Cross Section

The production cross section for $ V_0$ particles in the acceptance of the HERA-B detector can be expressed as follows:

$\displaystyle \sigma_{V_0}=\frac{1}{Br(V_0) L} \iint \frac{N(p_t^2,x_F)}{\epsilon(p_t^2,x_F)} \, \mathrm{d} p_t^2\, \mathrm{d} x_F$ (6.19)

where $ N(p_t^2,x_F)$ is the number of observed $ V_0$s in bins of $ p_t^2$ and $ x_F$ and $ \epsilon(p_t^2,x_F)$ is the total acceptance which includes geometrical acceptance of the detector and reconstruction efficiency (see Section 6.4) for the considered kinematical range. The branching ratios $ Br(V_0)$ are taken from Ref. [#!Pdg!#] , and $ L$ is the luminosity which has been calculated for each wire separately, as it is described in 6.5.

The inclusive differential cross section per nucleon $ \mathrm {d} \sigma _{pA} / \mathrm {d}x_F$ for various targets and target materials are shown in Table 6.4 for the $ x_F$ range [-0.12,0]. The inclusive differential cross section per nucleon $ \mathrm {d} \sigma _{pA} / \mathrm {d}x_F$ for various targets and target materials are shown in Table 6.5 for the positive $ x_F$ range.


Table 6.4: The inclusive differential cross sections for the $ -0.12 \le x_F < 0$ range for the production of $ K^0_S, \, \,\Lambda$ and $ \bar \Lambda$ particles. The total cross sections obtained by extrapolation to the $ -1. \le x_F \le 1$ range are listed.

Particle Target $ \mathrm {d} \sigma _{pA} / \mathrm {d}x_F$ (mb) $ \sigma_{pA}$ (mb)
  C 337.1 $ \pm$ 17.6 $ \pm$ 60. 135.2 $ \pm$ 7.1 $ \pm$ 20.5
$ K^0_S$ Ti 1709.2 $ \pm$ 95.3 $ \pm$ 227.8 693.7 $ \pm$ 38.7 $ \pm$ 92.5
  W 4521.2 $ \pm$ 241.3 $ \pm$ 617.4 1835. $ \pm$ 98. $ \pm$ 250.8
  C 85.6 $ \pm$ 4.4 $ \pm$ 15.1 61.2 $ \pm$ 3.2 $ \pm$ 11.
$ \Lambda $ Ti 428.3 $ \pm$ 22.9 $ \pm$ 67.1 306.2 $ \pm$ 16.4 $ \pm$ 47.9
  W 1078.2 $ \pm$ 55.9 $ \pm$ 194.1 767.9 $ \pm$ 39.9 $ \pm$ 138.2
  C 42.1 $ \pm$ 2.3 $ \pm$ 6.5 14.8 $ \pm$ 0.8 $ \pm$ 2.7
$ \bar \Lambda$ Ti 185.5 $ \pm$ 11.9 $ \pm$ 35.3 73.9 $ \pm$ 4.2 $ \pm$ 14.9
  W 550.7 $ \pm$ 29.7 $ \pm$ 85.4 193.4 $ \pm$ 10.4 $ \pm$ 36.0



Table 6.5: The inclusive differential production cross section $ \mathrm {d} \sigma _{pA} / \mathrm {d}x_F$ in $ mb$ for $ K^0_S, \, \,\Lambda$ and $ \bar \Lambda$ particles measured on three different targets for positive $ x_F$ range.
$ \triangle\, x_F$ C Ti W
$ K^0_S$
0. - 0.015 665.3 $ \pm$ 7.5 $ \pm$ 133.1 3056.5 $ \pm$ 41.8 $ \pm$ 611.3 7850.4 $ \pm$ 71.7 $ \pm$ 1570.1
0.015 - 0.03 648.3 $ \pm$ 14.5 $ \pm$ 129.7 2878.1 $ \pm$ 78.9 $ \pm$ 575.6 7439.9 $ \pm$ 137.2 $ \pm$ 1487.8
0.03 - 0.045 665.9 $ \pm$ 33.1 $ \pm$ 133.2 2773.3 $ \pm$ 177.6 $ \pm$ 554.6 6757.9 $ \pm$ 289.9 $ \pm$ 1351.6
0.045 - 0.06 626.8 $ \pm$ 65.2 $ \pm$ 125.4 3387.6 $ \pm$ 554.7 $ \pm$ 677.5 8482.1 $ \pm$ 861.5 $ \pm$ 1696.4
$ \Lambda $
0. - 0.015 171.2 $ \pm$ 8.3 $ \pm$ 34.2 1149.3 $ \pm$ 78.1 $ \pm$ 229.8 2595.1 $ \pm$ 102.4 $ \pm$ 519.2
0.015 - 0.03 236.2 $ \pm$ 19.6 $ \pm$ 47.2 1217.6 $ \pm$ 131.8 $ \pm$ 243.5 2947.2 $ \pm$ 188.3 $ \pm$ 589.4
0.03 - 0.045 269.5 $ \pm$ 44.5 $ \pm$ 53.9 1327.1 $ \pm$ 257.6 $ \pm$ 265.4 4412.2 $ \pm$ 588.2 $ \pm$ 882.4
$ \bar \Lambda$
0. - 0.015 108.1 $ \pm$ 6.4 $ \pm$ 21.6 533.3 $ \pm$ 41.1 $ \pm$ 106.6 1345.9 $ \pm$ 67.1 $ \pm$ 269.2
0.015 - 0.03 111.5 $ \pm$ 11.4 $ \pm$ 22.3 646.1 $ \pm$ 87.3 $ \pm$ 129.2 1352.9 $ \pm$ 112.7 $ \pm$ 270.6
0.03 - 0.045 105.5 $ \pm$ 17.9 $ \pm$ 21.1 917.5 $ \pm$ 277.4 $ \pm$ 183.5 2263.7 $ \pm$ 420.2 $ \pm$ 452.7


