Direct Photon Spectra and Elliptic Flow in 2.76 TeV Pb-Pb Collisions from ALICE

Martin Wilde
on behalf of the ALICE Collaboration

Westfälische Wilhelms-Universität Münster

December 5, 2012
Table of Contents

1 Direct Photon Production and the ALICE Detector

2 Part I: Direct Photon Spectra
 - Analysis Strategy
 - Detection of Converted Photons and π^0s
 - Inclusive Photon Results in pp and Pb-Pb
 - Decay Photon Background Calculation
 - Direct Photon Results in pp and Pb-Pb

3 Part II: Direct Photon ν_2
 - Analysis Strategy
 - Inclusive Photon ν_2 Analysis
 - Decay Photon ν_2
 - Direct Photon ν_2
Direct Photons in pp and Pb-Pb Collisions

Direct Photons - Definition
Photons that are not produced by particle decays

Prompt Photons: In pp and Pb-Pb
- Calculable within NLO pQCD
- Predominant source in pp
- Signal scales with number of binary collisions in Pb-Pb
- Fragmentation photons may be modified by parton energy loss in the medium

(a) Quark-gluon Compton scattering
(b) Quark-Anti-quark annihilation
(c) Fragmentation photons (bremsstrahlung)

Measurement of direct photons in pp is an ideal test for pQCD
Additional sources of direct photons in Pb-Pb collisions

Jet-Medium Interactions:
- Scattering of hard partons with thermalized partons
- In medium (photon) bremsstrahlung emitted by quarks

Thermal Photons:
- Scattering of thermalized particles
 QGP: $q\bar{q} \rightarrow g\gamma$ and $qg \rightarrow q\gamma$ (+NLO)
 HHG (hot hadronic gas): Hadronic interactions (e.g. $\pi^+\pi^- \rightarrow \gamma\rho_0$)
- Exponentially decreasing but dominant at low p_T

Photons leave medium unaffected, an ideal probe to study HI collisions
The ALICE Detector and Data Sample

pp, $\sqrt{s} = 7$ TeV:
- Data sample: 3.54×10^8 events (min. bias)
- Monte Carlo: Pythia-Perugia0 and Phojet

Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV:
- Data sample: 17×10^6 min. bias events
- Monte Carlo: Hijing (min. bias plus enriched events with high $p_T \pi^0$s)

Photons are measured via their conversion products in ITS and TPC
Part I: Direct Photon Spectra
General Strategy of the Analysis

Subtraction Method

\[\gamma_{\text{direct}} = \gamma_{\text{inc}} - \gamma_{\text{decay}} = \left(1 - \frac{\gamma_{\text{decay}}}{\gamma_{\text{inc}}} \right) \cdot \gamma_{\text{inc}} \]

- Inclusive photons: measure all photons that are produced
- Decay photons: calculated from measured particle spectra with photon decay branches (\(\pi^0\), \(\eta\), ...)

Double Ratio

\[\frac{\gamma_{\text{inc}}}{\pi^0_{\text{param}}} / \frac{\gamma_{\text{decay}}}{\pi^0_{\text{param}}} \approx \frac{\gamma_{\text{inc}}}{\gamma_{\text{decay}}} \quad \text{if} \quad > 1 \quad \text{direct photon signal} \]

→ advantage of ratio method: cancellation of uncertainties

- Photons and \(\pi^0\)s (and \(\eta\)) are measured via conversion method
 \[\pi^0 \rightarrow \gamma\gamma, \ \gamma \rightarrow e^+e^- \]
Secondary Vertex Algorithm - V0 Particles

- Charged tracks with large impact parameter are paired
- Candidates with a small DCA → V0 candidate
- Most abundant particle species: K^0_s, Λ, $\bar{\Lambda}$ or γ
- Photon conversion probability in $|\eta| < 0.9$ up to $R = 180 \text{ cm}$ at 8.5%

- Cuts on the decay topology of photons and electron track properties → Purity at 90% at 2 GeV/c for 0-40% Pb-Pb events
- Background is mainly combinatorial - Strange particle contribution negligible
Photon Corrections and Invariant Cross Section for pp

