection criteria, a non-negligble number of background events from QCD

di-jet, Z → µ+µ−, and W → τντ processes remain in the data sample. Other background sources

that are considered include Z → ττ events where at least one τ decays into a muon and tt̄ events

where at least one t quark decays semileptonically. However, based on the cross sections of each

channel [260, 261], their contributions are expected to be negligible (< 0.2%) and thus are not

considered in the total background estimation. This section describes how the major residual

background sources are estimated and subtracted from the number of signal candidates.
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Table 5.10: Number of events in the W → τντ → µνµντντ MC surviving each analysis cut.

W → τντ → µνµντντ MC

Cut Events absolute eff. (%) relative eff.(%)

Preselection 641882 - -

Isolation 626477 97.6 97.6

mµµ < 66 GeV 625628 97.5 99.8

pT > 25 GeV 290787 45.3 46.5

pmiss
T > 25 GeV 222106 34.6 76.4

mT > 40 GeV 222009 34.6 100
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Figure 5.25: Distribution of the number of W candidates per event in the data after applying final

selection requirements.
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5.5.1 QCD Multi-Jet

As mentioned previously, muons from semileptonic decays of bottom and charm mesons (B →

µ+X,D → µ+X) constitute a significant portion of background events. These types of muons are

reduced mainly from the isolation and kinematic requirements discussed in the previous sections.

However, muons produced in the high pT tail of the QCD multi-jet distribution, in association

with a significant amount of fake pmiss
T (e.g. jets produced outside the ID acceptance), can result

in a small percentage of background contamination in the signal region. These types of muons are

plotted in Figure 5.26, which shows the pµT distributions for preselected muons from each simulated

di-jet sample. The distributions are normalized to the respective di-jet cross sections, taking into

account the probability of a µ+jet event in each pT region, and are scaled to the mean number of

binary collisions in the data.
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Figure 5.26: pµT distributions for preselected muons from MC samples of QCD di-jet events. The

QCD di-jet samples are normalized to their respective cross sections and are scaled to the mean

number of binary collisions in the data. The probability of a muon-jet event in each energy region

is taken into account.
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Figure 5.27 shows the muon pT distribution obtained from the combination of the QCD di-

jet samples in Figure 5.26 (shaded histogram). To account for jet energy loss in the medium, a

scale factor is determined by comparing the QCD di-jet distribution from MC to the muon pT

distribution from the data in the same phase space. The jet-quenching scale factor is calculated

by scaling the MC distribution to the data in a control region dominated by QCD multi-jet events

(10 < pT < 20 GeV). This procedure assumes that the scale factor is constant as a function of pT.

In Section 5.8, a systematic uncertainty is assigned to this assumption. The average scale factor is

0.4 over all |η| and centrality classes and is independent of muon charge. The rescaled QCD di-jet

distribution is included in Figure 5.27 (solid histogram).

As a cross-check, the shapes of QCD multi-jet distributions from data and MC simulation in the

high pT region are compared. The comparison is performed by inverting the isolation requirement

from Section 5.4.2.1. The anti-isolation requirement is applied to both the QCD multi-jet and data

samples, as shown in Figure 5.28. In this figure, the data are shown before and after applying the

anti-isolation requirement, as well as after subtracting the estimated signal leakage from W → µνµ

events (triangle points). The resulting distribution is compared to the QCD multi-jet distribution

after anti-isolation has been applied (solid histogram). The distribution from MC simulation is

normalized to the expected number of events in the data. The slight excess at pT ≈ 40 GeV is

mainly due to unsubtracted Z → µ+µ− and W → τντ events. The overall shapes of the data

and QCD multi-jet MC sample are in agreement, further validating the background estimation

procedure.

5.5.1.1 QCD Background Fraction

After applying the scaling procedure described above, the estimated fraction of signal candidates

from QCD multi-jet events is determined by applying the final selection requirements to both the

data and background sample, as shown in Figure 5.29 for µ+ and µ− events. No charge depen-

dence is observed, and so the background fraction fQCD is only calculated as a function of |η| and

centrality, as shown in Figure 5.30. The left panel of Figure 5.30 also shows the integrated back-

ground fraction, which is approximately 3.7% of the number of signal candidates. The background

fraction as a function of centrality decreases linearly from peripheral to mid-central events due to

jet quenching. However, in more central collisions, the centrality dependence of the signal selection
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Figure 5.27: Muon pT distribution in the data after preselection (points). pT distributions from

QCD multi-jet processes from MC simulation is shown in the same figure. The shaded histogram

is scaled to the mean number of binary collisions in the data but does not take into account jet

quenching. The solid histogram takes into account jet quenching by the use of a scale factor, which

is determined in a background control region defined by 10 < pT < 20 GeV. Using this procedure,

the QCD multi-jet background fraction can be determined from the number of muons surviving

final selection requirements [40].

starts to play a role. The larger background fraction at mid-rapidity than at forward rapidity

can be explained by the different kinematics between muons from QCD multi-jet processes and

W → µνµ decays (i.e. the η distributions for W → µνµ events have longer tails).

5.5.2 Electroweak

Background contributions from Z → µ+µ− and W → τντ → µνµντντ events are collectively

referred to as electroweak background. This background source is less than the background from

QCD multi-jet processes but is still large enough that it cannot be neglected.



CHAPTER 5. DATA ANALYSIS 182

[GeV]
T

p

10 20 30 40 50 60 70 80 90 100

M
uo

ns

-210

-110

1

10

210

310

410

ATLAS

Anti-Isolated QCD multi-jet MC
 MCνµ→Anti-Isolated W

Data
Anti-Isolated Data
Anti-Isolated,Signal Subtracted Data
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(triangles). The distribution from the data is compared to an anti-isolated QCD multi-jet sample

(solid histogram). The QCD multi-jet sample is normalized to the expected number of events in

the data.

5.5.2.1 Z → µ+µ−

A large percentage of Z → µ+µ− events are removed by applying the mµµ requirement discussed in

Section 5.4.2.2. However, if one muon from the decay is produced outside the detector acceptance,

a dimuon pair cannot be formed and furthermore, the event will have large spurious pmiss
T . These

types of events are unavoidable and increase the electroweak background in the signal region.

To demonstrate this mechanism, a toy model of Z → µ+µ− events at generator level is used to

track the muon produced outside the acceptance, which will be called the “lost muon.” The other

muon from the Z decay is matched to a reconstructed muon. Figure 5.31 shows a distribution of

the azimuthal separation between the lost muon and pmiss
T vectors. The lost muon and pmiss

T are

taken from the same event. This distribution shows the lost muon is in the same direction as that



CHAPTER 5. DATA ANALYSIS 183

[GeV]
T

p

0 20 40 60 80 100

M
uo

ns
/G

eV

-210

-110

1

10

210

310

410

510
data (PS)
J1-3 (PS)
data (W Sel)
J1-3 (W Sel)

data (PS)
J1-3 (PS)
data (W Sel)
J1-3 (W Sel)

+µ0-80%, |<2.4η0.1<|
data (PS)
J1-3 (PS)
data (W Sel)
J1-3 (W Sel)

[GeV]
T

p

0 20 40 60 80 100

M
uo

ns
/G

eV

-210

-110

1

10

210

310

410

510
data (PS)
J1-3 (PS)
data (W Sel)
J1-3 (W Sel)

data (PS)
J1-3 (PS)
data (W Sel)
J1-3 (W Sel)

-µ0-80%, |<2.4η0.1<|
data (PS)
J1-3 (PS)
data (W Sel)
J1-3 (W Sel)

Figure 5.29: Reconstructed pT spectra for µ+ and µ− from data (points) and QCD multi-jet

MC simulation (histograms) before (red; PS=preselection) and after (blue; WSel=W selection)

applying final selection criteria. The spectra are integrated over all centrality classes (0 − 80%)

and pseudorapidity (0.1 < |η| < 2.4) windows. The background fraction is determined from the

MC/Data ratio after final selection has been applied.

of the pmiss
T vector, implying that in these events the pmiss

T is fake and attributed to the lost muon.

This is further supported by Figure 5.32, which presents the η distribution of the lost muon. As

expected, this muon is produced either outside the MS acceptance (η > 2.5) or in regions of poor

MS coverage: the gap region at η ≈ 0 and the barrel/end-cap transition region at η ≈ 1.05.

Z → µ+µ− Background Fraction The fraction of signal candidates from Z → µ+µ− events is

determined using the measured cross section in Pb+Pb collisions at
√
sNN=2.76 TeV [38]. However,

since two muons are produced per Z boson, one must be careful to use the correct fraction. The

fraction of single muons surviving final selection per Z → µ+µ− event is estimated from MC

simulation. This fraction is then applied to the corresponding number of measured Z → µ+µ−

events, resulting in the number of background muons in each centrality class and |η| window. If

NµZ represents the number of single muons from Z → µ+µ− events surviving final selection, the

background can be expressed as:
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Figure 5.30: Charge inclusive (µ±) QCD multi-jet background fraction as a function of centrality

class (Left) and |η| (Right). Error bars are statistical only.

NµZ =
N selected
µZ

Ngenerated
Z

·Ndata
Z (5.18)

where selected represents those muons surviving final selection and generated signifies the total

number of Z → µ+µ− events from MC simulation. The fraction of signal candidates in the data

from Z → µ+µ− events fZ is plotted in Figure 5.33 as a function of centrality and |η|. The integrated

background percentage is approximately 2.4% of the number of signal candidates. Very little charge

and centrality dependence is observed in fZ , whereas there may be a slight η dependence, which

again can be attributed to the different kinematics between W → µνµ and Z → µ+µ− events.