In order to be comparable with results from other experiments the obtained cross sections have to be extrapolated to the full $ x_F$ range [-1.,1.]. The extrapolation was based on the measurements in the negative $ x_F$ region by using the parameterization $ \mathrm{d} \sigma_{pA} / \mathrm{d}x_F \varpropto (1-x_F)^n$ [#!brod!#]. The parameter $ n$ is constant and values for different strange particles are taken from the measurements of inclusive strange-particle production done by other experiments [#!Adam!#]. The resulting production cross sections $ \sigma_{pA}$ for $ V_0$ are listed in Table 6.4.

The differential cross sections $ \mathrm {d} \sigma _{pA} / \mathrm {d}p_t^2$ are listed in Table 6.7. The results are plotted in Fig. 6.18, fits are done by the function

$\displaystyle \frac{\mathrm{d} \sigma_{pA}}{\mathrm{d}p_t^2}=\sigma B exp(-B p_t^2),$ (6.20)

where B is a parameter independent from $ x_F$ and $ p_t^2$ [#!zavm!#]. Measured parameter B for different target materials are listed in Table 6.6. The measured $ p_t^2$ spectra is well described by the Eq. 6.20.

Table 6.6: The values of the parameter B obtained by fitting the differential cross section.
$ B (GeV/c)^{-2}$
  C Ti W
$ K^0_S$ 3.3 $ \pm$ 0.3 3.1 $ \pm$ 0.3 3.1 $ \pm$ 0.3
$ \Lambda $ 2.1 $ \pm$ 0.2 2. $ \pm$ 0.3 2.0 $ \pm$ 0.2
$ \bar \Lambda$ 2.3 $ \pm$ 0.2 2.1 $ \pm$ 0.2 2.1 $ \pm$ 0.2


The differential production cross sections $ \mathrm {d} \sigma _{pA} / \mathrm {d}p_t^2 \mathrm {d} x_F$ are listed in Table 6.8-6.10. Only statistical errors are quoted here.


