Spin Physics Requiring Upgraded STAR Tracking

S. Vigdor, MIT, Nov. 7, 2003

Two basic measurement programs from STAR Decadal Plan:

- 1) W^{\pm} Production in $\overrightarrow{p} + \overrightarrow{p}$ Collisions
- > Physics Goal: What is the mechanism for producing the $q\bar{q}$ sea?
- > Measure: $\Delta \overline{u}(x)$ vs. $\Delta \overline{d}(x)$ via parity-violating helicity asymmetries
- > Endcap region important for clean Δq vs. $\Delta \overline{q}$ distinction
- Improved forward tracking essential to distinguish e⁺ vs e⁻, hence flavor-dependence, important for improved e/h discrimination
- 2) Transverse Single Spin Asymmetries for Heavy Quark Jets
- > Physics Goal: Can effect of explicit χ SB m_g-dependent terms in L_{QCD} be seen in transverse spin asymmetries at high p_T?
- Measure: transverse analyzing power (sensitivity to incident p spin) for open c,b hadron prod'n; transverse pol'n of outgoing Λ_c⁺ or Λ_b (averaging over p spins), via self-analyzing decays
- Microvertex + improved inner tracking needed to identify c,b displaced vertices

Conclude: would be nice to measure \overline{q} polarization, flavor-dependence directly! Best Method:

$$\begin{array}{c} \stackrel{-}{u} \stackrel{-}{d} \stackrel{-}{\rightarrow} \stackrel{-}{W^{+}} \stackrel{+}{x} \stackrel{+}{\rightarrow} \stackrel{+}{I^{+}} \stackrel{+}{(\nu)} \stackrel{+}{x} \\ \stackrel{-}{d} \stackrel{-}{u} \stackrel{-}{\rightarrow} \stackrel{-}{W^{-}} \stackrel{+}{x} \stackrel{-}{\rightarrow} \stackrel{-}{I^{-}} \stackrel{+}{(\nu)} \stackrel{+}{x} \end{array}$$

Weak interaction \Rightarrow parity-violating \Rightarrow $A_L \neq 0$, given by Standard Model

Flavor Asymmetry in the Nucleon Sea

> FNAL E866 compared Drell-Yan for p+d to p+p, to reveal sizable unpolarized flavor asymmetry $\overline{d}(x) - \overline{u}(x)$.

> Results are qualitatively consistent with pion cloud models, instanton models, chiral quark soliton models, etc.

> Chiral quark soliton model is appropriate in large- N_c limit of QCD: Dirac quarks bound in collective pion field to model χ SB.

х

Two Proposed Methods for Probing Polarized Flavor Asymmetry Have Quite Different Sensitivities

Semi-Inclusive DIS:
$$\overrightarrow{e} + \overrightarrow{N} \rightarrow e' + h + X$$

SIDIS sensitivity reduced by fragmentation functions and e_a^2 weighting

New HERMES SIDIS Results...

...do not appear to support either large positive $\Delta \overline{u} - \Delta \overline{d}$ or negative Δs

But, error bars are large and questions have been raised regarding analysis details.

See:

A. Airapetian et al., hep-ex/0307064 A.N. Sissakian et al., hep-ph/0307189

STAR Simulations of W Prod'n

L.C. Bland

> LO only (NLO doesn't alter qualitative conclusions): $u\overline{d} \rightarrow W^+$; $d\overline{u} \rightarrow W^-$

> Detect via $e^{\pm} \Rightarrow$ kinematic differences in acceptance:

W momentum in dir'n of higher-x parton (usually q)

♦ PV decay of L-handed $W^{\pm} \oplus CP \Rightarrow$ in W rest frame: e^{+} (e^{-}) emitted pref'ly
along (opposite) W^{+} (W^{-}) spin

 $\Rightarrow e^{-}$ focused in q dir'n; e^{+} more spread out

* for W^- prod'n, e^- in endcap pref'ly probes $d_{toward} \overline{u}_{away}$ collisions

> 2 charges \otimes 2 single-spin PV asyms. constrain Δu , Δd , $\Delta \overline{u}$, $\Delta \overline{d}(x)$

Separation of antiquark and quark polarizations is kinematically cleanest in endcap region (opposite for W⁺,W[−])

> One may approximately reconstruct $x_{1,2}$ from $\eta(e)$, $p_T(e)$ event-by-event from 2-body fusion + 2-body decay, i.e., neglecting W width + transverse mom.