5.5.2.2 W → τντ → µνµντντ

W → τντ → µνµντντ events are associated with large pmiss
T , and therefore the pmiss

T and mT

requirements are not as effective at reducing this background source. Additionally, the muons are

isolated. However, since the muon is produced from the τ lepton rather than directly from the

W boson, the pT distribution will be softer than for prompt muons from W → µνµ events (see

Figure 5.14).
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Figure 5.31: ∆φ of the “lost muon” from a Z → µ+µ− decay and the pmiss
T vector in a MC

toy-model.

W → τντ → µνµντντ Background Fraction To determine the fraction of signal candidates

from W → τντ → µνµντντ events, the branching ratios for the W → τντ (11.25%), W → τντ →

µνµντντ (17.4%), and W → µνµ (10.57%) channels [2] are used to calculate the number of W →

τντ → µνµντντ events per W → µνµ event:

(
σW→τντ→µνµντντ

σW→µνµ

)
=

(
σW→τντ→µνµντντ

σW→τντ

)
·
(
σW→τντ
σW

)
·
(

σW
σW→µνµ

)
(5.19)

The MC simulation is then used to estimate the fraction of W → µνµ events and fraction of

W → τντ → µνµντντ events passing final selection requirements: fW→µνµ and fτ→µνν , respectively.

Equation 5.19 is used with fW→µνµ and fτ→µνν to calculate the background fraction in the data:

fτ ≡
N selected
W→τντ→µνµντντ
N selected
W→µνµ

=

(
σW→τντ→µνµντντ

σW→τντ

)
· fW→µνµ · fτ→µνν (5.20)

where selected represents the number of events passing final selection requirements. Figure 5.34

shows the background fraction in the data from τ leptons as function of |η| for each centrality class.
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Figure 5.32: η distribution of the “lost muon” from a Z → µ+µ− decay in a MC toy-model.
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Figure 5.33: Single muon background fraction from Z → µ+µ− events as a function of centrality

class (Left) and |η| (Right). Error bars are statistical only and include errors from the measured

Z measurement.

The integrated background percentage is approximately 1.5% of the number of W → µνµ events.
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Figure 5.34: Background fraction from W → τντ → µνµντντ events as a function of |η| in each

centrality class. Error bars are statistical only.

5.6 Muon Trigger and Reconstruction Efficiencies

To better understand muon losses at high pT due to inefficiencies in the triggers and reconstruction,

events from both the data and MC simulation are used. The single muon reconstruction efficiencies

are studied using MC simulation of Z → µ+µ− events. The dimuon pairs from Z boson decays

offer a low background sample for estimating muon performance in a heavy-ion environment. The

reconstruction efficiency is defined as the fraction of generated muons that can be matched to

reconstructed objects. This implies that a muon produced from the collision but not reconstructed

counts as an inefficiency. However, the reconstruction efficiency is distinguished from losses due

to detector coverage by considering only muons generated in the fiducial volume 2 of the detector.

Figure 5.35 presents the combined muon reconstruction efficiencies from simulated Z → µ+µ−

events as a function of generated muon pT and η. This figure shows efficiencies from both the

Muid and Staco reconstruction chains as well as from a merged sample of the two. The merged

chain slightly increases the efficiency by approximately 1-2%. As stated previously in Chapter 4,

2The fiducial volume denotes a clearly defined region of phase space where the ATLAS detector operates with

high efficiency. This is defined as plT > 25 GeV, pmiss
T > 25 GeV, mT > 40 GeV, and 0.1 < |η| < 2.4 for muons in this

work.
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this work uses the Muid chain, which has an integrated efficiency of approximately 97%. The

reconstruction efficiencies show no pT dependence, and as expected, are lower in the MS gap region

at η ≈ 0 and barrel/end-cap transition regions at |η| ≈ 1.05. The centrality dependence as a

function of generated pT and |η| for the most central 0-5% and peripheral 60-80% classes are shown

in Figure 5.36. The efficiencies are approximately 1-3% higher in peripheral events due to the

higher occupancy of the ID in central Pb+Pb collisions.
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Figure 5.35: Combined muon reconstruction efficiencies as a function of generated pT (Left) and

η (Right) from simulated Z → µ+µ− events in Pb+Pb. Errors are statistical only.
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The muon triggers used in this work were discussed in Section 5.1.1. Their efficiencies are

determined using a minimum bias sample from the data. The trigger efficiency εµtrig is defined with

respect to reconstructed muons as:

εµtrig =
Nµ(Φ, trig,matched)

Nµ(Φ)
(5.21)

where the numerator represents the number of reconstructed muons in phase space Φ that triggered

readout of the event and can be matched to an online trigger object (see Section 5.4.1), and the

denominator represents the total number of reconstructed muons in the same phase space.

Since multiple single muon triggers are used, the efficiencies are evaluated from the union of

triggered minimum bias events (i.e. the muon must have fired at least one of the triggers). The

trigger efficiency as a function of muon pT integrated over 0.1 < |η| < 2.4 and centrality 0-80% is

shown in Figure 5.37. The efficiencies are obtained by fitting the distributions to the functional

form:

εµtrig(pT) = ε0

[
1 + erf

(
pT − pthresh

T

s

)]
(5.22)

where there are three free parameters: ε0 is a scale fractor that determines the plateau efficiency,

pthresh
T is the “effective” trigger threshold, and s accounts for the slope in the turn-on region. The

efficiencies in each |η| window and centrality class are evaluated from the plateau efficiency. These

values are reported in Table 5.11. Lower efficiencies are expected in the RPCs due to limited

coverage in the barrel region and in the outer edges of the TGCs where the magnetic field bends

muons away from the acceptance. However, the full scan triggers recover some of these muons. The

binning in Table 5.11 is slightly different than the binning used for W → µνµ events due to limited

statistics in the minimum bias sample. However, this bin granularity is sufficient to capture the

variation of the efficiencies in different η regions and centrality classes.

5.7 Yield Correction Procedure

The number of raw W → µνµ events in the data is obtained by subtracting the estimated back-

ground from the number of signal candidates. The raw signal counts are corrected for inefficiencies

attributed to the triggers, reconstruction, and final selection requirements. The efficiency correc-
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Figure 5.37: Single muon trigger efficiency from minimum bias events as a function of pT for µ+

(Left) and µ− (Right) for 0.1 < |η| < 2.4 and centrality 0-80%. The plateau efficiency is from

Equation 5.22 is used to correct the W yields. This is performed in each η and centrality class

(Table 5.11).

tion factor can be factorized into two components: one that corrects for signal losses in the fiducial

region (CW ) and another that corrects for losses outside measurement regions of the detector (AW ).

5.7.1 CW

The CW is used to calculate fiducial yields and is defined as:

CW± =
N rec
W±

Ngen,fid
W±

, (5.23)

where N rec
W represents the number of W → µνµ events reconstructed in the fiducial region (i.e.

satisfying final selection criteria) and Ngen,fid
W signifies the number of W → µνµ events in the

same phase space at generator level. Equation 5.23 corrects for signal losses due to the selection

requirements, reconstruction, and triggers. However, it does not account for signal events lost due

to limited detector coverage. The trigger efficiencies are determined from the data (Table 5.11) and

the selection and reconstruction efficiencies are taken from MC simulation. Ngen,fid
W is evaluated
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Centrality |η| εµtrig[%]

(0.0-1.2) 92.7±1.1

(0-10)% (1.2-2.0) 91.0±0.8

(2.0-2.5) 89.3±2.8

(0.0-1.2) 96.4±1.1

(10-20)% (1.2-2.0) 95.7±0.6

(2.0-2.5) 98.0±3.4

(0.0-1.2) 99.6±0.6

(20-40)% (1.2-2.0) 97.5±0.5

(2.0-2.5) 95.9±2.6

(0.0-1.2) 98.7±1.0

(40-80)% (1.2-2.0) 96.9±0.9

(2.0-2.5) 99.3±3.2

Table 5.11: Single muon trigger efficiencies εµtrig for muons with pT > 25 GeV as a function of |η|

and centrality.

directly from the W boson (Born level). This accounts for effects due to bin migration and QED

radiation. Migration effects are at most ∼ 0.3% of reconstructed signal events in any given |η|

bin. This is illustrated in Figure 5.38. which shows the fraction of reconstructed W → µνµ events

generated in the same bin.

The CW distributions as a function of |η| for the most central (0-5%) and peripheral (40-80%)

centrality classes are shown in Figure 5.39 for both W+ → µ+νµ and W− → µ−ν̄µ events. Very

little charge dependence is observed and the integrated CW± is (67.4± 0.2)%, ranging from 32% in

the most central events at forward |η| to 85% in the most peripheral events at 0.5 < |η| < 1. The

reason for this variation is two-fold: the detector geometry affects the reconstruction and trigger

efficiencies, and therefore CW will be lower in some regions; and the isolation and pmiss
T resolution

are centrality dependent.
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Figure 5.39: CW distribution as a function of |η| for the most central (0-5%) and peripheral

(40-80%) centrality classes for W+ → µ+νµ (Left) and W− → µ−ν̄µ (Right) events.

5.7.2 AW

The AW is defined as:
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AW± =
Ngen,fid
W±

Ngen,all
W±

(5.24)

where Ngen,fid
W is the denominator of Equation 5.23 and signifies events generated in the fiducial

region and Ngen,all
W represents all generated W → µνµ events. The AW in Equation 5.24 can be

used to extrapolate the yields over the entire phase space, which is required when reporting the

total integrated cross section. However in this work, only the fiducial W production yields are

determined and the AW is only used to express the yields from the muon and electron channels in

a common phase space. A discussion of the channel combination and extrapolated yields will be

deferred to Chapter 6.

