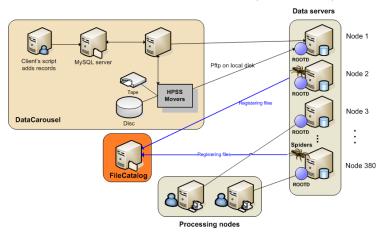
Xrootd status and ongoing/future work (Status report)

Pavel Jakl

S&C meeting

19th of April 2006

Outline


- Motivation at the beginning
- Introducing XROOTD solution and deployment
- Ongoing/future work
- Summary

RHIC Computing facility

- 3 storages for data population:
 - HPSS all data (raw, reconstructed) are stored there, each PFN is unique
 - NFS area about 75 TB of free space, is often overloaded, therefore lots of disruptions and not reliable
 - Oistributed disk about 130TB of free space decomposed on about 320 nodes, not possible to manage it with NFS
- Question: How to best utilize the storage space on nodes?
- Solution: ROOTD daemon which provides ROOT-based access to remote files

Motivation at the beginning

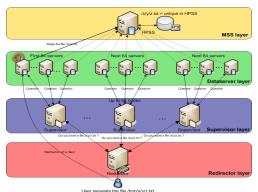
STAR distributed data model: "Started with very homemade and very static model"

Problems with ROOTD model

- ROOTD knows only PFN
 - rootd doesn't know where the data are located -> data needs to be cataloged and kept up-to-date
- Overloaded and not responding node
 - rootd connection will expire after defined time and job will die
- Job start time latency
 - catalog is not updated accordingly when node is down for maintenance
 - job dies when requested files are deleted between the time "a" job is submitted and starts
- Static data population
 - human interaction is needed to populate data from HPSS to distributed area
 - datasets need to be watch (datasets gets "smaller" in case of disk reset/format)
- Write access and authorization issue
 - everyone in rootd is "trusted" user (missing authorization)

Motivation at the beginning

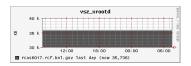
- XROOTD file server which provides high performance file-based access(scalable, secure, fault-tolerant ...)
 - ROOTD knows only PFN ->XROOTD knows "LFN"
 - data are located within xrootd process and no need to be catalogized
 - Overloaded and not responding node ->Load balancing
 - xrootd determines which server is the best for client's request to open a file
 - 3 Job start time latency -> Fault tolerance feature
 - missing data can be again restored from MSS
 - Static data population ->Mass storage system plugin
 - movement from static population of data to dynamic
 - Write access(authorization) issue -> Authorization plugin
 - resolve "trusted/untrusted" user for write access.

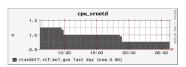


XROOTD configuration/auto-configuration

 preparation of the configuration file containing configuration of load balancing, authentication and MSS plugin

implementation and testing of xrootd daemons managing


tools



Integration into STAR

Motivation at the beginning

- integration with current framework as for example new features into SUMS (Star Unified Meta Scheduler)
- conversion of all PFNs (already placed files on STAR) distributed disk) into XROOTD "LFNs"
- script for monitoring: using the Ganglia cluster toolkit

Problems and repairs/contribution:

- Needed to wait for the 64 node limitations removal. (reported in February 2005, available in April/May 2005)
- ② Different security model:

Motivation at the beginning

- we were beta testers
- shaky initial implementation and documentation
- ROOTD does only PFN, Xrootd cannot do both PFN and LFN
 - it is a question of how to convert a request to a PFN
 - LFN->PFN is now done in a fix way("one choice fits all")
 - provide a plugin would be more flexible (discussed in July 2005, interface available in January 2006)
- non-functional script for meassuring the load of servers repair was sent to xrootd development team
- un-coordinated requests to HPSS (in 20 jobs the HPSS) crashed) -> solution is to use DataCarousel (in progress)

need additional work and improvements on DataCarousel solution

- discs are sometimes filled up to 100% -> bad decomposition of requests among xrootd cluster
- need to set up and test purging policies for unprompted cleaning of filled space
- need to test in large scale (not only 2 users), even without HPSS plugin
- set-up monitoring system of xrootd cluster (measure data movement on the farm)
- bytes/sec measurement of NFS/XROOTD compare to number of running jobs
- fault-tolerance measurement to compare number of died jobs ROOTD/XROOTD
- Long-term: Integration with SRM (Storage resource manager)

Ongoing/future work

Xrootd is deployed on 320 nodes (the biggest production

- deployment of xrootd)
 modulo few fixes in year 2005 the system looks stable and ready to use in production mode!!!
 - When ? end of this week (beginning of the next week)
 - without HPSS plugin still need to work more on DataCarousel solution
 - HPSS plugin will be available end of this month
- no need to change anything in user's macros -> new "xrootd" fileList syntax already in SUMS
- load balancing and handshake with MSS make the system resilient to failures
- the monitoring of XROOTD behavior in large scale scale and over long period of time haven't shown significant impact on CPU on nodes

Ongoing/future work