 $\sqrt{x_{1}x_{2}} = M_{W} / \sqrt{s} = 0.16 @ \sqrt{s} = 500 \text{ GeV};$ $(x_{1} - x_{2}) / (x_{1} + x_{2}) = tanh [\eta_{e}^{meas} - \eta_{e}^{rest}] = tanh [\eta_{e}^{meas} - \cosh^{-1}(M_{W} / 2p_{T}^{meas})]$

Bjorken x Sensitivity of STAR W Prod'n

I ≤ η_e ≤ 2 probes either asymmetric
 $q_{toward} \overline{q}_{away}$ or ≈ symmetric $\overline{d}_{toward} u_{away}$ collisions.

> Sensitivity generally good for $x_{\overline{q}} \approx 0.1$, where chiral soliton model predicts largest flavor dep. of $\Delta \overline{q}/\overline{q}$

Experimental Issues for W Detection in STAR

- Triggering: easy very large p_T in single EMC tower (B or E)
- > e/h Discrimination: ~ 1 order of magnitude apiece from:

***** Isolation of detected particle from other jet fragments

Absence of accompanying jet at opposite azimuth (dijet rejection cut serves as "poor man's" missing energy cut)

* EMC response: E_{preshower}, E_{SMD}, E_{postshower} (for EEMC) vs. E_{shower}; E_T (EMC) vs. p_T (TPC + fwd. Tracking)

should \Rightarrow W signal/hadron bkgd > 1 for p_T^e > 20 GeV/c (most of W decay phase space), but improved p_T determination very useful!

e⁺ vs. e⁻ Charge Sign Discrimination: OK for BEMC, but needs improved forward tracking for EEMC! (see N. Smirnov simulations)

More Speculative Spin-Flavor Structure Determinations via W Production

> Single-spin <u>transverse</u> (non-PV) asymmetry A_N for W^{\pm} production at $p_T(W) \neq 0$ can aid in distinguishing transverse motion of partons from transverse spin alignment in a transversely polarized proton: both contribute to A_N in hadronic processes, but W's do not couple to transverse quark spin, ∴can map flavor-dep. of $q, \overline{q} \ \overline{k_T}$ preference.

> PV helicity asymmetry A_L for $W^+ \rightarrow e^+$ detected in coinc. with spectator n in ZDC can probe dominance of Goldstone bosons ($0^- \Rightarrow$ unpolarized d) in $|n \text{ meson}\rangle$ configurations of proton: this measurement requires well beyond "enhanced" pp design luminosity!

Table 2.	Prediction	of various	theoretical	models or	the inte-
gral $I_{\Delta} =$	$=\int_0^1 [\Delta \bar{u}(x)]$	$-\Delta \bar{d}(x)]dx$	x. (from J .	C. Peng)	