Figure 5.40 presents the η distributions for Ngen,fid
W and Ngen,all

W in Equation 5.24. The integrated

AW+ and AW− values are 54.4% and 53.6%, respectively. The latter is slightly lower since a larger

fraction of W− → µ−ν̄µ events are produced at large η, outside the detector acceptance.
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Figure 5.40: Pseudorapidity distributions of W → µνµ events at generator level for µ+ (Left) and

µ− (Right) in the fiducial region (gen,cut) and over all phase space (gen,all).
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5.8 Systematic Uncertainties

This final section discusses the different sources of systematic uncertainty. Uncertainties corre-

lated between different |η| bins and between different centrality classes are distinguished from

bin-uncorrelated uncertainties. The bin-correlated uncertainties consist of uncertainties in the

pmiss
T resolution, background estimation, isolation, reconstruction efficiency, muon pT resolution,

yield extrapolations, and 〈Ncoll〉. All other uncertainties are uncorrelated between bins. The bin-

correlated uncertainties are also distinguished from uncertainties correlated between the muon and

electron channels, and this will be discussed in Chapter 6.

5.8.1 pmiss
T Resolution

As illustrated in Figure 5.19, the resolution in pmiss
x , pmiss

y varies with the event multiplicity and

lower track pT threshold used to calculate pmiss
T (Equation 5.16). The lower track pT threshold

of 3 GeV was chosen based on two factors: improvement in the pmiss
T resolution and low spurious

pmiss
T . The uncertainty in the resolution stems from the uncertainty in the vector summation,

which determines the direction and magnitude of the pmiss
T vector. Simply smearing the magnitude

and azimuthal angle of the vector event-by-event results in a large correlation with the statistical

uncertainties of the W candidates. Therefore, the uncertainty in the resolution is evaluated by

varying the lower track pT threshold by ±1 GeV. Lowering the threshold increases the soft particle

contribution in the summation and slightly worsens the resolution. Raising the threshold slightly

improves the resolution but also removes tracks, introducing additional sources of spurious pmiss
T .

To observe the effect on the data, Figure 5.41 shows the pmiss
T for signal candidates in the 0-5%

and 40-80% centrality classes using a lower track pT threshold of 3± 1 GeV. The soft contribution

pushes the pmiss
T to the tails and has a larger impact on central than peripheral events. Raising the

threshold focuses the distribution at ∼ 40 GeV. This may be the result of a better resolution in

the pmiss
T or a consequence of the muon pT vector biasing the pmiss

T reconstruction since less tracks

are used in the vector summation.

The uncertainty is determined by recalculating the W yields after varying the threshold. In this

procedure, the correction factors and background are also recalculated. The resulting variation in

the yields is in the range of 2-4%.
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Figure 5.41: pmiss
T distribution for W → µνµ signal candidates in the data using lower track pT

thresholds of 2 GeV, 3 GeV, and 4 GeV to calculate the vector summation. The distributions are

shown for the 0-5% (Left) and 40-80% (Right) centrality classes.

5.8.2 Background Estimation

5.8.2.1 QCD Multi-Jet

Uncertainties in the background estimation of QCD multi-jet events is attributed to the extrapo-

lation at high pT (see Figure 5.27). There are two contributing factors to the uncertainty in the

extrapolation procedure: the modeling accuracy of the MC simulation relative to the data in the

high pT region and the effect of jet energy loss in the medium. To assess the uncertainty attributed

to these contributions, the QCD multi-jet distributions are reweighted by a nuclear modification

factor RAA that measures the extent of jet quenching by using a baseline measurement from pp

collisions. This is used in lieu of reweighting the QCD multi-jet distribution to a control region.

The RAA is defined as:

RAA(pT) =
d2NAA

ch /dpTdη

〈TAA〉d2σpp
ch /dpTdη

(5.25)
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where NAA
ch is the charged particle yield per event in Pb+Pb collisions and σpp

ch is the charged

particle cross section in pp collisions. The 〈TAA〉 ≡ 〈Ncoll〉/σNNinel is the nuclear overlap function and

is used to express the Pb+Pb yields as a per-nucleon cross section in each centrality class. The

distributions of the RAA as a function of pT in several centrality classes are shown in Figure 5.42.

Reweighting by the RAA assumes the modification for heavy-flavor muons is similar to that for

inclusive charged particles, which is a reasonable assumption[262, 263].
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Figure 5.42: Charged particle RAA in Pb+Pb data as a function of pT in different centrality classes.

After reweighting the QCD multi-jet distributions by the RAA, the background fractions and

W boson yields are recalculated. Figure 5.43 shows the reweighted QCD di-jet pT distributions

in the 0-5% and 40-80% centrality classes along with the measured distributions from the data.

These figures are shown at preselection level and after W selection (analogous to Figure 5.29).

Figure 5.44 shows the nominal background fraction using the original reweighting procedure and

the background fraction after reweighting with the RAA. The background fraction changes by a

maximum of 50%, corresponding to a variation in the W yields of 0.2-2%.

5.8.2.2 Electroweak

The uncertainty in the Z → µ+µ− background estimation arises from the uncertainty in the Z

boson cross section. This uncertainty is determined by substituting the measured Z → µ+µ−

yields with the yields estimated from MC simulation and varies the W yields by < 0.1%.
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Figure 5.43: Muon pT spectra in the 0-5% (Left) and 40-80% (Right) centrality classes from data

(points) and QCD multi-jet MC simulation (histograms) before (red; PS=preselection) and after

(blue; WSel=W selection) applying final selection criteria. The QCD multi-jet distributions are

reweighted using the RAA from the corresponding centrality class (see Figure 5.42). The background

fraction is determined from the MC/Data ratio after final selection has been applied.

The major contribution to the uncertainty in the W → τντ background is also the uncertainty

in the fraction of the cross section sampled in the signal region. This uncertainty is evaluated

by assuming the selection efficiencies for the pmiss
T and mT requirements in the signal region are

identical in the W → τντ → µνµντντ and W → µνµ channels. Recalculating the number of

background events results in a variation in the signal yields no larger than 0.1%.

Since the number of events in the Z → ττ and tt̄ channels are considered negligible (< 0.2%),

their small contribution is also added as a systematic uncertainty.

5.8.3 Isolation

The muon isolation is optimized with respect to the background rejection power εB, signal efficiency

εS , and effective signal Neff (see Figures 5.9 and 5.10). Using these criteria, the optimal working

point is determined to be iµ ≡
∑Ntrk
i=min p

trk
T,i−p

µ
T,trk

pµT
< 0.1 using a lower track pT threshold of 3 GeV and
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Figure 5.44: QCD multi-jet background fraction using the original reweighting procedure (nominal;

black points) and using the RAA (red points). The dotted lines are zeroth order fits.

∆R < 0.2. However, other isolation definitions have similar performance. This uncertainty in the

optimization translates to an uncertainty in the number of signal candidates. The systematic error

is estimated by varying the isolation working point. The upper threshold on ∆R is expanded from

0.2 to 0.3 and iµ is loosened from 0.1 to 0.2, as shown schematically in Figure 5.45 in (εB, εS) space.

The variation in the working point causes a variation in the W yields of 1-2% in any centrality

class or |η| interval.

5.8.4 Correction Factors CW

The systematic uncertainty in the CW is attributed to errors in the muon reconstruction efficiency,

trigger efficiency, and momentum resolution. The momentum resolution [41] is parametrized in the

ID by the quadratic sum :

σID(pT)

pT
= aID(η)⊕ bID(η) · pT for 0 < |η| < 2;

σID(pT)

pT
= aID(η)⊕ bID(η) · pT

tan2 θ
for 2 < |η| < 2.5 (5.26)

and in the MS by:
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Figure 5.45: Schematic of the variation in the isolation working point in (εB, εS) space. The two

variations (designated δ) correspond to expanding the ∆R from 0.2 to 0.3 and loosening iµ from

0.1 to 0.2.

σSA(pT)

pT
= aMS(η, φ)⊕ bMS(η, φ) · pT ⊕

c(η, φ)

pT
(5.27)

where aID(MS) account for multiple scattering in the detector material, the second terms describe

the intrinsic resolution caused by imperfect knowledge of the magnetic field in the ID and MS, and

the third term in Equation 5.27 parametrizes fluctations in the muon energy loss in the calorimeters.

The resolutions are derived from the dimuon invariant mass resolution in Z → µ+µ− decays, σmµµ .

The measured σmµµ is translated into the momentum resolutions in Equations 5.26 and 5.27 by

smearing the generated muon momenta by amounts necessary to reproduce the measured invariant

mass distribution. This procedure involves varying bID and aMS. The momentum resolutions for

the barrel and end-cap regions from pp collisions are shown in Figure 5.46 for the ID and MS

components. The errors are derived from the parameters in the resolution functions, and the

resolutions from MC simulation are shown before and after smearing.
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Figure 5.46: Muon momentum resolution in the ID and MS as a function of pT for the barrel (Top)

and end-cap (Bottom) regions. The dot-dashed line is from simulation and assumes perfect detector

alignment. The solid/dotted line shows the simulation after smearing to reproduce the measured

invariant mass distribution in the data. The solid section shows the measured resolutions, and the

dotted section is an extrapolation. Uncertainties in the measured are derived from the parameters

in the resolution functions (Equations 5.26 and 5.27) [41].
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The momentum resolution is worse in the data than in MC simulation. The differences are partly

attributed to residual misalignments of the ID and MS and are considered a source of systematic

uncertainty in this analysis. The magnitude of the error is determined by smearing the generator-

level muon pT in W → µνµ events within the systematic uncertainties of the parameters [264] in

Equations 5.26 and 5.27. The correction factors are recalculated, resulting in a variation in the W

yields of < 1%.

The uncertainty in the muon reconstruction efficiency at high pT is determined from a sample

of Z → µ+µ− decays. To estimate this uncertainty, the ratio of the number of muon pairs recon-

structed in both the ID and MS and muon pairs reconstructed in the MS, without any restriction

on the ID component, is calculated in both the data and MC simulation. This procedure yields the

discrepancy in the combined muon reconstruction efficiency between the data and MC simulation.

