

The RHIC Beam Energy Scan

- Much progress has been made in understanding the phase diagram of QCD matter. We expect a cross-over at high energy. At lower energy there should be a first order transition.
- Mapping the features of the QCD matter phase diagram is key to our understanding dense matter.
- Three Goals:
 - Turn-off of QGP signatures
 - Critical Point
 - First order phase transition.

Overview of the Beam Energy Scan Goals

1. Turn-off of QGP signatures:

- NCQ breaks down below 19.6 GeV
- High p_t suppression not seen below 19.6 GeV
- LPV effect not seen below 11.5 GeV

2. Evidence of the first order phase transition.

- Inflection in v_2 at 7.7
- v_1 sign change at 7.7
- Large Azimuthal HBT signal at 7.7

3. Search for the critical point.

- K/π , K/p, or p/π fluctuations are not conclusive.
- Higher moments of the proton distributions hints.

Turn-off of QGP Signatures

Search for 1st Order PhaseTransition

Search for the Critical Point

Volumes cancel

$$\chi_{B}^{(n)} = \frac{\partial^{n} (P/T^{4})}{\partial (\mu_{B}/T)^{n}}\Big|_{T} \longrightarrow \frac{\chi_{B}^{4}/\chi_{B}^{2} = (\kappa\sigma^{2})_{B}}{\chi_{B}^{3}/\chi_{B}^{2} = (S\sigma)_{B}}$$

Deviations from HRG model in the middle energies of the BES range

Need more statistics or finer energy steps

Daniel Cebra 10/26/2012

APS DNP Meeti Newpor

What Have We Learned?

The key QGP *signatures* disappear between 19.6 and 11.5 GeV

- Necessary, but not sufficient to say that QGP has gone
- First Order phase transition/Onset of deconfinement *likely* at the low end of the BES Range
 - low energy performance is critical
- Critical Point is challenging to find, will need more statistics
 - Do we need finer steps or more statistics?

How should we answer the remaining questions?

RHIC Beam Energy Scan II:

Complementary to the NICA, FAIR, CERN experimental programs

Nuclotron based Ion Collider fAcility (NICA)

Collider Operations to begin ~2016 VS_{NN} from 3.9 - 11 GeV for Au+Au; μ_B from 0.630 - 0.325 GeV.

MPD Experiment: Multi-Purpose Detector

Capabilities will be very similar to STAR.

Luminosities of NICA will be higher than RHIC

Collision rates of < 10 kHz

Facility for Antiproton and Ion Research (FAIR)

→ Pb+Pb

energy (A GeV/c)

 $\frac{K^+}{\pi^+}$

Low Energy Electron Cooling at RHIC

Newport Be 2nd stage.

10/26/2012

<#> of 15

cavity

Cooling of bunches with nominal length (1-2 m rms) (counteracting IBS only and longer stores)

Comparison of Facilities

Facilty

Exp.:

Start:

Au+Au Energy:

√sNN (GeV)

Event Rate:

At 8 GeV

Physics:

RHIC

STAR PHENIX

2010

7.7-- 50

100 HZ

CP&OD

NICA

MPD

2017

2.7 - 11

<10 kHz

OD&DHM

SIS-300

CBM

>2018

2.7-8.2

<10 MZ

OD&DHM

SPS

NA61

2009

4.9-17.3

100 HZ

CP&OD

CP = Critical Point
OD = Onset of Deconfinement
DHM = Dense Hadronic Matter

Fixed Target

Beam Energy Scan II

۷S _{NN} (GeV)	62.4	39	27	19.6	15	11.5	7.7	4.5	4.0	3.5	3.0
μ_{B} (GeV)	70	115	155	205	250	315	420	585	620	670	720
BES I (MEvts)	67	130	70	36		11.7	4.3				
Rate(MEvts/day)	20	20	9	3.6	1.6	1.1	0.5			Target	
BES II (MEvts)				400	100	120	80	5	Colli 5	sions 5	5
eCooling				8	6	4.5	3				
Beam (days)				14	10	25	53				ſ

•We have now put forward a BES II proposal to focus on the most interesting region

•Electron cooling is key to the feasibility of this proposal

What would be lost?

- RHIC is optimally suited to find the critical point.
- NICA and FAIR are probably too low in energy
- NA61 is a fixed target experiment and is running lighter ions