			$n + n$ $\sqrt{s} = 500 GeV$
Model	I_{Δ} prediction	Ref	
Meson cloud (π_{-meson})	0	[42,	
$\frac{(n-mcson)}{(n-mcson)}$	$\simeq -0.0007$ to -0.027	[34]	10^4 10^4 $28pb^{-1}$ 10^4 $28pb^{-1}$
(μ meson) Meson cloud (π – a interf.)	$= -6 \int_0^1 g^p(x) dx$ ≈ -0.7	[35]	
$ (n - p \text{ interf.}) $ Meson cloud $ (a \text{ and } \pi - a \text{ interf.}) $	$\simeq -0.004$ to -0.033	[36]	
(ρ and $x = \rho$ intern.) Meson cloud (ρ -meson)	< 0	[37]	(395) 0 20 40 60 80 0 20 40 60 80
$\begin{array}{l} (p - mcson) \\ \text{Meson cloud} \\ (\pi - \sigma \text{ interf}) \end{array}$	$\simeq 0.12$	[44]	$= \frac{1}{2} \frac{1}{10^3}$
Pauli-blocking (bag-model)	$\simeq 0.09$	[36]	$10^{2} \qquad \qquad$
Pauli-blocking (ansatz)	$\simeq 0.3$	[45]	
Pauli-blocking	$= \frac{5}{3} \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx \\ \simeq 0.2$	[46]	
Chiral-quark soliton	0.31	[47]	0 20 40 60 80 0 20 40 60 80
Chiral-quark soliton	$\simeq \int_{0}^{1} 2x^{0.12} [\bar{d}(x) - \bar{u}(x)] dx$	[48]	$p_{\tau}(GeV/c)$
Instanton	$=\frac{5}{3}\int_{0}^{1}[\bar{d}(x)-\bar{u}(x)]dx$ \$\approx 0.2\$	[39]	<i>within acceptance</i> $(-1 < \eta < 2)$
Statistical	$\simeq \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx$ $\simeq 0.12$	[49]	$R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.26$ include missing p_x cut
Statistical	$ > \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx > 0.12 $	[50]	$p_T^{jet}(\phi_e + \pi \pm 1) < 5 \ GeV/c$

Transverse Spin Asymmetries in Heavy Quark Production

Chiral symmetry of QCD (for $m_q \rightarrow 0$) \Rightarrow no helicity flip \Rightarrow

 $\hat{a}_{N}^{partonic} \rightarrow 0$ at leading twist

Observed hadronic $A_N \neq 0$ (generally @ moderate p_T) usually attributed to T-odd spin- k_T correlation in the 1st [e.g., Sivers effect: $\vec{s}_{inc} \cdot (\vec{p}_{inc} \times \vec{k}_T^{parton})$] or 3rd [Collins effect: $\vec{s}_q \cdot (\vec{p}_{jet} \times \vec{k}_T^{fragment})$] nonperturbative factors above.

However, L_{QCD} contains (explicit chiral symmetry breaking) terms $\propto m_a q \overline{q}$ for $m_a \neq 0 \Rightarrow$ expect:

 $\hat{a}_{N}^{partonic} \sim (m_q / E_q) \alpha_{strong}$

Negligible for hard processes and light quarks (u,d,s), but not necessarily for c or b quarks!

⇒ Measure 1-spin transverse spin asymmetries for prod'n of charmed or bottom hadrons, to look for m_q -dependent effects of perturbative origin.

Caveats & Rates

Dominant prod'n mechanism likely $gg \rightarrow c\overline{c}$, $b\overline{b}$. But g doesn't share p <u>transverse</u> spin, so unlikely to generate $A_N \neq 0$ of pQCD origin.

 \Rightarrow Measure either P_N of outgoing Λ_c^+ or Λ_b^0 , via their selfanalyzing weak decay to lighter Λ 's + leptons (polarized beams not necessary for this!), and compare to Λ^0 <u>or</u> measure A_N for kinematics chosen to emphasize $qq \rightarrow c\overline{c}$, $b\overline{b}$ (e.g., high p_T , asymmetric collisions: one jet in EEMC, one at mid-rapidity)

No simulations yet performed to flesh out these ideas!

Total cross section for $b\overline{b}$ prod'n within STAR, $p_T = 10-20$ GeV/c: $\sigma_{b\overline{b}} \sim 10$ nb (R. Vogt calcs.) $\Rightarrow \sim 2 \times 10^6$ pairs produced in 200 pb⁻¹ Interesting sensitivity level to $A_N = \pm 0.01 \Rightarrow \text{need} \sim 2 \times 10^4$ events analyzed \Rightarrow need:

Trigger (high- p_T e in EMC) eff. × APS/inner tracker vertex acceptance × reconstruction eff. × relevant kinematic cut acceptance ~ 1%