The events in the MC simulation are reweighted such that the pair ratio agrees with the data. The

correction factors are then reevaluated, resuling in a systematic uncertainty of 1.0% in the signal

yields.

The uncertainty in the trigger efficiency is obtained by comparing efficiencies calculated using

a minimum bias sample of muons and efficiencies determined using a tag-and-probe method with

Z → µ+µ− decays. The tag-and-probe method requires two oppositely charged muons: a “tag”

and a “probe. The tag is a high-quality combined muon that triggered the event. The probe is

any type of muon with pT > 10 GeV. The trigger efficiency is calculated based on the fraction of

probes that also triggered the readout of the event. Comparisons of the trigger efficiencies using

each method are provided below as a function of muon η and pT. Recalculating the correction

factors with the tag-and-probe efficiencies results in a W yield variation of approximately 0.4%.

5.8.5 Ncoll and Npart

The uncertainties in 〈Npart〉 and 〈Ncoll〉 are determined by varying parameters in the Glauber MC.

The variations consist of:

• Varying the nuclear radius R ± 0.06 fm and skin thickness a = 0.546 ± 0.01 fm by their

respective standard deviations.

• A 2% variation in the sampling fraction of the total Pb+Pb inelastic cross section.
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Figure 5.47: Comparison of muon trigger efficiencies obtained from a minimum bias (points) sample

and from a tag-and-probe (open squares) method as a function of η (Left) and pT (Right).

• A variation in σNN
inel = 64 mb by ±5 mb.

For each variation, new Ncoll and Npart values are obtained and the global fits are reperformed.

The uncertainties are shown in Table 5.3 and are correlated across all centrality bins.

5.8.6 Yield Extrapolation AW

As stated above, the AW is used to extrapolate the muon and electron yields into a common phase

space. For muons, the extrapolation is performed in the regions 0 < |η| < 0.1 and 2.4 < |η| < 2.5.

Uncertainties in this procedure are attributed to the PDF used in the MC simulation of W →

µνµ events. The systematic uncertainties in the PDF are obtained by combining the following

components:

• Uncertainties within the CT10 PDF set, derived from the eigenvector error sets at 90% C.L.

limit.

• Uncertainties due to differences between different PDF sets, estimated from the maximum dif-

ference between CTEQ 6.6 [265], ABKM095fl [266], HERAPDF 1.0 [267], MSTW2008 [268],

CT10W [246], and NNPDF2.1 [269]. The CT10 samples are reweighted event-by-event to the

other PDFs [270].
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• Uncertainties in the modeling of the hard scattering process of W production, derived from

comparisons between MC@NLO and POWHEG using the CT10 PDF set and parton showering from

PYTHIA.

• Uncertainties in the description of the parton showering and hadronization, derived from the

difference in the acceptances calculated by POWHEG with different showering and hadronization

algorithms from HERWIG and PYTHIA.

These contributions result in a systematic uncertainty of ≈ 0.3% in the yields of the extrapolated

regions.

5.8.7 Summary of Systematic Uncertainties

Table 5.12 provides a summary of the maximum values of the systematic uncertainties. Figure 5.48

shows the relative contributions of each systematic uncertainty as a function of |η| and centrality

class for both W+ → µ+νµ and W− → µ−ν̄µ events. The largest source of error (other than that

attributed to 〈Ncoll〉) is from the pmiss
T resolution. These errors are added in quadrature to give a

maximum total systematic uncertainty in any bin of ≈ 5%.
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Table 5.12: Maximum values of the relative systematic uncertainties in the number of W → µνµ

events in each |ηµ| interval and centrality class. Correlated uncertainties represent those that are

correlated as a function of centrality or |ηµ|. Bin–uncorrelated uncertainties represent statistical

uncertainties in the background estimation, trigger efficiencies, and yield correction factors.

Source Uncertainty [%]

pmiss
T resolution 4.0

QCD multi–jet background 2.0

Electroweak + tt̄ backgrounds 0.2

Muon isolation 2.0

Muon reconstruction 1.0

Muon pT resolution 1.0

Muon trigger efficiency 0.4

Extrapolation correction 0.3

Total bin–correlated 5.2

〈Ncoll〉 determination 9.4

Total bin–uncorrelated 3.0
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Figure 5.48: Relative systematic uncertainties as a function of |η| (Top) and centrality class

(Bottom) for µ+ (Left) and µ− (Right). These uncertainties are treated in the analysis as fully

correlated across |η| and centrality class. The figures do not include errors from 〈Ncoll〉.
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Chapter 6

Results and Discussion

6.1 Kinematic Distributions

To assess the accuracy of the modeling in the MC simulations and of the background estimation,

kinematic distributions from the simulated background and signal samples are compared to the

measured distributions of signal candidates in the data. Figures 6.1 and 6.2 show the muon |η|,

pT, event pmiss
T , and mT distributions for µ+ and µ− signal candidates. In each figure, the back-

ground distributions are normalized to the expected number of QCD multi-jet, Z → µ+µ−, and

W → τντ → µνµντντ events calculated using the procedures discussed in Section 5.5. The mea-

sured distributions are shown before background subtraction, and the simulated signal W → µνµ

distributions are normalized to the background-subtracted number of events in the data. The errors

in the data are statistical only.

The predicted distributions from MC simulation agree with the measured distributions in each

region of phase space. This suggests that the estimated background is an accurate representation

of the actual background in the data. The numbers of observed signal candidates in the data (i.e.

before background subtraction and correction) and background events in each centrality class and

|η| interval are shown in Tables 6.1 and 6.2, respectively. The background percentage is largest

(9-10%) in the most central events and at midrapidity, where high multiplicities are more likely to

decrease the signal purity.
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Figure 6.1: Measured absolute pseudorapidity (top) and transverse momentum (bottom) distri-

butions for W+ → µ+νµ (left) and W− → µ−ν̄µ (right) candidates after applying the complete set

of selection requirements in the fiducial region: pµT > 25 GeV, pmiss
T > 25 GeV,mT > 40 GeV and

0.1 < |ηµ| < 2.4. The contributions from electroweak and QCD multi-jet processes are normalised

according to their expected number of events and are added sequentially. The W → µνµ MC events

are normalised to the number of background-subtracted signal events in the data. The background

and signal predictions are also added sequentially. Errors in the data are statistical only.
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Figure 6.2: Measured missing transverse momentum (top) and transverse mass (bottom) distri-

butions for W+ → µ+νµ (left) and W− → µ−ν̄µ (right) candidates after applying the complete set

of selection requirements in the fiducial region: pµT > 25 GeV, pmiss
T > 25 GeV,mT > 40 GeV and

0.1 < |ηµ| < 2.4. The contributions from electroweak and QCD multi-jet processes are normalised

according to their expected number of events and are added sequentially. The W → µνµ MC events

are normalised to the number of background-subtracted signal events in the data. The background

and signal predictions are also added sequentially. Errors in the data are statistical only.
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Table 6.1: Summary of observed number of signal events and expected background counts for

µ+ and µ− for each centrality class (〈Npart〉). The kinematic requirements are 0.1 < |ηµ| < 2.4,

pµT > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV.

µ+ µ−

Centrality[%] 〈Npart〉 Observed Exp. background Observed Exp. background

0-5 382 675 65 645 62

5-10 330 493 38 534 38

10-15 282 472 41 453 39

15-20 240 401 24 355 22

20-40 158 945 62 869 58

40-80 46 362 26 329 23

Table 6.2: Summary of observed number of signal events and expected background counts for µ+

and µ− in bins of |ηµ|. The kinematic requirements are pµT > 25 GeV, pmiss
T > 25 GeV, and

mT > 40 GeV.

µ+ µ−

|ηµ| Observed Exp. background Observed Exp. background

0.1-0.35 534 38 421 30

0.35-0.6 493 36 446 33

0.6-0.8 426 28 331 22

0.8-1.05 502 39 419 34

1.05-1.3 342 33 287 29

1.3-1.55 350 30 359 31

1.55-1.85 319 24 340 25

1.85-2.1 204 15 259 17

2.1-2.4 178 14 323 20
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6.2 Corrected W → µνµ Yields

The background-subtracted raw signal counts in the fiducial region are corrected for inefficiencies

using the CW introduced in Section 5.7. The corrected number of W → µνµ events in the data can

be expressed as:

NW±(|ηµ|, 〈Ncoll〉) =
Nobs
W± −Nbkg

CW±
, (6.1)

where Nobs
W± represents the number of signal candidates observed in the data and Nbkg is the number

of residual background events in a given |η| and centrality class after applying signal selection. The

corrected yields in each centrality class and in each |η| interval are reported in Tables 6.3 and 6.4,

respectively. In the tables, statistical uncertainties are from the data, whereas bin-uncorrelated

uncertainties are from statistical uncertainties in the efficiency and background calculations. Bin-

correlated uncertainties were mentioned in Section 5.8 and include systematic variations that either

increase or decrease the yields across all bins. The yields in Tables 6.3 and 6.4 correspond to 5487

±96 (stat.) ±86 (syst.) W+ → µ+νµ events and 5262 ±95 (stat.) ±83 (syst.) W− → µ−ν̄µ events.

These yields are reported before accomodating the electron channel in the measurement, which

requires extrapolating the muon yields to 0 < |ηµ| < 0.1 and 2.4 < |ηµ| < 2.5, as will be discussed

below.

6.3 Channel Combination

To improve the precision of the measurement, the W → eνe and W → µνµ channels are combined.

The W → eνe analysis details are outside the scope of this thesis, and the reader is referred to

Refs. [40, 271]. This section will discuss the combination procedure.

