Dielectron measurements with ALICE at the LHC

Ralf Averbeck
ExtreMe Matter Institute EMMI and Research Division
GSI Helmholtzzentrum für Schwerionenforschung
Darmstadt, Germany

on behalf of the ALICE Collaboration

Thermal Radiation Workshop
RIKEN BNL Research Center
December 5-7, 2012
Brookhaven National Laboratory, NY, USA
Outline

- introduction
- ALICE
- dielectron measurements with ALICE
 - pp collisions
 - Pb-Pb collisions
- summary of current status
- future perspectives
 - dielectron performance with ALICE upgrade
Dielectrons

- measurement of dielectrons from AA collisions
 - electromagnetic probe
 - negligible final state interaction
 - information from all phases of the collision
 - sensitivity to
 - electromagnetic structure of the hot and dense medium
 - in-medium modification of low-mass vector mesons
 - thermal radiation
 - heavy-flavor hadron decays (at intermediate mass)
 - heavy quarkonia suppression/enhancement

- measurement of dielectrons from pp collisions
 - provides necessary baseline for AA studies
A Large Ion Collider Experiment

Inner Tracking System
tracking/vertexing (particle ID)

Time Projection Chamber
tracking particle ID

Time Of Flight
particle ID

Transition Radiation Detector
electron ID trigger

ElectroMagnetic Calorimeter
electron ID trigger

central barrel acceptance: \(0 < \varphi < 2\pi, |\eta| < 0.9\)
mass resolution: \(\Delta m/m \sim 1\%\)
Inner Tracking System (ITS)

- 2 silicon pixel detector (SPD) layers
 - $X/X_0 = 1.14\%$
 - $R_{\text{inner}} = 3.9\text{ cm}$
 - 9.8M channels, 0.2 m^2
- 2 silicon drift detector (SDD) layers
 - 133k channels, 1.3 m^2
- 2 silicon strip detector (SSD) layers
 - 2.6M channels, 4.75 m^2
Time Projection Chamber (TPC)

- 557,568 readout channels
- 94 µs maximum drift time
- 10 bit ADC at 10 MHz
- dE/dx resolution ~6 %
Time of Flight (TOF)

- hadron rejection at low momenta
TRD modules currently installed: 13
(7 in 2010, 10 in 2011)
→ currently not used in dielectron analysis due to limited acceptance
(same is true for EMCal)
Triggers and data sets

- minimum bias pp collisions
 - coincidence of beam pick-ups and a signal in either the SPD or one of the V0 scintillator arrays
 - efficiency: ~95% of σ_{inel}.
 - ~350M events (2010 data set)

- Pb-Pb collisions
 - minimum bias trigger: coincidence of V0 arrays and Zero Degree Calorimeters
 - in addition: centrality triggers defined via total charge measured in V0
 - 2010: ~12M MB events
 - 2011: ~8M MB, ~27M central, ~32M semicentral events
Dielectrons in pp collisions at $\sqrt{s} = 7$ TeV
Electron candidate selection

- electron identification is crucial
 - start with high quality tracks
 - $p_T > 0.2$ GeV/c, $|\eta| < 0.8$
 - ‘long’ tracks in the TPC without ‘kinks’
 - require associated hit in the first SPD layer (to minimize contribution from photon conversions)
 - require electron Time of Flight (within 3σ) to reject K, p
 - require electron dE/dx (-1.5 < σ < 3) and reject tracks with pion dE/dx (within 4σ) to reject pions
- how well does this work?
Purity of candidate sample

- fit TPC dE/dx in momentum slices
 - remaining hadron contamination for $p < 3$ GeV/c: $\sim 1\%$
Contamination from γ conversions

- how to identify photon conversion candidates
 - displaced secondary vertex
 - orientation of the ‘pair plane’ with respect to the magnetic field direction

- remaining contamination from photon conversions: few percent at low mass ($m_{ee} < 0.1$ GeV/c2)
Combinatorial background

- pairing of all electrons and positrons gives rise to combinatorial background

\[N_{+-} = S_{+-} + N_{+-}^{\text{CombBkg}} \]

- methods to determine this background
 - mixed event subtraction
 - same-event like-sign subtraction
 - same-event track rotation

- current approach: like-sign subtraction

\[N_{+-}^{\text{CombBkg}} = 2 \times \sqrt{N_{++} N_{--}} \times R_{\text{Acc}} \]

Like-sign

from mixed events
Raw mass spectra

- large background from uncorrelated pairs
- subtraction of like-sign combinatorial background → raw signal of correlated pairs
Correction for efficiency

- efficiency correction for detector effects (including Bremsstrahlung in material)
- no acceptance correction into unmeasured region of phase space
- correction based on full MonteCarlo simulations
- efficiency determined for single electron tracks as function of (p_T, η, ϕ)
Systematic uncertainties

- relevant sources
 - track selection
 - electron ID
 - efficiency correction
 - normalization
 - most important: combinatorial background

\[
\frac{dS}{S} = \frac{dB}{B} \times \frac{B}{S}
\]