- Raw γ spectrum in pp and Pb-Pb corrected for:
 - purity (P)
 - efficiency (E)
 - conversion probability (C)

 and secondary photon candidates subtracted

- Inclusive photon cross section in pp:

$$E \frac{d^3\sigma}{dp^3} = \frac{1}{2\pi} \frac{\sigma_{MBOR}}{N_{events}} \frac{1}{p_T} \frac{P}{C E} N_{\gamma^{prim}}$$

Main sources of uncertainty:

- Material budget of the detector $\sim 4.5\%$
- Efficiency estimation by cut variations
 - $p_T < 5$ GeV: pp $\sim 3\%$, Pb-Pb $\sim 6\%$
 - $p_T > 5$ GeV: pp $\sim 6\%$, Pb-Pb $\sim 15\%$

 e.g. geometrical cuts, detector PID, sharing of tracks between sec. vertices

- Main sources of uncertainty:
 - Material budget of the detector $\sim 4.5\%$
 - Efficiency estimation by cut variations
 - $p_T < 5$ GeV: pp $\sim 3\%$, Pb-Pb $\sim 6\%$
 - $p_T > 5$ GeV: pp $\sim 6\%$, Pb-Pb $\sim 15\%$

 e.g. geometrical cuts, detector PID, sharing of tracks between sec. vertices
Two centrality selections: 0-40% and 40-80%
(central and peripheral)
\(\pi^0\) and \(\eta\) Reconstruction via Conversion

Neutral pion and \(\eta\) (pp only) based on converted photons

Measurement based on identical set of photons as used for photon results

- Inv. mass calculated for all photon pairs in an event
- Combinatorial background obtained via mixed event technique
- Raw \(\pi^0\) spectrum obtained by peak integration
- Efficiency and acceptance estimated with MC simulations

For more details see:
- Pb-Pb and pp at 2.76TeV: published soon, similar method
Decay photon spectra are obtained via calculation

- Based on a fit to measured π^0 and η (in pp)
- Other meson spectra obtained via m_T-scaling
- Incorporated mesons: π^0, η, η', ω, ϕ and ρ_0

m_T-Scaling:
Same shape of cross sections, $f(m_T)$, of various mesons

$$E \frac{d^3\sigma_m}{dp^3} = C_m \cdot f(m_T)$$

<table>
<thead>
<tr>
<th>Meson (C_m)</th>
<th>Mass</th>
<th>Decay Branch</th>
<th>B. Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0</td>
<td>134.98</td>
<td>$\gamma\gamma$</td>
<td>98.789%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$e^+e^-\gamma$</td>
<td>1.198%</td>
</tr>
<tr>
<td>η</td>
<td>547.3</td>
<td>$\gamma\gamma$</td>
<td>39.21%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\pi^+\pi^-\gamma$</td>
<td>4.77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$e^+e^-\gamma$</td>
<td>$4.9 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>ρ_0</td>
<td>770.0</td>
<td>$\pi^+\pi^-\gamma$</td>
<td>$9.9 \cdot 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td>(1.0)</td>
<td>$\pi^0\gamma$</td>
<td>$7.9 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>ω</td>
<td>781.9</td>
<td>$\pi^0\gamma$</td>
<td>8.5%</td>
</tr>
<tr>
<td></td>
<td>(0.9)</td>
<td>$\eta\gamma$</td>
<td>$6.5 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>η'</td>
<td>957.8</td>
<td>$\rho^0\gamma$</td>
<td>30.2%</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>$\omega\gamma$</td>
<td>3.01%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma\gamma$</td>
<td>2.11%</td>
</tr>
<tr>
<td>ϕ</td>
<td>1019.5</td>
<td>$\eta\gamma$</td>
<td>1.3%</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>$\pi^0\gamma$</td>
<td>$1.25 \cdot 10^{-3}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\omega\gamma$</td>
<td>< 5%</td>
</tr>
</tbody>
</table>

Direct photon double ratio

In the ratio uncertainties related to:
- normalization
- π^0 measurement
- rec. efficiency

partially or exactly canceled

The NLO double ratio prediction is plotted as

$$R_{NLO} = 1 + \frac{\gamma_{direct,NLO}}{\gamma_{decay}}$$

Measurement is consistent with the expected direct photon signal

Direct photon signal in pp at 7 TeV is consistent with zero
Double ratio for peripheral events shows no excess at any value of p_T.