Before performing the combination, the respective distributions from each channel are compared

to test lepton universality. Both channels share a common kinematic phase space in pT, pmiss
T , and

mT. However, due to geometric differences in the ATLAS calorimeters and MS, the measurements

are performed in different regions of η. Therefore, to cover the maximum phase space for W → `ν`

events, the AW values calculated from MC simulations are used to extrapolate the W → µνµ and

W → eνe yields.

In the differential measurements, the muon yields are extrapolated from 2.4 < |η| < 2.5 and



CHAPTER 6. RESULTS AND DISCUSSION 211

Table 6.3: Summary of corrected W+ and W− production yields for each 〈Npart〉 and centrality

class along with the absolute statistical, uncorrelated, and correlated uncertainties. The kinematic

requirements are pµT > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV.

µ+ µ−

Centrality[%] 〈Npart〉 Corrected yield δsta δunc δcor Corrected yield δsta δunc δcor

0-5 382 1214 47 32 33 1188 48 32 35

5-10 330 896 41 22 28 956 42 22 27

10-15 282 796 37 25 26 780 37 22 24

15-20 240 682 34 18 22 595 32 14 20

20-40 158 1448 47 21 36 1324 45 19 34

40-80 46 451 24 7 13 419 23 6 15

the electron yields from 2.47 < |η| < 2.5. Measurements from one channel are used to fill in

missing measurements from the other. This decreases the overall systematic uncertainty from the

extrapolation. The extrapolation increases the yields in the most forward pseudorapidity bins by

28% in the muon channel and by 7% in the electron channel. The differential yields as a function

of |η| from W → µνµ and W → eνe events are shown in Figure 6.3.

For the integrated yields in each centrality class, the W → µνµ events are extrapolated from

0 < |η| < 0.1 and 2.4 < |η| < 2.5 and W → eνe events from 1.37 < |η| < 1.52 (the “crack region” of

the calorimeters). This is necessary since the muon and electron channels must be within the same

overall fiducial region when comparing yields within a given centrality class (i.e. acceptance losses

vary the yields in each channel). The extrapolation increases the integrated yield for muons by

7.5% and the integrated yield for electrons by 6.6%. These distributions are presented in Figure 6.4

as a function of 〈Npart〉.

Figures 6.3 and 6.4 validate the assumption of lepton universality. The combination calculates

the central value (x̄) using a standard weighted-average procedure:
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Table 6.4: Summary of corrected W+ and W− production yields in each bins of |ηµ| along with

the absolute statistical, uncorrelated, and correlated uncertainties. The kinematic requirements are

pµT > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV.

µ+ µ−

|ηµ| Corrected yield δsta δunc δcor Corrected yield δsta δunc δcor

0.1-0.35 831 36 27 25 653 32 21 21

0.35-0.6 741 34 23 26 690 33 23 27

0.6-0.8 625 30 18 18 478 26 13 18

0.8-1.05 735 33 22 24 611 30 19 25

1.05-1.3 694 38 20 30 567 34 16 26

1.3-1.55 578 31 16 20 574 30 16 23

1.55-1.85 548 31 12 24 563 31 13 20

1.85-2.1 390 28 9 14 483 30 11 14

2.1-2.4 345 26 8 16 643 37 17 20



CHAPTER 6. RESULTS AND DISCUSSION 213

|
l

η|
0 0.5 1 1.5 2 2.5

〉 
co

ll
 N〈

9
10

  
ev

en
ts

N
1

 
ηdfid

uc
ia

l
dN

0

2

4

6

8

10

ν e→Data W

νµ →Data W

ν+ l→+W

-1
 0.14-0.15 nb≈ Ldt ∫

 = 2.76 TeVNNsPb+Pb 

ATLAS

|
l

η|
0 0.5 1 1.5 2 2.5

〉 
co

ll
 N〈

9
10

  
ev

en
ts

N
1

 
ηdfid

uc
ia

l
dN

0

2

4

6

8

10

ν e→Data W

νµ →Data W

ν- l→-W

-1
 0.14-0.15 nb≈ Ldt ∫

 = 2.76 TeVNNsPb+Pb 

ATLAS

Figure 6.3: Fiducial differential production yields per binary collision for W+ (Left) and

W− (Right) events from the electron and muon channels. Due to acceptance in the MS and

calorimeters, the first bin in the muon channel and the seventh bin in the electron channel are

not covered. Muon points are shifted horizontally for visibility. The kinematic requirements are

p`T > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV. Statistical errors are shown as black bars,

whereas bin-uncorrelated systematic and statistical uncertainties are added in quadrature and are

shown as the filled error box. Bin-correlated uncertainties are shown as the hatched boxes. These

include uncertainties from 〈Ncoll〉.



CHAPTER 6. RESULTS AND DISCUSSION 214

〉 
part

 N〈 
0 50 100 150 200 250 300 350 400

ev
en

ts
N

fid
uc

ia
l

N 〉 
co

ll
 N〈

9
10

  

0

2

4

6

8

10

12

14

16

18

20

22

ν+ l→+W ν+ e→+W ν+µ →+W

-1
 0.14-0.15 nb≈ Ldt ∫  = 2.76 TeVNNsPb+Pb 

ATLAS

〉 
part

 N〈 
0 50 100 150 200 250 300 350 400

ev
en

ts
N

fid
uc

ia
l

N 〉 
co

ll
 N〈

9
10

  

0

2

4

6

8

10

12

14

16

18

20

22

ν- l→-W ν- e→-W ν-µ →-W

-1
 0.14-0.15 nb≈ Ldt ∫  = 2.76 TeVNNsPb+Pb 

ATLAS

〉 
part

 N〈 
0 50 100 150 200 250 300 350 400

ev
en

ts
N

fid
uc

ia
l

N 〉 
co

ll
 N〈

9
10

  

0

5

10

15

20

25

30

35

40

ν± l→±W ν± e→±W ν±µ →±W

-1
 0.14-0.15 nb≈ Ldt ∫  = 2.76 TeVNNsPb+Pb 

ATLAS

Figure 6.4: Fiducial W+ (Top Left), W− (Top Right), and W± (Bottom) production yields per

binary collision as a function of 〈Npart〉. Each panel includes measurements from the W → µνµ

(upward triangles) and W → eνe (downward triangles) channels as well as the combined measure-

ment (circles). Muon and electron channels are offset for clarity. The kinematic requirements are

0 < |ηl| < 2.5, plT > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV. Statistical errors are shown

as black bars. These are added in quadrature to the bin-uncorrelated systematic uncertainties and

are shown as the filled error bands. Bin-correlated uncertainties are shown as the hatched bands.
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x̄ =

∑
`=µ,ew`x`∑
`=µ,ew`

(6.2)

where

w` =
1(

δxunc
`

)2
Here δxunc

` denotes the uncertainies considered uncorrelated across all bins and between the electron

and muon measurements. The total uncorrelated uncertainty is given by the sum:

δx̄unc =

∑
`=µ,e

w`

−1/2

The total correlated uncertainty in the combined measurement is calculated by the average of the

uncertainties considered fully correlated bin-to-bin and across both data sets:

δx̄cor =
1

2

∑
`=µ,e

δxcor
`

These uncertainies include the uncertainty in the pmiss
T measurement, electroweak background sub-

traction, 〈Ncoll〉, and extrapolation.

The central values of the combined integrated yields in each centrality class are included in

Figure 6.4. The physical implications of the combined lepton distributions will be discussed in the

following sections.

6.4 Binary Scaling and Pseudorapidity Dependence

Figure 6.5 shows the combined measurement of the number of W → `ν` events per binary nucleon-

nucleon collision in the data as a function of 〈Npart〉 for W+, W−, and W±. The yields are

independent of centrality. This implies that W bosons can be used in W+jet events to benchmark

jet energy loss in the medium by providing information about the modification of jet fragmentation

functions in a QGP, as described in Sec. 2.10. An identical centrality dependence has been observed

in measurements of other electroweak probes: Z bosons and photons (see Figure 6.6) [38, 42].

The measured W yields in Figure 6.5 are compared to NLO cross-section calculations from

POWHEG with the CT10 PDF sets. To describe the W cross section in Pb+Pb collisions, the theory
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predictions use a weighted combination of cross sections from the different binary nucleon-nucleon

systems: pp, nn, and pn(np). Thus, the predictions have 〈Npart〉 = 2 but are extended over the

entire 〈Npart〉 range for clarity. The NLO calculations describe the data well across all charge

classes.
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Figure 6.5: Fiducial W → `ν` production yields per binary collision as a function of 〈Npart〉 for

W+ → µ+νµ (downward triangles), W− → µ−ν̄µ (upward triangles), and W± → µ±νµ. The

kinematic requirements are 0 < |ηl| < 2.5, plT > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV.

Statistical errors are shown as solid bars. These are added in quadrature to the bin-uncorrelated

systematic uncertainties and are shown as the filled error bands. Bin-correlated uncertainties are

shown as the hatched bands and are offset for clarity. These include uncertainties from 〈Ncoll〉.

Also shown are NLO predictions from POWHEG using the CT10 PDF set [40].

The fiducial differential W+ and W− yields for the combined muon and electron measurements

are shown Figure 6.7. The data are compared to theory predictions from CT10 with and without

EPS09 nuclear corrections (see Sec. 2.9.2). The nuclear corrections account for shadowing, anti-

shadowing, the EMC effect, and Fermi motion. The uncertainties in the theory predictions are
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as for the combined channels for different pZT intervals [38]. The photon yields are also shown for

different pT intervals [42].
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obtained from the PDF uncertainties [12, 246] and uncertainties in the the renormalization and

factorization scales in the cross section calculations. Within the uncertainties of the measurement

and theory, both predictions describe the data well. Therefore, until the systematic and statistical

uncertainties can be reduced, no nuclear effects can be observed in the measured distributions.
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Figure 6.7: Fiducial differential production yields per binary collision in Pb+Pb for W+ → `+ν`

(Left) and W− → `−ν̄` (Right) events. The kinematic requirements are plT > 25 GeV, pmiss
T >

25 GeV, and mT > 40 GeV. Theory predictions from CT10 (filled) and CT10+EPS09 nuclear

corrections (hatched) are also shown [40].