→ currently NO significant measurement close to \(m_{ee} = 0.5 \text{ GeV/c}^2 \)!
Known hadronic e^+e^- sources

- calculation of hadronic cocktail
 - based on: measured p_T-differential invariant cross section of π^0
 - contributions from other hadron decays:
 from data (η, ϕ, J/ψ) or via m_T scaling
 - contribution from correlated charm decays:
 from measured charm cross section and PYTHIA decay kinematics

- ALICE data used as input
 - π^0, η: Phys. Lett. B717 (2012) 162
 - ϕ: arXiv:1208.5717
 - σ_{cc}: arXiv:1205.4007
Cocktail versus data

- cocktail in reasonable agreement with data
Outlook for Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV
Signal extraction

- similar analysis as for pp collisions at $\sqrt{s} = 7$ TeV (but: $p_T^e > 0.4$ GeV/c)
- S/B ratio few 10^{-3} at low mass ($0.2 - 0.4$ MeV/c2)
- detailed study of background systematics ongoing
Summary I

- first dielectron continuum measurement with ALICE for pp collisions at √s = 7 TeV
- hadronic cocktail calculation agrees within errors with data in the range 0 < m_{ee} < 3.3 GeV/c²
- analysis is difficult for Pb-Pb collisions → requires improved knowledge of background
- unique strength of ALICE at the LHC
 - access to the low mass & low p_T region!
 - how can this be improved further?
ALICE upgrade - LOI

http://cdsweb.cern.ch/record/1475243

http://cdsweb.cern.ch/record/1475244
Dielectron strategy

- Reduction of central barrel magnetic field from 0.5 T to 0.2 T
 - Extend tracking efficiency and electron PID to lower p_T
- High rate upgrade of the TPC
 - Improve the data taking rate by a factor 100
- Upgrade of the ITS
 - Reduced material budget
 - Improve tracking efficiency at very low p_T
 - Improve capability to identify electrons originating from secondary vertices (DCA cut)
Dielectron performance study

- here: focus on 10% most central Pb-Pb collisions ($<dN_{ch}/d\eta> = 1750$) at $\sqrt{s_{NN}} = 5.5$ TeV (peripheral case was studied as well)

- dielectron signal
 - hadronic cocktail
 - open charm decays based on PYTHIA, interpolated total charm production cross sections for pp collisions, and binary collision scaling
 - thermal signal (R. Rapp & J. Wambach, EPJA 6(1999)425)
Dielectron performance study

- **background**
 - PYTHIA pp events superimposed to Pb-Pb $\langle dN_{\text{ch}}/d\eta \rangle$
 - photon conversions from GEANT3

- **kinematic cuts**
 - $|\eta_e| < 0.84$, $p_{T,e} > 0.2$ (0.06) GeV/c for global (ITS) tracking

- **conversion and Dalitz rejection**
 - $m_{ee} < 50$ MeV/c2, opening angle < 100 mrad
Current ITS, no DCA cut

- 2.5×10^7 Pb-Pb collisions at 5.5 TeV
- Precision of comb. background measurement: 0.25%
- Background precision: 10% (20%) for cocktail (charm)

→ No quantitative access to in-medium spectral functions and thermal dielectron emission
Current ITS, tight DCA cut

- 2.5 x 10^7 Pb-Pb collisions at 5.5 TeV
- precision of comb. background measurement: 0.25%
- background precision: 10% (20%) for cocktail (charm)

\[\text{Precision of comb. background measurement: 0.25\%} \]

\[\text{Background precision: 10\% (20\%) for cocktail (charm)} \]

\[\rightarrow \text{marginal improvement only} \]
New ITS, DCA cut

- 2.5 x 10^7 Pb-Pb collisions at 5.5 TeV
- precision of comb. background measurement: 0.25%
- background precision: 10% (20%) for cocktail (charm)

→ significantly reduced systematics, but statistics limited
New ITS, DCA cut, high rate

- 2.5×10^9 Pb-Pb collisions at 5.5 TeV
- Precision of comb. background measurement: 0.25%
- Background precision: 10% (20%) for cocktail (charm)

\rightarrow quantitative access to dielectron production beyond hadronic cocktail and correlated charm decays!
Summary II

- precision measurement of dielectron production in Pb-Pb collisions at the LHC beyond the hadronic cocktail and correlated charm decays:
 \textbf{NOT possible with the current ALICE setup!}
 (even with increased kinematic coverage due to a reduced B field)
- current limitations: addressed by ALICE upgrade
 - new ITS
 \textbf{\rightarrow} improved Signal/Background ratio
 \textbf{\rightarrow} reduced sys. uncertainty of e^+e^- measurement
 - high rate upgrade of the TPC
 \textbf{\rightarrow} reduced stat. uncertainty of e^+e^- measurement

ALICE upgrade
 \textbf{\rightarrow} precision low-mass dielectron measurement