Table 6.7: The inclusive differential production cross section $ \mathrm {d} \sigma _{pA} / \mathrm {d}p_t^2$ in $ mb/(GeV/c)^2$ for $ K^0_S, \, \,\Lambda$ and $ \bar \Lambda$ particles measured on three different targets. The $ p_t^2$ bins ( $ \triangle\, p_t^2$) are in $ (GeV/c)^2$.
$ \triangle\, p_t^2$ C Ti W
$ K^0_S$
0. - 0.2 327.1 $ \pm$ 16.6 $ \pm$ 55.6 1549.5 $ \pm$ 79.3 $ \pm$ 263.4 4042.8 $ \pm$ 204.4 $ \pm$ 687.2
0.2 - 0.4 121.2 $ \pm$ 6.2 $ \pm$ 20.6 580.7 $ \pm$ 30.2 $ \pm$ 98.7 1542.1 $ \pm$ 78.6 $ \pm$ 262.1
0.4 - 0.6 56. $ \pm$ 2.9 $ \pm$ 9.5 281.2 $ \pm$ 15.2 $ \pm$ 47.8 743.8 $ \pm$ 38.5 $ \pm$ 126.4
0.6 - 0.8 29.5 $ \pm$ 1.6 $ \pm$ 5. 146.5 $ \pm$ 8.3 $ \pm$ 24.9 415.1 $ \pm$ 22. $ \pm$ 70.5
0.8 - 1.0 18.2 $ \pm$ 1.1 $ \pm$ 3.1 93.3 $ \pm$ 5.8 $ \pm$ 15.8 253.3 $ \pm$ 14. $ \pm$ 43.01
1.0 - 1.2 11.1 $ \pm$ 0.7 $ \pm$ 1.8 67.7 $ \pm$ 4.9 $ \pm$ 11.5 169.7 $ \pm$ 9.9 $ \pm$ 28.8
$ \Lambda $
0. - 0.2 81.2 $ \pm$ 4.5 $ \pm$ 13.7 494.9 $ \pm$ 28.1 $ \pm$ 84.1 919.7 $ \pm$ 48.7 $ \pm$ 156.3
0.2 - 0.4 50.6 $ \pm$ 2.8 $ \pm$ 8.6 296.7 $ \pm$ 17.1 $ \pm$ 50.4 577.9 $ \pm$ 30.7 $ \pm$ 98.2
0.4 - 0.6 32.7 $ \pm$ 1.9 $ \pm$ 5.5 179.1 $ \pm$ 11.2 $ \pm$ 30.4 430.8 $ \pm$ 23.9 $ \pm$ 73.2
0.6 - 0.8 20.7 $ \pm$ 1.4 $ \pm$ 3.5 114.7 $ \pm$ 8.1 $ \pm$ 19.5 269.1 $ \pm$ 15.9 $ \pm$ 45.7
0.8 - 1.0 14.8 $ \pm$ 1.1 $ \pm$ 2.5 90.1 $ \pm$ 8. $ \pm$ 15.3 221.7 $ \pm$ 14.6 $ \pm$ 37.7
1.0 - 1.2 12.3 $ \pm$ 1.2 $ \pm$ 2.1 77.1 $ \pm$ 8.8 $ \pm$ 13.1 142.6 $ \pm$ 10.7 $ \pm$ 24.2
$ \bar \Lambda$
0. - 0.2 25.1 $ \pm$ 1.5 $ \pm$ 4.2 118.2 $ \pm$ 7.2 $ \pm$ 20.1 317.2 $ \pm$ 17.6 $ \pm$ 53.9
0.2 - 0.4 16.1 $ \pm$ 0.9 $ \pm$ 2.7 79.6 $ \pm$ 4.9 $ \pm$ 13.5 200.2 $ \pm$ 11.1 $ \pm$ 34.
0.4 - 0.6 9.7 $ \pm$ 0.6 $ \pm$ 1.6 51.3 $ \pm$ 3.5 $ \pm$ 8.7 126.6 $ \pm$ 7.4 $ \pm$ 21.5
0.6 - 0.8 6.1 $ \pm$ 0.4 $ \pm$ 1. 27.5 $ \pm$ 2.2 $ \pm$ 4.6 87.6 $ \pm$ 5.6 $ \pm$ 14.8
0.8 - 1.0 3.5 $ \pm$ 0.3 $ \pm$ 0.5 19.9 $ \pm$ 2.1 $ \pm$ 3.3 56.7 $ \pm$ 4.1 $ \pm$ 9.6
1.0 - 1.2 2.6 $ \pm$ 0.2 $ \pm$ 0.4 19.1 $ \pm$ 2.6 $ \pm$ 3.2 36.8 $ \pm$ 3.1 $ \pm$ 6.2


Figure 6.18: The differential production cross sections $ \mathrm {d} \sigma _{pA} / \mathrm {d}p_t^2$ for $ V_0$ for three target materials (Carbon, Titanium and Tungsten).


\begin{sidewaystable}
% latex2html id marker 3549\begin{center}
\small
\begin{...
...The $p_t^2$\ bins ($\triangle\, p_t^2$) are in $(GeV/c)^2$.}
\end{sidewaystable}


\begin{sidewaystable}
% latex2html id marker 3570\begin{center}
\small
\begin{...
...The $p_t^2$\ bins ($\triangle\, p_t^2$) are in $(GeV/c)^2$.}
\end{sidewaystable}


\begin{sidewaystable}
% latex2html id marker 3591\begin{center}
\small
\begin{...
...The $p_t^2$\ bins ($\triangle\, p_t^2$) are in $(GeV/c)^2$.}
\end{sidewaystable}

The ratios of production cross sections from the measurements listed above for mid-rapidity for Carbon wire are

$\displaystyle \frac{\sigma (K^0_S)}{\sigma (\Lambda)}=5.9 \pm 0.3 , \, \,
\frac{\sigma (\bar \Lambda)}{\sigma ( \Lambda)}=0.68 \pm 0.07.
$

Fig. 6.19 shows the ratios for all three different target materials used.

Figure: The ratio of $ \sigma (\bar \Lambda) / \sigma (\Lambda)$ determined at mid-rapidity for the used targets.

The dependences of production cross sections on the atomic number of the target material are shown in Fig. 6.20 and fitted by the $ \sigma_{pA} \varpropto A^{\alpha}$. Production cross sections and $ \alpha$ obtained from the fit are listed in Table 6.11.

Figure 6.20: The $ V_0$ total production cross section as a function of atomic mass A of the target material. The solid lines show fits by the $ \sigma _{pA} \varpropto A_{\alpha }$ function.


Table 6.11: Production cross section per nucleon for $ V_0$ and results of the dependences of production cross sections on the atomic number.
  $ K^0_S$ $ \Lambda $ $ \bar \Lambda$
$ \sigma_{pN}$ (mb) 13.2 $ \pm$ 0.91 $ \pm$ 2.3 6.5 $ \pm$ 0.57 $ \pm$ 0.94 1.6 $ \pm$ 0.17 $ \pm$ 0.28
$ \alpha$ 0.961 $ \pm$ 0.026 0.927 $ \pm$ 0.021 0.93378 $ \pm$ 0.026


The production cross sections per nucleon as a function of the atomic number of the target material are shown in Fig. 6.21

Figure 6.21: The $ V_0$ total production cross section per nucleon as a function of atomic mass A of the target material.



Subsections
Yury Gorbunov 2010-10-21