However, the shapes are very different in the W+ → `+ν` and W− → `−ν̄` distributions. The

former drops sharply as a function of |η| while the latter has a slope close to zero. This behavior

is drastically different from that observed in pp collisions at 7 TeV within |η| < 2.5, as shown in

Figure 6.8. However, the measurements in Pb+Pb tend to resemble pp measurements at |η| > 2.5,

as shown Figure 6.9. It is difficult to attribute this behavior to
√
s, isospin effects, or some tandem

effect. This will be discussed further in the next section in the context of the charge asymmetry.
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Figure 6.9: Differential W → µνµ cross section as a function of pseudorapidity at forward 2 < |η| <

4.5 from LHCb [44]. Distributions for mu+ and µ− are shown, along with theory predictions at NLO

and NNLO. The kinematic requirements are events with exactly one muon with pT,µ > 20 GeV

and no other muon with pT,µ > 2 GeV.
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6.5 Charge Ratio and Asymmetry

6.5.1 Isospin Effects and
√
s Dependence

W boson production is sensitive to the color quantum numbers and momentum fractions x of the

incoming partons. Therefore, measurements of the charge asymmetry between W+ and W− events

provide information about the initial hard-scattering process. The leptonic charge asymmetry

from W → `ν` events is a convolution of the W asymmetry and parity-violating asymmetry of W

decays (see Chapter 2). Since the V-A interaction is well understood, the lepton asymmetry retains

sensitivity to the parton distribution functions.

Figure 6.10 presents the lepton charge asymmetry in Pb+Pb collisions. The figure also includes

theory predictions from CT10 with and without EPS09 nuclear corrections. Since systematics

correlated between charges cancel in the ratio, the asymmetry provides a more precise measurement.

However, even with the reduced uncertainties, nuclear effects are still inapparent in the measured

distribution. Based on the theory predictions, the asymmetry would have to be known within

±0.02, which may be attainable with much higher statistics but will still be challenging given the

residual systematic uncertainties.

The asymmetry changes sign at |η| ≈ 1.3− 1.5, where W− → `−ν̄` events surpass W+ → `+ν`

events and continue to do so at forward pseudorapidities. This anisotropy in the lepton decay angle

is expected and is governed by the polarization of the W boson and V-A interaction. As can be

inferred from Figures 6.8 and 6.9 above, negative asymmetries are still observed at 7 TeV in pp

measurements but outside the ATLAS acceptance. This is further illustrated in Figure 6.11, which

shows the combined measurement of the lepton charge asymmetry from ATLAS [43], CMS [272],

and LHCb [44]. In data collected from pp collisions, the asymmetry changes sign at |η| ≈ 3.3− 3.5

(Figure 6.12), a shift of approximately 2 units of pseudorapidity relative to the Pb+Pb measure-

ment.

To further investigate the dependence of the charge asymmetry on
√
s, Figure 6.14 shows the

lepton asymmetry at 2.76 TeV from CT10 for pp collisions. The asymmetry from nn and pn(np)1

collision systems are also shown. It can be seen from this figure that the asymmetry prediction

1The yields in the pn and np systems are parity invariant i.e. N
np
W+(−)(−η) = N

pn
W+(−)(+η). Thus A

pn
` (|η|) =

A
np
` (|η|).
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Figure 6.10: Fiducial lepton charge asymmetry Al = (NW+ − NW−)/(NW+ + NW−) in Pb+Pb

as a function of |η|. The kinematic requirements are p`T > 25 GeV, pmiss
T > 25 GeV, and mT >

40 GeV. Statistical uncertainties are shown as black bars, whereas bin–uncorrelated systematic and

statistical uncertainties added in quadrature are shown as the filled error box. Scaling uncertainties

are shown as the hatched boxes and are offset for clarity. Theory predictions from CT10 (hatched)

and CT10+EPS09 nuclear corrections (checkered) are shown also. The PDF uncertainties in both

the CT10+EPS09 and CT10 predictions are derived from the PDF error eigensets. The total

theoretical uncertainty also includes uncertainties in the renormalisation and factorisation scales in

the cross section calculations [40].
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from pp at 2.76 TeV changes sign at |η| ≈ 2.7, 0.6-0.8 units of pseudorapidity lower than that from

pp at 7 TeV. Therefore, at larger
√
s in pp collisions, W+ production exceeds W− production over

a larger |η| interval, stretching the tail of the lepton asymmetry distribution. This could be a result

of higher order effects from quark-gluon scattering (qg →Wq; Figure 6.13) [46] or of additional sea

quark contributions (see Figure 2.13) to the W± cross sections.

Figure 6.13: Relative contributions at NLO of qq̄ and qg subprocesses to W boson production as

a function of pWT at
√
s = 7 TeV [46].

The isospin contribution can also be observed from Figure 6.14, where the theory prediction

for the charge asymmetry in nn collisions is essentially always negative (neglecting uncertainties

from the theory). The neutron component increases the relative frequency of dū → W− → `−ν̄`

events. Thus, it can be implied that the nn component in Pb+Pb collisions serves to drive the

charge asymmetry to more negative values over any pseudorapidity interval.

pn(np) interactions are also interesting since there exists a symmetry in the number of ud̄ and

dū interactions, resulting in an equal production of W+ and W− events. The same symmetry exists

in pp̄ collisions at the Tevatron [47, 273]. However in these collisions, the valence quarks include

ū and d̄ quarks from the antiproton. The same mechanism for W production proceeds as in pn

collisions but with different valence distributions (i.e. uv = u− ū and dv = d− d̄). This results in

differences in the W rapidity distributions and thus in the lepton charge asymmetry distributions
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between the two collision systems. Figure 6.15 shows the charge asymmetry from W → µνµ events

collected by the D0 detector at 1.96 TeV in pp̄ collisions. The measurement is made only up to

|η| = 2 and uses a slightly tighter mT cut (mT > 50 GeV), but
√
s is similar to that in this work.

The asymmetry appears to change sign in approximately the same region of |η| as in the pn(np)

collision system at 2.76 TeV. This behavior further demonstrates the isospin effects in the charge

asymmetry measurements.
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Figure 6.14: Fiducial lepton charge asymmetry as a function of |η| from CT10 theory predictions.

Asymmetries are shown for each nucleon-nucleon interaction in a Pb+Pb collision. The kinematic

requirements are p`T > 25 GeV, pνT > 25 GeV, and mT > 40 GeV. Only statistical uncertainties are

shown. Each distribution is fit with a fourth order polynomial for clarity.

6.5.2 Integrated Charge Ratio W+/W−

The ratio of the number of W+ → `+ν` and W− → `−ν̄` events integrated over 0 < |η| < 2.5 as a

function of 〈Npart〉 is shown in Figure 6.16. The ratio distribution is flat within the experimental

uncertainties, implying an approximately equal production of W+ and W− bosons within the

fiducial region in each centrality class. This is somewhat counterintuitive since there are more

neutrons in Pb nuclei, and thus a higher probability for a dū → W− event. However, as stated

previously, a larger fraction of W− → `−ν̄` than W+ → `+ν` events are produced at forward |η|.

Many of these events are outside the detector acceptance, thus bringing the fiducial W− yields back
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Figure 6.15: Fiducial muon charge asymmetry as a function of |η| at
√
s = 1.96 TeV in pp̄

collisions [47]. The kinematic requirements are pµT > 25 GeV, Emiss
T > 25 GeV, and mT > 50 GeV.

The distribution is folded such that Aµ(η) = −Aµ(−η) (CP-folding).

to the level of the W+ yields.

The integrated charge ratio in Pb+Pb collisions W+/W− = 1.02 ±0.02 (stat.) ±0.02 (syst.).

In pp collisions, within an almost exact phase space, W+/W− = 1.542 ± 0.007 (stat.) ±

0.012 (syst.) [43], as shown in Figure 6.17. The difference is again attributed to the tandem

effects of the isospin of the Pb nucleus and
√
s.
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Figure 6.16: Lepton fiducial charge ratio W+/W− as a function of 〈Npart〉. The kinematic require-

ments are p`T > 25 GeV, pmiss
T > 25 GeV, mT > 40 GeV, and |η`| < 2.5. Also shown is a QCD NLO

prediction from POWHEG using the CT10 PDF set. Statistical uncertainties are shown as black bars.

The filled grey boxes represent statistical and bin-uncorrelated systematic uncertainties added in

quadrature, whereas the grey-hatched boxes represent bin-correlated uncertainties and are offset

for clarity [40].
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Figure 6.17: Measured and predicted fiducial cross section ratios σW+/σW− in pp collisions at

7 TeV. The total uncertainty includes systematic and statistical uncertainties. Uncertainties in the

predictions are given by the PDF uncertainties at 68% C.L.



CHAPTER 7. SUMMARY AND OUTLOOK 228

Chapter 7

Summary and Outlook

This thesis has documented the current ATLAS measurements of W boson production in a dense

nuclear environment. The conceptual framework and impetus for electroweak boson measurements

in heavy-ion collisions was put forth in Chapter 2, in which it was argued that W bosons are excel-

lent candidates for detecting nuclear modifications to PDFs and benchmarking in-medium parton

energy loss. The measurements from Pb+Pb data supporting these predictions were presented in

Chapter 6. The presence of nuclear modifications were studied using the lepton absolute pseudo-

rapidity and charge asymmetry distributions from W → `ν` events. Within the precision of the

measurement and current uncertainties in the theory, it was concluded that no nuclear effects in the

PDFs could be observed. However, the difficulty in extracting PDF nuclear effects from heavy-ion

collisions was somewhat anticipated due to the large PDF uncertainties, and therefore this result

does not preclude the existence of such effects. As data from the pp runs at the LHC are included

in the free proton PDF fits, the uncertainties in the theory should be reduced. In addition, a

higher luminosity is expected in the upcoming Pb+Pb run at 5.5 TeV, and thus should enhance

the precision of measurements sensitive to nuclear effects.