- Measurement is consistent with the expected direct photon signal.
- pp NLO predictions scaled with N_{coll}.
Double Ratio - Pb-Pb 2.76 TeV - central

Direct photon double ratio

NLO prediction: \(1 + \left(\frac{N_{\text{coll}}^{\gamma_{\text{direct,pp,NLO}}}}{N_{\gamma_{\text{decay}}}^{\gamma}}\right)\)

for \(\mu = 0.5\) to \(2.0\ p_T\)

Clear extra yield of 20\% for \(p_T < 2\ \text{GeV/c}\)

\(N_{\text{coll}}\) scaled pp NLO in agreement with high \(p_T\) direct photons
Double Ratio - Pb-Pb 2.76 TeV - central

0-40% Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV

ALICE PRELIMINARY

- Direct photon double ratio
- NLO prediction: $1 + (N_{coll} \gamma_{direct, pp, NLO}/\gamma_{decay})$
 for $\mu = 0.5$ to 2.0 p_T

Clear extra yield of 20% for $p_T < 2$ GeV/c

N_{coll} scaled pp NLO in agreement with high p_T direct photons

- Similar to low p_T direct photon observation by PHENIX
Results of Pb-Pb Direct Photons at 2.76 TeV

Direct Photon Spectrum for central Pb-Pb events

Spectrum derived from double ratio by:

\[\gamma_{direct} = (1 - \frac{\gamma_{\text{decay}}}{\gamma_{\text{inc}}}) \cdot \gamma_{\text{inc}} \]
Results of Pb-Pb Direct Photons at 2.76 TeV

- **NLO predictions in agreement with spectrum** ($p_T > 4$ GeV/c)
- **At low** p_T (< 2.2 GeV/c) spectrum fitted with an exponential
 \rightarrow slope parameter $T = 304 \pm 51^{\text{stat+syst}}$ MeV
- **Intermediate region**: superposition of low and high p_T direct photons

Spectrum derived from double ratio by:

$$\gamma_{direct} = \left(1 - \frac{\gamma_{\text{decay}}}{\gamma_{\text{inc}}} \right) \cdot \gamma_{\text{inc}}$$
Conclusions I: Direct Photon Spectra

- Statistical analysis of direct photons based on converted photons via double ratio
- With current uncertainties no significant direct photon signal in pp and peripheral Pb-Pb
- Direct photon signal is consistent with expectation from NLO pQCD

- In central Pb-Pb:
 Low p_T direct photon signal, exponential in shape
- Similar excess measured at RHIC interpreted as thermal signal

Slope parameter:

- $T_{\text{ALICE}} = 304 \pm 51^{\text{stat+syst}}$ MeV (0-40%)
- $T_{\text{PHENIX}} = 221 \pm 19^{\text{stat}} \pm 19^{\text{syst}}$ MeV (0-20%)

arxiv:0804.4168 PRL 104 (132301) 2010
Part II: Direct Photon v_2
What can we learn from direct photon v_2?

Initial azimuthal asymmetry in coordinate space in non-central A+A
\Rightarrow asymmetry in momentum space

$$\frac{dN}{d\phi} = \frac{1}{2\pi} \left(1 + 2 \sum_{n \geq 1} v_n \cos(n(\phi - \Psi_{RP}^n)) \right)$$

- v_2: elliptic flow, collective expansion at low p_T
- v_2 at high p_T: path length dependence of in-medium parton energy loss

Thermal Photon v_2
- Constrains onset of direct photon production
- Early production \rightarrow small flow
- Late production \rightarrow hadron-like flow

Thermal Photons
Au+Au@200 AGeV
b = 6 fm

 Ideal hydro th. photon v_2 for different QGP formation times τ_0
General Strategy of the ν_2 Analysis

Direct photon ν_2 obtained via comparison between measured and calculated decay photon ν_2

$$\nu_2^{\text{direct}} \gamma = \frac{R \cdot \nu_2^{\text{inc}} \gamma - \nu_2^{\text{decay}} \gamma}{R - 1}$$

