Micro-vertex

Pixel Activities

LBNL

Fred Bieser, Robin Gareus (Heidelberg), Howard Matis, Marcus Oldenburg, Fabrice Retiere, Kai Schweda, Hans-Georg Ritter, Eugene Yamamoto, Howard Wieman

LEPSI/IReS

Claude Colledani, Michel Pellicioli, Christian Olivetto, Christine Hu, Grzegorz Deptuch Jerome Baudot, Fouad Rami, Wojciech, Dulinski, Marc Winter

> UCI Yandong Chen, Stuart Kleinfelder

> > BNL Instrumentation Div Consulting

> > > OSU Ivan Kotov

Purdue Dennis Reichhold

- Micro-Vertex detector development
 - Goals and Strategy
 - Funded project 2006 (preliminary proposal this Dec)
 - 1ST Generation based on LEPSI/IReS MIMOSA-5 CHIP (slow read out)
 - 2nd Generation fast readout to be determined
 - Activities
 - Simulations
 - MIMOSA-5 readout
 - Advanced APS development
 - Mechanical

Features

- 2 layers
- Inner radius ~1.8 cm
- Active length 20 cm
- Readout speed 20 ms (generation 1)
- Number of pixels 130 M

- Original work of Retiere and Matis show substantial improvement in D meson statistics, simulations based on parameterized performance of STAR detectors
- Full tracking detailed simulations (Schweda and Retiere) awaiting tracking debug
 - Cut optimization
 - Refinement of detector requirements (pixel size)

MIMOSA-5 LEPSI/IReS chip readout

- MIMOSA-5, full wafer engineering run – significant readout infrastructure
- Test board development (Bieser and Gareus)
 - 2 by 2 cm MIMOSA-5 chip
 - LBNL development using 4 commercial 50 MHz 14 bit ADCs
- Considering piggy back readout chip design with CDS and signal scarification
 - Full frame by frame comparison for CDS, i.e. memory for frame storage and leakage current subtraction

- Goal, increase speed with on detector chip zero suppress
 and by avoiding full frame readout
- Requires improvements in signal to noise
 - Noise sources
 - KTC reset noise
 - Fixed pattern noise, threshold variation, leakage current variation
- Programs at LEPSI/IReS
- Programs at UCI/LBNL (Stuart Kleinfelder, Yandong Chen)
 - Photogates
 - CDS clamp circuit
 - Active Reset

Photo gate purpose - addresses standard diode limitations

Standard APS diode structure

- CDS removal of fixed pattern noise and KTC reset noise on the chip (standard diode requires CDS off chip)
- Reset Read Power Bias

 Increase signal by reducing signal spreading to adjacent pixels. The photo gate permits large geometry without adding capacitance to the sense node.

Photo-gate geometry

- Large photo-gate to collect large fraction of the charge on a single pixel, directly on the p- epi layer
- Small transfer gate also directly on p- epi layer
- Small drain (minimum capacitance) connected to source follower gate (sense node)

Photo-gate issues in standard CMOS

double poly, standard for CCDs

 No double poly process – possible poor transfer between gates because of low transverse field

single poly, limitation of CMOS

• Floating n well between gates, a bad solution to the transfer problem with single poly

 Sub-micron process may solve problem

Photo gate/transfer gate operation

Wieman: 10 LBNL

Photo gate/transfer gate with 800 nm separation

Wieman: 11 LBNL

Drain current after light injection

- 400 nm between photo gate and transfer gate, no floating n well
- Nano amp drain current
- Rapid electron transfer - complete in 60 ns

First silicon tests, comparing photo-gate with standard diode structure

DC bias: V photo-gate 0.6 V V drain 2.4 V

Issue:

Why is the signal spread out – is it surface traps under the gate?

Output signal for Fe⁵⁵ X-ray test

CDS clamp

 kTC noise removed by clamp circuit – noise scales as

$$\sqrt{\frac{kT}{C_2}}$$

Rather than

$$\sqrt{kTC_{diode}}$$

Active reset

- Signal from output is amplified to zero the input
- Inferred noise 5.1 electrons RMS as compared to kTC reset of 38 electrons RMS

Our standard APS gives 10 electrons RMS after CDS

- Rapid insertion and removal for replacement and changing detector configuration
- Minimum thickness: 50 Micron Si Detector 50 Micron Si Readout chip
- Air cooling
- Composite beam pipe?

Thin stiff ladder concept

Air cooling and vibration

- 1-2 m/s air cools 100 mW/cm²
- TV holography shows 2 μm vibration for tensioned silicon structure

TV holography vibration map

Inner STAR model – SVT and micro-vertex

STAR inner model – FTPC, SVT and micro vertex

The reality

- Micro-vertex detector is being designed to go inside SVT
- It is being designed for rapid insertion and removal
- Should be flexible with a variety of detector designs

Tension concept

Tension concept

Wieman: 25 LBNL

50 µm Silicon

Thinned Silicon wire bonded to cable, both supported under tension

Used in wind tunnel test

Wieman: 26 LBNL

A thinner beam pipe

Elastic Bucking Instability *Euler 1757*

Simply supported column subjected to axial load F

0.03 atmos. with no corrugation Wieman: 27 LBNL

- Present monolithic CMOS APS detector technology suitable for slow 10-20 ms readout (examples at LBNL/UCI and LEPSI/IRES)
- Fast readout not ready yet, but progress is being made
- Radiation hardness good enough for RHIC
- Mechanical concepts progressing
- R&D is fun, but...
- Proposal due this December

Test of diode variation

Puzzle:

- No Fe55 signal
- Will test with more statistics

- For large rejection ratios must set cut at several times multiple scattering angle
- At these large angles single coulomb scattering dominates and materials contribute linearly

Beam pipe x/X0 = .17 % Si x/X0 = .05 % C Comp x/X0 = .03 % Al Kapton x/X0 = .03 %

Wieman: 30 LBNL

Photo-gate Fe⁵⁵ X-Ray test

- Charge collection histogram for CMOS APS comparing two photo-gate structures to standard diode structure
- Photo-gate coupled directly to drain no transfer gate
- Photo-gate shows more complete charge collection, but...

Drain current after light injection, floating n well delay

Light injection

Potential before and after injection

Smaller the signal the higher the effective resistance and the slower the transfer

Wieman: 32 LBNL

Radiation resistance

 Radiation tests of the LBNL APS at the 88" cyclotron

MIP (most probable)	440 e
Node C, measured with Fe ⁵⁵ Xray	6.1 fF
Gain	~26 μV/e
Noise (1 pixel, CDS, I _{leak} subtr)	17 e rms
Signal/Noise (9 pixel sum, CDS)	9
Signal/Noise (potential, single pix)	26
kTC reset noise (measured)	50 e rms
kTC reset noise (expected)	30 e rms
Leakage Current	0.9 fA

Ladders per Wafer	5
Ladders per Detector	24
Yield	60%
Number of Detector Copies	4
Number of Wafers	32
Wafer Cost Each	2-5 k\$
Wafer Costs	64-160 k\$
Mask Cost	150-200 k\$
Total	214-360 k\$

8 inch wafers 20 mm x 170 mm ladders

Mechanical Concept

Single end support for rapid installation and removal

•

•

- For beampipe bake out
- Insurance for beam excursion damage
- Readout electronics in end support module

Low Mass Carbon fiber tube

Aluminum Kapton cables under tension

Thin silicon ladders under tension