W boson measurements sensitive to nuclear effects in p + Pb collisions have already been re-

ported by CMS [48]. These results were obtained from a data set corresponding to 34.6 nb−1 at

a collision energy of 5.5 TeV. This accomodates approximately a factor of two higher statistics

in W boson measurements and thus allows for construction of the forward-backward asymmetry

(NW→`ν`(+η)/NW→`ν`(−η)) in addition to the charge asymmetry measurement. The CMS mea-

surements for the charge and forward-backward asymmetries are provided below in Figure 7.1. In
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this figure, expectations with and without nuclear effects are shown. A χ2 test statistic is used

to differentiate between the two models, resulting in a 12% (29%) probability for the distribution

without nuclear effects and 35% (83%) probability for the the distribution with nuclear effects

for the charge asymmetry (forward-backward asymmetry). This result is encouraging and further

shows the utility of W boson measurements in extracting nuclear modifications.
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Figure 7.1: The W → `ν` charge asymmetry (left) and forward-backward asymmetry (right) as

a function of lepton pseudorapidity in p + Pb collisions measured by the CMS collaboration [48].

Predictions from the CT10 PDF set with (green, dashed line) and without (yellow, solid red line)

EPS09 nuclear effects.

In this thesis, the lepton charge asymmetry as a function of absolute pseudorapidity in Pb+Pb

collisions was compared to the corresponding measurements in pp and pp̄ collisions at different

center-of-mass energies. This provided a means to investigate isospin effects as well as the energy

dependence in the lepton charge asymmetry distribution. It was observed that increasing the

collision energy stretches the tail of the distribution such that W− → `−ν̄` production overtakes

W+ → `+ν` production at larger values of |η|. In relation to isospin effects, the neutron contribution

in the Pb nucleus was shown to enhance W− → `−ν̄` production, resulting in a sign-change of the

charge asymmetry at much smaller values of |η| relative to that in pp collisions. The isospin effects

in pp̄ collisions were shown to be similar to those from the np contribution in Pb+Pb collisions,
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which can be attributed to the valence quark distributions and leading-order W boson production

mechanism.

This work also presented W production as a function of the mean number of binary nucleon-

nucleon collisions. The results show that W yields are independent of impact parameter and scale

with the number of binary nucleon-nucleon collisions. This measurement lends credence to Glauber

modeling of the collision geometry and furthermore, shows that W bosons can be used to study jet

fragmentation functions modified by parton energy loss in a QGP.

Another potential application for W boson production that has not yet been measured is the

study of an increased concentration of neutrons toward the surface of spherical, neutron-rich nuclei

(i.e. the so-called neutron skin) [49, 274, 275]. In Ref. [49] it is shown that in p + Pb collisions,

the neutron skin effect should be most pronounced in the backward-rapidity (negative y) kinematic

region where the large-x nuclear valence quarks contribute to W production. In this rapidity region,

the observable dσ(W+ → `+ν`)/dσ(W− → `−ν̄`) should be sensitive to an “effective” centrality-

dependent proton-neutron ratio ZpPb
eff (Ck)/NpPb

eff (Ck), where Ck represents the centrality class. It is

expected that in more peripheral collisions, ZpPb
eff (Ck)/NpPb

eff (Ck) should decrease due to the neutron

skin and thus the ratio dσ(W+ → `+ν`)/dσ(W− → `−ν̄`) should decrease correspondingly. In the

forward-rapidity region, this ratio is independent of the effective proton-neutron ratio and only

depends on the ratio of the valence quark distributions, thereby driving dσ(W+ → `+ν`)/dσ(W− →

`−ν̄`) to unity. This expected behavior is shown in the left panel of Figure 7.2. In the case

of Pb+Pb collisions, the ratio dσ(W+ → `+ν`)/dσ(W− → `−ν̄`) is again expected to depend

on ZPb+Pb
eff (Ck)/NPb+Pb

eff (Ck). However, the Pb+Pb system is symmetric and thus the nuclear

valence quark contributions to W production occur at both y << 0 and y >> 0. This should make

the neutron skin effect more visible, as shown in the right panel of Figure 7.2.

Figure 7.3 presents a comparison of the centrality-dependent W+/W− ratios from the measure-

ments in this thesis with those that incorporate neutron skin effects from Ref. [49]. The data and

calculations are in agreement (χ2/Ndata ≈ 0.6), however the uncertainties in the measurement are

still rather large. But this result does open an avenue for further exploration and analysis.

In closing, currently, this work is the most precise measurement of W boson production in

high-energy nuclear collisions. The results are in close connection to those in pp, pp̄, and p + Pb

systems and will most certaintly be superseded by new measurements in the 2015 heavy-ion run at
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Figure 7.2: Calculated ratio dσ(W+ → `+ν`)/dσ(W− → `−ν̄`) in p+ Pb (left) and Pb+Pb (right)

collisions for two peripheral centrality classes [49]. The ratios are normalized by the integrated

ratio in minimum bias collisions (0− 100%).

Figure 7.3: Centrality dependence of W+/W− as measured by ATLAS [40] and calculated in

Ref. [49]. The experimental values are normalized to the integrated ratio in the 0− 80% centrality

class.



CHAPTER 7. SUMMARY AND OUTLOOK 232

the LHC. It is incredible how more than 30 years after its discovery, the W boson is still being used

in new and creative ways to gain physics insights. Hopefully, this thesis has convinced the reader

of the utility of W boson measurements in heavy-ion systems and has set a positive precedent for

results still to come.
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Appendix A

Staco Muon Reconstruction

The following section provides an overview of the other muon reconstruction chain used during the

2011 Pb+Pb run, Staco.

A.1 Standalone Muon Tracking

A.1.1 Pattern Recognition

Muonboy begins searching for hit patterns by identifying Regions of Activity (ROAs) using infor-

mation from the trigger chambers (TGCs and RPCs), as shown in Figure A.1. The ROAs are simple

cones with size ∆η ×∆φ = 0.4 × 0.4 and are centered where there exists at least one RPC/TGC

hit in both R and φ.

A.1.2 Segment Finding

Muon chambers that intersect the roads from the ROAs are selected for muon reconstruction. The

segments are initially reconstructed in the bending (R − z) plane of each muon station. Within a

station, trials are performed to match MDT hits in one multilayer with hits in another multilayer

using a linear fit (Figure A.2). In some cases hits are only found in one multilayer, and these

can also be used for reconstructing track segments. The hits are extrapolated to the other tubes

within a station to form segments. This process involves conducting two searches: strict and

loose. The strict search requires segments to be associated with at least one second (φ) coordinate
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Figure A.1: Regions of Activity (ROAs) used to locate hit patterns in the MS [50].

measurement from the RPCs/TGCs. However, segments in the CSCs are reconstructed in three

dimensions directly using CSC clusters. These segments are also considered strict.

A looser search for segments within ROAs is conducted after the strict search. This loose

search does not require segments to be matched with a φ coordinate measurement, and the χ2

requirements for segment reconstruction are less stringent. When there are no φ measurements

from the RPCs/TGCs, five positions along the MDT tube are tested and the position that results

in the best χ2 is retained.

Figure A.2: Local matching and fitting of hits within the multilayers of an MDT chamber [50].
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A.1.3 Track Finding

Strict segments in the outer and middle stations of the MS provide an initial rough estimate of

the candidate muon momentum. The strict track segments are extrapolated to another muon

station (e.g. BOS→BMS), as illustrated in Figure A.3. The extrapolation to the other station

involves several trials, using different momentum values for each trial around the initial estimate

(momentum scan). If matching exists between the strict segments and loose segments in the other

station, a fit is performed, resulting in a more accurate momentum estimate.

Figure A.3: Extrapolation of chamber hits to other chamber layer [50].

A second momentum scan is then performed around the improved muon estimate with ex-

trapolations to all other potentially crossed chamber stations (e.g. BOS→BMS→BIS→All). Any

matches with loose segments are included in the candidate track. A candidate track is kept if it

has at least two segments. Using the new segments, another fit is performed to further improve the

accuracy of the muon candidate position, direction, and momentum.

Starting from the previous fit, another fit is performed using the raw information available (i.e.

without track segments). This gives a global and more realistic estimate of the likelihood of the

candidate track and makes it possible to reject bad hits from δ electrons or γ background, which

will appear far away from the reconstructed muon path.

The previous fit result is used to collect dead matter along the track candidate. The chambers

and dead matter traversed by a muon are discretized into a finite number of scattering centers. The

scattering angles at each scattering center are used as free parameters in a following fit. Energy loss
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is also taken into consideration at each point. A final fit is then performed that takes into account

the material. This final fit is used to select muons based on the value of the χ2 (Figure A.4).

Figure A.4: Final fit across all MS stations used to identify muon candidates [50].

The fit parameters are varied to compute the covariance matrices. The candidate tracks are

then back-tracked to the interaction point. Since the uncertainty in the track parameters changes

during the propagation, the covariance matrices are propagated accordingly, taking into account

energy loss and multiple scattering in the calorimeters.