Factor R represents the direct photon double ratio

- $R \cdot \nu_2^{\text{inc}} \gamma$: weighted inclusive photon ν_2 due to extra photons compared to background
- $\nu_2^{\text{decay}} \gamma$: calculated decay photon ν_2 from cocktail calculation

0-40% Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV

ALICE PRELIMINARY

NLO prediction: $1 + \langle N_{\text{coll}} \gamma_{\text{direct,pp,NLO}}/\gamma_{\text{decay}} \rangle$

for $\mu = 0.5$ to 2.0 p_T
\(\nu_2 \) given by the reaction plane

\[
\nu_2 = \langle \cos(2(\phi - \psi_{2^{RP}})) \rangle
\]

Extracted via this formula or by a fit

Event Plane angle determined by using the VZERO detector

- VZEROA: 2.8 < \(\eta \) < 5.1
- VZEROC: -3.7 < \(\eta \) < -1.7

Reaction plane resolution obtained by the three sub-event method

Relation of RP to EP:

\[
\nu_2 = \frac{\nu_{2}^{EP}}{\langle \cos(2\psi_{2^{EP}} - \psi_{2^{RP}}) \rangle} = \frac{\nu_{2}^{raw}}{\text{resolution}}
\]
Magnitude of v_2 increases with decreasing centrality

Similar v_2 to hadrons

Expected behavior, main contributions are decay photons
Spectra of other mesons with photon decay branches obtained by m_T scaling

Assumption: $\nu_2^{\pi^0} = \nu_2^{\pi^\pm}$

ν_2 of various mesons (X) calculated via KE_T (quark number) scaling from $\nu_2^{\pi^\pm}$

Decay photon ν_2^X obtained by cocktail calculation

$$\nu_2^X(p_T^X) = \nu_2^{\pi^\pm} \left(\sqrt{(KE_T^X + m_{\pi^\pm})^2 - (m_{\pi^\pm})^2} \right)$$

with:

$$KE_T = m_T - m = \sqrt{p_T^2 + m^2} - m$$
Comparison of Inclusive and Decay ν_2

- Above 3 GeV/c inclusive photons significantly smaller than decay photons
 - Direct photon ν_2 contribution with $\nu_2^\text{direct} < \nu_2^\text{inc}$

- Below 3 GeV/c consistent within uncertainties
 - Either contribution of direct photons with similar ν_2 or no direct photons

![Graph showing ν_2 vs. p_T for 0-40% Pb-Pb collisions with $\sqrt{s_{NN}} = 2.76$ TeV. The graph compares inclusive and decay photon contributions.](ALI-PREL-43608)
Direct Photon v_2 0-40% and Conclusions II

- Significant direct photon v_2 for $p_T < 3$ GeV/c measured
- Magnitude of v_2 comparable to hadrons
- Result points to late production times of direct photons after flow is established
- Large inverse slope parameter of low p_T direct photon spectrum favours earlier production times
- Similar direct photon v_2 results seen by PHENIX
Backup Slides
Denominator Ratio: Cocktail Generator Pb-Pb Results

0-40% Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV

40-80% Pb-Pb, $\sqrt{s_{NN}} = 2.76$ TeV
Combined Fit for Direct Photons

Combined fit (Hagedorn + Exponential) gives similar result for the inverse slope parameter T as for the exponential only fit.
Systematic Cut Studies pp

Cut Variations for γ and π^0:

<table>
<thead>
<tr>
<th>Cut Name</th>
<th>Std. value</th>
<th>Variation 1</th>
<th>Variation 2</th>
<th>Variation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron dEdx</td>
<td>-4.5σ</td>
<td>-4.4σ</td>
<td>-3.4σ</td>
<td>-</td>
</tr>
<tr>
<td>Pion dEdx</td>
<td>1.10σ</td>
<td>2.1σ</td>
<td>2.0.5σ</td>
<td>2.0.5σ</td>
</tr>
<tr>
<td>$\text{Min. p } e^+ / e^-$</td>
<td>0.4 GeV/c</td>
<td>0.4 GeV/c</td>
<td>0.4 GeV/c</td>
<td>0.3 GeV/c</td>
</tr>
<tr>
<td>Find. Cls. TPC</td>
<td>0.35</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\text{Photon } \chi^2$</td>
<td>20</td>
<td>30</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>q_t</td>
<td>0.05</td>
<td>0.07</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>min. p_t e^+ / e^-</td>
<td>50 MeV/c</td>
<td>75 MeV/c</td>
<td>100 MeV/c</td>
<td>-</td>
</tr>
<tr>
<td>$\text{photon } \eta, \pi^0 y$</td>
<td>0.9, 0.8</td>
<td>0.8, 0.7</td>
<td>1.2, 0.9</td>
<td>-</td>
</tr>
<tr>
<td>min. R</td>
<td>5 cm - 180 cm</td>
<td>2.8 cm - 180 cm</td>
<td>10 cm - 180 cm</td>
<td>-</td>
</tr>
</tbody>
</table>

- V0s with shared electrons rejected
- Purity for different centralities used
- TOF and α cut not used for pp
- R cut already considered for material budget

π^0 yield extraction:
- Three different integration windows
- Different Numbers of mixed events for bg, different mixed event bins (n V0s, n tracks)

Cocktail simulation:
- Two different fits
- Variation of the m_t scaling factors (η measured)
Systematic Cut Studies Pb-Pb

Cut Variations for γ and π^0:

<table>
<thead>
<tr>
<th>Cut Name</th>
<th>Std. value</th>
<th>Variation 1</th>
<th>Variation 2</th>
<th>Variation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron dEdx</td>
<td>-3,5σ</td>
<td>-4,5σ</td>
<td>-2.5,4σ</td>
<td>-</td>
</tr>
<tr>
<td>Pion dEdx</td>
<td>3,-10σ</td>
<td>2.5,-10σ</td>
<td>3.5,-10σ</td>
<td>3,-10σ</td>
</tr>
<tr>
<td>Min. p e^+/e^-</td>
<td>0.4 GeV/c</td>
<td>0.4 GeV/c</td>
<td>0.4 GeV/c</td>
<td>0.3 GeV/c</td>
</tr>
<tr>
<td>Find. Cls. TPC</td>
<td>0.6</td>
<td>0.7</td>
<td>0.35</td>
<td>-</td>
</tr>
<tr>
<td>Photon χ^2</td>
<td>10</td>
<td>5</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>q_t</td>
<td>0.05</td>
<td>0.03</td>
<td>0.07</td>
<td>-</td>
</tr>
<tr>
<td>min. p_t e^+/e^-</td>
<td>50 MeV/c</td>
<td>75 MeV/c</td>
<td>100 MeV/c</td>
<td>-</td>
</tr>
<tr>
<td>photon η, π^0, y</td>
<td>0.75, 0.7</td>
<td>0.9, 0.8</td>
<td>0.8, 0.7</td>
<td>-</td>
</tr>
<tr>
<td>min. R</td>
<td>5 cm - 180 cm</td>
<td>2.8 cm - 180 cm</td>
<td>10 cm - 180 cm</td>
<td>-</td>
</tr>
<tr>
<td>α meson central</td>
<td>0.65</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>α meson peripheral</td>
<td>0.8</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOF</td>
<td>-5,-5σ</td>
<td>-3,-5σ</td>
<td>-2,-5σ</td>
<td>-</td>
</tr>
</tbody>
</table>

- V0s with shared electrons rejected
- Purity for different centralities used

π^0 yield extraction:
- Three different integration windows
- Different Numbers of mixed events for bg, different mixed event bins
 (n V0s, n tracks)

Cocktail simulation:
- Two different fits, with and without blast wave
- Variation of the m_t scaling factors
PHENIX Direct Photon v_2 Results

(a) $\pi^0 v_2$ vs p_T [GeV/c]
(b) $\gamma^{inc.} v_2$ vs p_T [GeV/c]
(c) $\gamma^{dir.} v_2$ vs p_T [GeV/c]

- $\pi^0 v_2$
- $\gamma^{inc.} v_2$ (E.P. RXN ($|\eta|$=1.0~2.8)
- $\gamma^{dir.} v_2$ (E.P. BBC ($|\eta|$=3.1~3.9))