A.2 Combined Muon Reconstruction

The Staco muon reconstruction method is based on a statistical combination of two measurements

of the track in the ID and MS. Let pµID and pµMS represent the parameter vectors [276] of two tracks

in the ID and MS, respectively. Also, let the covariance matrices in the ID and MS be CID and

CMS . Then the vector of the combined track pµ is the solution of the equation [229]:

C−1 × pµ = C−1
ID × p

µ
ID + C−1

MS × p
µ
MS (A.1)

where C−1 = (C−1
ID + C−1

MS). The corresponding χ2 of the combination is given by:

χ2 = (pµ − pµID)T × C−1
ID × (pµ − pµID) + (pµ − pµMS)T × C−1

MS × (pµ − pµMS) (A.2)
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The combination is initially based on a coarse match in η and φ. Once this is performed, the

combination is further constrained by requiring the χ2 to be below a maximum value. When

multiple combinations are under this value, the algorithm solves the ambiguity by accepting the

pair with the lowest χ2. After the combination, the track is propagated to the beam line.
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Appendix B

Isolation Optimization
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Figure B.1: Background rejection (εB) as a function of signal efficiency (εS) for different upper iµ

thresholds using a sample of Jxµ and W → µνµ events. Distributions are shown for For each iµ

threshold, εS and εB are determined for different ∆R. ptrkT,min = 2 GeV in calculating the isolation

variable iµ. All centrality classes used in this work are shown, however only the 0-5% class is used

in the optimization.
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Figure B.2: Background rejection (εB) as a function of signal efficiency (εS) for different upper

iµ thresholds using a sample of Jxµ and W → µνµ events. For each iµ threshold, εS and εB are

determined for different ∆R. ptrkT,min = 3 GeV in calculating the isolation variable iµ. All centrality

classes used in this work are shown, however only the 0-5% class is used in the optimization.
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Figure B.3: Background rejection (εB) as a function of signal efficiency (εS) for different upper

iµ thresholds using a sample of Jxµ and W → µνµ events. For each iµ threshold, εS and εB are

determined for different ∆R. ptrkT,min = 4 GeV in calculating the isolation variable iµ. All centrality

classes used in this work are shown, however only the 0-5% class is used in the optimization.
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Figure B.4: Effective signal Neff from Equation 5.10 as a function of the isolation variable iµ

using ptrkT,min = 2 GeV. Neff is calculated for several upper thresholds of ∆R. All centrality classes

used in this work are shown, however only the 0-5% class is used in the optimization. Each point

corresponds to an isolation definition in Figure 5.9.
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Figure B.5: Effective signal Neff from Equation 5.10 as a function of the isolation variable iµ

using ptrkT,min = 3 GeV. Neff is calculated for several upper thresholds of ∆R. All centrality classes

used in this work are shown, however only the 0-5% class is used in the optimization. Each point

corresponds to an isolation definition in Figure B.2.
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Figure B.6: Effective signal Neff from Equation 5.10 as a function of the isolation variable iµ

using ptrkT,min = 4 GeV. Neff is calculated for several upper thresholds of ∆R. All centrality classes

used in this work are shown, however only the 0-5% class is used in the optimization. Each point

corresponds to an isolation definition in Figure B.3.
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Appendix C

Binary Scaling and Asymmetry for

W → µνµ Events
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Figure C.1: W production yields per binary collision as a function of 〈Npart〉 for W+ → µ+νµ

(downward triangles), W− → µ−ν̄µ (upward triangles), and W± → µ±νµ. The kinematic require-

ments are 0.1 < |ηµ| < 2.4, pµT > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV. Statistical

errors are shown as black bars. These are added in quadrature to the bin-uncorrelated systematic

uncertainties and are shown as the filled error bands. Bin-correlated uncertainties are shown as the

hatched bands and are offset for clarity. These include uncertainties from 〈Ncoll〉. Also shown are

LO* and NLO predictions.
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Figure C.2: Differential production yields per binary collision for W+ → µ+νµ (Left) and

W− → µ−ν̄µ (Right) events compared to LO* and NLO theoretical predictions. The kinematic

requirements are pµT > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV. The bottom panel shows the

ratio between the data and NLO prediction.
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Figure C.3: Fiducial charge ratio NW+/NW− as a function of 〈Npart〉. The kinematic requirements

are pµT > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV. Statistical uncertainties are shown as black

bars. Bin-uncorrelated systematic and statistical uncertainties are added in quadrature (filled

errors). Scaling uncertainties are shown as the hatched boxes and are offset for clarity. Also shown

are theory predictions from MRST LO* (PYTHIA) and MSWT2008 (POWHEG).
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Figure C.4: The muon charge asymmetry Aµ = (NW+ − NW−)/(NW+ + NW−) as a function of

|η|. The kinematic requirements are p`T > 25 GeV, pmiss
T > 25 GeV, and mT > 40 GeV. Statistical

uncertainties are shown as black bars, whereas bin–uncorrelated systematic and statistical uncer-

tainties added in quadrature are shown as the filled error box. Scaling uncertainties are shown

as the hatched boxes and are offset for clarity. The PDF uncertainties in both the CT10+EPS09

and CT10 predictions are derived from the PDF error eigensets. The total theoretical uncertainty

also includes uncertainties in the renormalisation and factorisation scales used in the cross-section

calculations.
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Appendix D

W rapidity charge asymmetry

Considering only the light flavor u and d quarks, the cross section for W production becomes:

dσW+

dy
=

2πGF

3
√

2
x1x2|Vud|2

[
u(x1)d̄(x2) + d̄(x1)u(x2)

]
dσW−

dy
=

2πGF

3
√

2
x1x2|Vud|2

[
d̄(x1)d(x2) + d(x1)ū(x2)

]
(D.1)

The charge asymmetry in the W rapidity distributions is defined as:

AW (y) =
dσW+/dy − dσW−/dy
dσW+/dy + dσW−/dy

(D.2)

D.0.1 nn collisions

To see how the rapidity asymmetry can be used to constrain u(x)/d(x), consider Equation D.1 for

nn collisions:

dσW+

dy
=

2πGF

3
√

2
x1x2|Vud|2

[
un(x1)d̄n(x2) + d̄n(x1)un(x2)

]
dσW−

dy
=

2πGF

3
√

2
x1x2|Vud|2 [ūn(x1)dn(x2) + dn(x1)ūn(x2)] (D.3)
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From isospin symmetry,up(x) = dn(x),dp(x) = un(x),ūp(x) = d̄n(x), and d̄p(x) = ūn(x). Equa-

tion D.4 then becomes:

dσW+

dy
=

2πGF

3
√

2
x1x2|Vud|2 [dp(x1)ūp(x2) + ūp(x1)dp(x2)]

dσW−

dy
=

2πGF

3
√

2
x1x2|Vud|2

[
d̄p(x1)up(x2) + up(x1)d̄p(x2)

]
(D.4)

Assuming that ūp(x) = d̄p(x), the asymmetry can be written as:

A(y) =
(dp(x1)− up(x1))ūp(x2) + ūp(x1)(dp(x2)− up(x2))

(dp(x1) + up(x1))ūp(x2) + ūp(x1)(dp(x2) + up(x2))
(D.5)

In the limit that x1 ∼ 1 and x2 << 1, ūp(x1) is negligible and the asymmetry becomes:

A(y) ≈ dp(x1)− up(x1)

dp(x1)− up(x1)
(D.6)

Since the W rapidity distributions in nn collisions are symmetric (see Figure 2.14), the rapidity

charge asymmetry does not change when x1 ↔ x2 (y ↔ −y). Therefore, the ratio of the parton

distribution functions are directly sensitive to the asymmetry by:

dp(x)

up(x)
≈ 1 +A(y)

1−A(y)
(nn) (D.7)

D.0.2 np collisions

To see how the rapidity asymmetry can be used to constrain u(x)/d(x), consider Equation D.1 for

np collisions:

dσW+

dy
=

2πGF

3
√

2
x1x2|Vud|2

[
un(x1)d̄p(x2) + d̄n(x1)up(x2)

]
dσW−

dy
=

2πGF

3
√

2
x1x2|Vud|2 [ūn(x1)dp(x2) + dn(x1)ūp(x2)] (D.8)

From isospin symmetry,up(x) = dn(x),dp(x) = un(x),ūp(x) = d̄n(x), and d̄p(x) = ūn(x). Equa-

tion D.4 then becomes:

dσW+

dy
=

2πGF

3
√

2
x1x2|Vud|2

[
dp(x1)d̄p(x2) + ūp(x1)up(x2)

]
dσW−

dy
=

2πGF

3
√

2
x1x2|Vud|2

[
d̄p(x1)dp(x2) + up(x1)ūp(x2)

]
(D.9)
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Assuming that ūp(x) = d̄p(x), the asymmetry can be written as:

A(y) =
(dp(x1)− up(x1))ūp(x2) + ūp(x1)(up(x2)− dp(x2))

(dp(x1) + up(x1))ūp(x2) + ūp(x1)(up(x2) + dp(x2))
(D.10)

In the limit that x1 ∼ 1 and x2 << 1, ūp(x1) is negligible and the asymmetry becomes:

A(y) ≈ dp(x1)− up(x1)

dp(x1) + up(x1)
(D.11)

The ratio of the parton distribution functions are directly sensitive to the asymmetry by:

dp(x1)

up(x1)
≈ 1 +A(y)

1−A(y)
(D.12)

The W rapidity distributions in np collisions are not symmetric (see Figure 2.14). Thus, one cannot

simply replace x1 ↔ x2 (y ↔ −y). Therefore, in the limit that x2 ∼ 1 and x1 << 1, ūp(x2) is

negligible and the asymmetry becomes:

A(y) ≈ up(x2)− dp(x2)

up(x2) + dp(x2)
(D.13)

The ratio of the parton distribution functions are directly sensitive to the asymmetry by:

dp(x2)

up(x2)
≈ 1−A(y)

1 +A(y)
(D.14)
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